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A fluid–beam model for flow in a collapsible channel
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Abstract

This paper proposes a fluid–beam model to overcome the shortcomings of the previous fluid–membrane models on

flow in collapsible channels of Luo and Pedley. The new model employs a plane strained elastic beam with large

deflection and incrementally linear extension. This model gives a more realistic and general description of the problem

and reduces to several simpler models including the fluid–membrane model under special parameter ranges. Both

numerical and asymptotic approaches are used to study the problem. A finite element code is developed to solve the

coupled nonlinear fluid–structure interactive equations simultaneously, and a moving mesh with rotating spines is used

to enable a movable boundary. It is found that as the wall stiffness approaches to zero, the fluid and the beam equations

at the corners where the beam joins the rigid wall are decoupled, and that asymptotic solutions exist both for the beam,

and the flow which is dominated by the Stokes flow even for Reynolds number of Oð103Þ: The numerical code is
validated in several different ways, and compared with the asymptotic solution at the corners. It is found that the

numerical grid size has to satisfy certain conditions to resolve the boundary layers properly near the corners, especially

for the smaller values of the wall stiffness. The results of the new model compare favourably with those of the fluid–

membrane model for very small wall stiffness. However, different results are obtained if the wall stiffness is chosen to be

applicable either to rubbers with wall thickness ratio greater than 0.01, or those of veins in the physiological range of

wall thickness ratios. This model therefore provides a more realistic description to flow in collapsible channels.

r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Flow in collapsible tubes has a number of applications in physiological flows and medical devices and has been

studied by a quite a number of researchers (Shapiro, 1977; Grotberg and Gavriely, 1989; Gavriely et al., 1989; Kamm

and Pedley, 1989; Jensen and Pedley, 1989; Grotberg, 1994; Pedley and Luo, 1998; Davies and Carpenter, 1997a, b;

Heil, 1997; Matsuzaki and Fujimura, 1995). In the last 20 years, modelling of flow in collapsible tubes has progressed

from early ‘‘lumped-parameter’’ models [e.g., Bertram and Pedley (1982)], through one-dimensional models (Cancelli

and Pedley, 1985; Jensen, 1990, 1992), to two-dimensional models in which the collapsible tube is represented by a

channel with part of one wall replaced by a thin membrane (Lowe and Pedley, 1996; Rast 1994; Luo and Pedley, 1995,

1996, 1998, 2000; Pedley and Luo, 1998; Liang et al., 1997). Further recent progress has come through the

computational work of Heil (1997), who has coupled solutions of Stokes flow to fully nonlinear three-dimensional

geometrical shell theory.

The key issues of these studies have been to investigate the mechanisms of the self-excited oscillations observed in

experiments (Brower and Scholten, 1975; Bertram, 1982, 1986) in which the control parameters, namely, the transmural

(internal minus external) pressure and the flow rate at the upstream or downstream end, are held constant. To simulate
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the self-excited oscillations requires one ultimately to extend the calculations of Heil’s work (1997) to include the

coupling of unsteady, three-dimensional, nonlinear Navier–Stokes equations for oscillations to arise. Such a work,

however, is still a daunting computational task. Although several attempts have been made, self-excited oscillations are

not yet captured (Tang et al., 1999; Tang and Yang, 2001; Scroggs et al., 2001). On the other hand, the simpler, two-

dimensional simulations have successfully produced the self-excited oscillations, and shown rich dynamical behaviour

of the system (Luo and Pedley, 1996, 1998, 2000).

The two-dimensional models being used in these studies, however, involve several ad hoc assumptions. First, the

direction of the wall movement has to be assumed because the membrane equation alone cannot determine the

movement of the material points of the elastic wall (Luo and Pedley, 1996). Secondly, the membrane model ignores

the axial stiffness and hence the longitudinal stretch of the elastic wall is only balanced by a uniform tension and the

transmural pressure. Thirdly, the bending stiffness of the wall is ignored. It should be noted that Liang et al. (1997) did

implement the bending stiffness in their two-dimensional model. Though in their linear membrane model, the

longitudinal stretch was ignored and the membrane was assumed to move vertically.

While these assumptions are reasonable for a certain range of parameters, they may lead to unrealistic results when

the wall is not so thin. In addition, ignoring the longitudinal stretch can make it difficult to compare with two-

dimensional experimental results [though such an experiment is extremely difficult to perform, e.g., Ikeda et al. (1998)],

where the initial tension is often zero or very low.

In the present paper, a study is carried out on a new two-dimensional model in which a plane-strained elastic beam

with large deflection and incrementally linear extension is used to replace the membrane. Therefore, the ad hoc

assumptions mentioned above are no longer needed. The fully coupled nonlinear problem is solved using the finite

element methods. To make the mesh adaptive to the moving boundary, a new spine method similar to that in Luo and

Pedley (1996) is introduced which not only allows nodes to move along the spines, but also allows each spine to rotate

around a fixed point. The fluid–beam model is presented in Sections 2 and 3, where some extreme cases of the new

model are discussed and related with the previous models. An asymptotic analysis for the fluid–beam corners is

presented in Section 4, and the moving boundary finite element methods is given in Section 5. Finally, code validations,

results and the discussions are given in Sections 6, 7 and 8, respectively.

2. A fluid–beam model

2.1. The model configuration

The flow configuration is shown in Fig. 1. The rigid channel has width D; a part of the upper wall is replaced by a pre-
stressed elastic beam subjected to an external pressure pe: Steady Poiseuille flow with average velocity U0 is assumed at

the entrance. The flow is incompressible and laminar, the fluid having density r and viscosity m: The beam may have

large deflection but still obeys Hooke’s law. The extensional and bending stiffness of the beam are EA and EJ;
respectively, where E is the Young’s modulus. Lu; L; and Ld are the lengths of the upstream, elastic, and downstream

L
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Fig. 1. The model configuration.
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sections, respectively. The pre-tension in the beam is T ; and the density of the beam is rm: Damping and rotational
inertia of the beam are both neglected.

2.2. The geometry of the beam

Consider the beam as depicted in Fig. 2, where g1; g2; g3 are fixed reference unit vectors. Denote a typical point by
ðl; 0; 0Þ in the undeformed configuration. After deformation, this point moves to

rðl; tÞ ¼ xðl; tÞg1 þ yðl; tÞg2: ð1Þ

The unit vector in the deformed configuration is

e1 ¼
1

l
r0 ¼

1

l
ðx0g1 þ y0g2Þ; ð2Þ

where the principal stretch of the beam is defined as

l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x

02 þ y
02

p
; ð3Þ

and the prime denotes differentiation with respect to l:
Define

e3 ¼ g3; e2 ¼ e3 � e1 ¼
1

l
ð�y0g1 þ x0g2Þ; ð4Þ

then ei forms a moving triad. By using the formulas of Frenet [see Struik (1961) and note that the torsion vanishes for

the plane curve], we obtain

@e1
@l

¼ lke2;
@e2
@l

¼ �lke1; ð5Þ

where the wall curvature k is given as

k ¼
1

l3
ðx0y00 � y0x00Þ: ð6Þ

2.3. The governing equations for the beam

Consider the motion of a differential element shown in Fig. 3. We can write the momentum equation

d

dt
rm

dr

dt
dl

� �
¼ dFþ qds; ð7Þ

and the angular momentum equation

d

dt
rmr�

dr

dt
dl

� �
¼ dMþ r� q ds þ ðrþ drÞ

� ðFþ dFÞ � r� F; ð8Þ

r

g2

θ

g1 e2

e1

Fig. 2. Coordinate system for the beam.
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where F;M are force and moment acting on the cross section of the beam, respectively, rm is the mass density of the

beam. ds is the length of the deformed differential element (¼ ldl), and q is the distributive force which changes as the

beam deforms.

After some straightforward manipulations and dropping the higher order terms, Eqs. (7) and (8) can be written in

components:

rm

l
x0d

2x

dt2
þ y0

d2y

dt2

� �
¼ F 0

1 � lkF2 þ lq1; ð9Þ

rm

l
�y0

d2x

dt2
þ x0d

2y

dt2

� �
¼ F 0

2 þ lkF1 þ lq2; ð10Þ

lF2 þ M 0 ¼ 0; ð11Þ

where variables with subscripts 1 and 2 indicate their components along e1 and e2: The other three component equations
are identically satisfied.

The distributive force here is simply the fluid stresses, i.e.,

q1 ¼ tn; q2 ¼ sn � pe; ð12Þ

where pe is the external pressure, and q2 is also called the transmural pressure. Substituting Eqs. (11) and (12) into

Eqs. (9) and (10), we obtain the basic equations of motion for the beam:

rm

l
x0d

2x

dt2
þ y0

d2y

dt2

� �
¼ F 0

1 þ kM 0 þ ltn; ð13Þ

rm

l
�y0

d2x

dt2
þ x0d

2y

dt2

� �
¼ �

1

l
M 0

� �0

þlkF1 þ lsn � lpe: ð14Þ

Using the Kirchhoff laws for an elastic beam, the constitutive equations can be written as

F1 ¼ T þ EAðl� 1Þ; ð15Þ

M ¼ EJðk� k0Þ; ð16Þ

where T is the pre-tensional axial force in the beam, k0 is the initial wall curvature. Substituting Eqs. (15) and (16) into
Eqs. (13) and (14), we obtain the governing equations for the beam:

rm

l
x0d

2x

dt2
þ y0

d2y

dt2

� �
¼ EJkk0 þ EAl0 þ ltn; ð17Þ

rm

l
y0
d2x

dt2
� x0d

2y

dt2

� �
¼ EJ

1

l
k0

� �0

�lkT � EAlkðl� 1Þ � lsn þ lpe: ð18Þ

Eqs. (3), (6), (17) and (18) are the four equations required for the four unknowns x; y; l and k:

F

M

M+dM

F+dF

q ds

r

r + d r

Fig. 3. A differential element of the beam.
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3. The coupled fluid–beam governing equations

3.1. The dimensionless governing equations

For convenience, we introduce the dimensionless variables (marked with an asterisk):

un

i ¼ ui=U0ði ¼ 1; 2Þ; sn ¼ s=rU2
0 ; pn ¼ p=rU2

0 ; Tn ¼ T=rU2
0D;

xn ¼ x=D; yn ¼ y=D; tn ¼ tU0=D; ln ¼ l=D; Ln ¼ L=D; kn ¼ kD;

rn

m ¼ rm=Dr; cl ¼ EA=rU2
0D; ck ¼ EJ=rU2

0D3; Re ¼ U0Dr=m; ð19Þ

where Re is the Reynolds number, while cl and ck represent the extensional and bending stiffness of the beam. It is

noted that cl and ck are not independent parameters, they are related by

cl ¼ 12ckD2=h2; ð20Þ

where D is the channel height and h is the thickness of the beam.

The dimensionless governing equations for the coupled system are thus:

@ui

@t
þ ujui;j ¼ �p;i þ

1

Re
ui;jj ; ð21Þ

ui;i ¼ 0; i; j ¼ 1; 2 ð22Þ

rm

l
x0d

2x

dt2
þ y0

d2y

dt2

� �
¼ ckkk0 þ cll

0 þ ltn; ð23Þ

rm

l
y0
d2x

dt2
� x0d

2y

dt2

� �
¼ ck

1

l
k0

� �0

�lkT � cllkðl� 1Þ � lsn þ lpe: ð24Þ

Note that the asterisks have now been dropped for simplicity. Eqs. (21)–(24) involve fourth-order differentiation of x

and y via Eq. (6). This makes it difficult to use the second-order finite elements employed in the existing code. To reduce

the order of the equations, we introduce the angle y (see Fig. 2) as a new independent variable, hence

x0 ¼ l cos y; y0 ¼ l sin y; ð25Þ

and Eq. (3) is identically satisfied. Eq. (6) can be rewritten as

y0 ¼ lk: ð26Þ

The boundary conditions are as follows.

For the flow field:

Inlet flow (x ¼ 0): u ¼ 6yð1� yÞ; v ¼ 0;
Outflow (x ¼ Lu þ L þ Ld ): st ¼ sn ¼ 0; (this implies a zero pressure at the downstream).

Rigidwalls : u ¼ v ¼ 0 at y ¼ 0; 0pxpLu þ L þ Ld

at y ¼ 1; 0pxpLu and Lu þ LpxpLu þ L þ Ld :

Elastic section: uðtÞ ¼ ueðtÞ; vðtÞ ¼ veðtÞ at x ¼ xeðtÞ; y ¼ yeðtÞ:
For the beam:

At the upstream end: xe ¼ Lu; ye ¼ 1; y ¼ 0:
At the downstream end: xe ¼ Lu þ L; ye ¼ 1; y ¼ 0:

3.2. Special cases of the new model

Some assumptions used in the previous studies can be evaluated by considering the following special cases of the new

model. This will provide some insight on how the model will behave at certain extreme situations, and what should be

taken into consideration to achieve meaningful numerical results.
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3.2.1. Case A: ck51

This is when the beam is very thin but has a moderate Young’s modulus. Hence, the bending stiffness can be

neglected but not the extensional stiffness. Eqs. (23) and (24) become

rm

l
x0d

2x

dt2
þ y0

d2y

dt2

� �
¼ cll

0 þ ltn; ð27Þ

rm

l
y0
d2x

dt2
� x0d

2y

dt2

� �
¼ �lkT � cllkðl� 1Þ � lsn þ lpe: ð28Þ

Note that in this case, there exists a boundary layer near the corners of the beam. The scale of the boundary layer is of

order Oð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ck=ðL2clÞ

p
Þ (see below), which requires very fine grids to resolve it numerically. Note that L is the

dimensionless beam length with the star dropped [see Eq. (19)].

3.2.2. Case B: l-1

This happens when the deformation of the beam is small and the longitudinal stretch is negligible. This could be

caused either by a large value of cl; or a small loading. Eq. (23) only contains the higher order terms, and Eq. (24) now
becomes

rm y0
d2x

dt2
� x0d

2y

dt2

� �
¼ ckk00 � kT � sn þ pe: ð29Þ

This is a commonly used model, except that vertical displacement is often assumed [e.g., Liang et al. (1997)].

3.2.3. Case C: cl51

Both ck and cl-0; and Eqs. (23) and (24) reduce to

rm

l
x0d

2x

dt2
þ y0

d2y

dt2

� �
¼ ltn; ð30Þ

rm

l
y0
d2x

dt2
� x0d

2y

dt2

� �
¼ �lkT � lsn þ lpe: ð31Þ

If the flow is steady or the wall inertia is neglected, Eq. (31) can be rewritten as

�kT � sn þ pe ¼ 0: ð32Þ

This is the membrane equation used for steady flow by Luo and Pedley (1995). In this case, there exists a singular point

at the corner if the membrane bulges out at certain angle (Moffatt, 1963), which cannot be resolved numerically (and

may cause the numerical scheme to break down). An asymptotic solution for the corners in this case is derived by Lowe

and Pedley (1996) for Stokes flow.

3.2.4. Case D: cl51 and l-1

This gives ck-0; and Eq. (24) becomes

rm �y0
d2x

dt2
þ x0d

2y

dt2

� �
� kT � sn þ pe ¼ 0: ð33Þ

Again, all terms in Eq. (23) are of higher order compared with those in Eq. (24); hence, they are considered to have no

significant effect on the flow. Note that ½�y0ðd2x=dt2Þ þ x0ðd2y=dt2Þ	 is the acceleration along the normal direction. This
is exactly the membrane equation used for unsteady flow by Luo and Pedley (1996), with the assumption that the wall

only moves in the normal direction. This case implies that both the wall stiffness and the deformation of the beam are

small, which is only possible for very small external forces. Such a situation is very difficult to achieve in practice. This

case also has a singularity at the corners.

It is clear that although the new model is not constrained to these limits, it will exhibit the boundary layer or

singularity phenomenon if the parameters fall in any of these extreme cases. This will still cause great numerical

difficulty. Therefore in the following, we will study the analytical behaviour of the model near the corners.
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4. The asymptotic approach

An asymptotic solution for a fluid–membrane model at the upstream corner has been studied by Lowe and Pedley

(1996). In the fluid–beam model, due to the bending stiffness, such a corner singularity does not exist, hence the flow at

the corner can be resolved numerically in principle. In practice, however, there still exists a small-scale boundary layer

for small bending stiffness which is difficult to be resolved numerically. In order to understand the local characteristic of

the flow behaviour, here we will investigate the asymptotic corner solution of the fluid–beam model for a small bending

stiffness, in the similar manner as that adopted by Lowe and Pedley (1996).

4.1. Normalized equations

To simplify the analysis, we introduce the following new variables:

%xi ¼ ðxi � xiLÞ=L; %ui ¼ ui=L; %l ¼ l=L; %k ¼ kL;

%T ¼T=cl; e ¼
ck

clL2
; e1 ¼

L

clRe
; %pe ¼

ðpe � p0ÞL
cl

; %p ¼
DpL

cl
; ð34Þ

where xiL is the position of the beam end, L is the initial beam length, p0 is a reference pressure of the fluid, and

Dp ¼ p � p0: Using the new variables, Eqs. (21)–(26) can be written as

%x
0 ¼ l cos y; %y

0 ¼ l sin y; y0 ¼ l %k; ð35Þ

e %k %k0 þ l0 � le1
@ %us

@n
¼ 0; ð36Þ

e
1

l
%k0

� �0

�l %kð %T þ l� 1Þ þ lð %pe � %pÞ ¼ 0; ð37Þ

e1 Re L2 %uj %ui;j ¼ � %p;i þ e1 %ui;jj ; %ui;i ¼ 0; i; j ¼ 1; 2: ð38Þ

Note that, in Eq. (37), %p is used to replace %sn as they are the same on the no-slip boundary for steady flow. For a

slender beam, e is a very small constant. If Re is not too small, then e1 is usually also a small constant. Hence, we can
denote

e1 ¼ ec; ð39Þ

where c is a positive constant.

4.2. A closed form solution for a special case

For static fluid and zero bending stiffness (e ¼ 0), the pressure is a constant and the shear stress on the beam is zero.

In this case, we can obtain a closed-form solution for Eqs. (35)–(37):

l ¼ constant ¼: l0; %k ¼
%pe

%T þ l0 � 1
¼: %k0: ð40Þ

Integrating Eqs. (35)–(37), we have

y ¼ l0 %k0 %l þ y0; %x ¼
1

%k0
sin yþ %x0;

%y ¼ �1= %k0 cos yþ %y0: ð41Þ

The boundary conditions are

%x ¼ 0; 1; %y ¼ 0; 0 at %l ¼ 0; 1: ð42Þ

Substituting Eqs. (40) and (41) into Eq. (42), we obtain

y0 ¼ �l0 %k0=2; %x0 ¼ 1=2; %y0 ¼
1

%k0
cos y0; ð43Þ

where l0 is determined from

sin
l0 %pe

2ð %T þ l0 � 1Þ
¼

%pe

2ð %T þ l0 � 1Þ
: ð44Þ
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For given values of %T and %pe; Eq. (44) may have multiple solutions. The physically reasonable l0; however, should be
> 1: The lowest branch of l0 � %pe curves for different values of pre-tension %T is shown in Fig. 4. It is easy to see that

when 0p %Tp2; l0-N as %pe-2p: This means the beam will lose its stability at this point. Also, if %T > 2; the l0 � %pe

curve has a bifurcation point at

%pe ¼ 2 pþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
%T2 � 2 %T

p
� arccos

1

%T � 1

� �
; l0 ¼

ðp� arccos 1
%T�1Þð %T � 1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

%T2 � 2 %T
p ; ð45Þ

where the beam will also become unstable. To avoid these instablities, in the following, we only consider cases where %T

and %pe are Oð1Þ:

4.3. Asymptotic solutions for e51

For 0oe51; Eqs. (35)–(38) clearly indicate a boundary layer phenomenon. In this case, we can divide the domain
into an outer region far away from the beam end where numerical solutions can be used, and an inner one where the

asymptotic approach is applied, see Fig. 5.

In the inner region, we rescale Eqs. (35)–(38) by letting

%l ¼ ea *l; y ¼ *y; l ¼ *l; %k ¼ eb *k; %xi ¼ ea *xi;

%ui ¼ eg *ui; %p ¼ er *p; ð46Þ

where a is a positive constant, and variables with a tilde are Oð1Þ: Eqs. (35–(38) can now be rewritten as

e�a *y0 ¼ eb *l *k; ð47Þ

e1�aþ2b *k *k0 þ e�a *l0 � eg�aþc *l
@ *us

@ *n
¼ 0; ð48Þ

e1�2aþb 1

*l
*k0

� �0

�eb *l *kð %T þ *l� 1Þ þ *l *pe � er *l *p ¼ 0; ð49Þ

e2g�aþc Re L2 *uj *ui;j ¼ �er�a *p;i þ eg�2aþcr2 *ui: ð50Þ

0 10

1

T<2 T>2

_
pe

20

8642

_ _

λ 0

Fig. 4. The lowest branch of l0 � %pe curves for different values of %T:
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On viewing Eq. (47), we immediately see that, for the leading order,

b ¼ �a: ð51Þ

Assume further that ReL2 ooe�ðaþgÞ; which is not too restrictive, since Re can still be of the order of thousands for the
parameters we are interested in. In this case, the inertia term in Eq. (50) can be neglected, which leads to

r ¼ gþ c � a: ð52Þ

It is clear that, in the inner region, the leading order governing equations for fluid are simply Stokes equations,

� *p;i þr2 *ui ¼ 0; *ui;i ¼ 0: ð53Þ

These equations can also be expressed by

r4C ¼ 0; ð54Þ

where C is the stream function.

The nature of the leading order behaviour of the beam depends on the value of gþ c; and there exhibit three
possibilities.

(i) gþ co0: The second term in Eq. (48) is the small higher order term, so the third term is balanced by the first one

which gives a ¼ 1
2
½1� ðgþ cÞ	 > 1

2
: Eqs. (48) and (49) become

*k *k0 � *l
@ *us

@ *n
¼ 0; ð55Þ

1

*l
*k0

� �0

�*l *p ¼ 0: ð56Þ

(ii) gþ c ¼ 0: The second term in (48) is the same order as the third one, hence ap1
2
; and Eqs. (48) and (49) are either

*l0 � *l
@ *us

@ *n
¼ 0; ð57Þ

*kð %T þ *l� 1Þ þ *p ¼ 0 for ao1
2
; ð58Þ

or

*k *k0 þ *l0 � *l
@ *us

@ *n
¼ 0; ð59Þ

1

*l
*k0

� �0

�*l *kð %T þ *l� 1Þ � *l *p ¼ 0 for a ¼ 1
2
: ð60Þ

R

Inner

Outer

o

s

Θ

Fig. 5. The inner and outer regions of the fluid–beam corner.
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(iii) gþ c > 0: The third term in Eq. (48) is the small higher order term, thus a ¼ 1
2
; and we obtain

*k *k0 þ *l0 ¼ 0; ð61Þ

1

*l
*k0

� �0

�*l *kð %T þ *l� 1Þ ¼ 0; ð62Þ

*x0 ¼ *l cos *y; *y0 ¼ *l sin *y; *y0 ¼ *l *k: ð63Þ

Note that the fluid and beam are decoupled in the third case. The boundary conditions for all these cases are

*x ¼ 0; *y ¼ 0; *y ¼ 0 at *l ¼ 0; ð64Þ

l-l0; %k- %k0; y-y0 as *l-N; ð65Þ

where l0; %k0; and y0 are the values of l; %k; y at the interface between the inner and outer regions.
To check if any of these cases are physically feasible, we will consider the solution structure in the polar coordinate

system (s, R, Y) originated from the beam end, see Fig. 5. Note that s (¼ ea *s) is the arc-length of the beam in the

deformed configuration, and R =ea *R:
The boundary conditions for the fluid are now:

%ui ¼ 0 at Y ¼ �p and Y ¼ gðRÞ;

%ui- %ui0; %p- %p0 as *R-N; ð66Þ

where %ui0; %p0 are the outer solutions at the interface, and gðRÞ is an unknown function describing the shape of the beam.
As g ¼ 0 at R ¼ 0; we can always expand gðRÞ for *R51:

gðRÞBdRm as R-0; ð67Þ

where d and m (m > 0) are undetermined constants. In the similar way as Lowe and Pedley (1996), the stream function

for *R51 can be written as

C ¼ RM fM ðYÞ; ð68Þ

where M is another undetermined constant, and fM is a function of Y and M: Substituting Eq. (68) into Eq. (54) and
using the boundary conditions of %u ¼ %v ¼ 0; we find that M ¼ 2 with the error of OðR2Þ for %ui: This means that %uiBR;
which gives rise to eaBeg; or g ¼ aX0 (for RX0). Therefore, we know gþ c is always positive. In other words, only case

(iii) is physically possible for *R51:
For *Rb1; taking into account of Eq. (65), we can expand gðRÞ similarly as

gðRÞBy0 þ d *Rm as *R-N; ð69Þ

where d and m ðo0Þ are undetermined constants. The stream function for *R >> 1 can assume the same form as Eq. (68).
Substituting Eq. (68) into Eq. (54) and using the boundary conditions of %u ¼ %v ¼ 0; we derive the approximate solution:

fM ðYÞ ¼ CF1ðYÞ þ DF2ðYÞ; ð70Þ

where C; D are undetermined constants, and F1 and F2 are

F1ðYÞ ¼ sinðM � 2ÞY� sinMYþ
2

M
cosMp sinMðYþ pÞ;

F2ðYÞ ¼ cosðM � 2ÞY� cosMYþ
2

M
sinMp sinMðYþ pÞ; ð71Þ

in which M depends on y0 via

sin½ðM � 1Þðy0 þ pÞ	 ¼ �ðM � 1Þsinðy0 þ pÞ: ð72Þ

From Eq. (72), it is easy to see that, for �ppy0pp=2; M is either a complex number with a real part greater than 2; or a
real number greater than 1. Since %uiBRM�1BeaðM�1ÞBeg; this immediately applies that gþ c > 0: Therefore, only
gþ c > 0 is possible for *Rb1:
As gþ c > 0 is true for both *R51 and *Rb1; it is reasonable to assume that only case (iii), gþ c > 0; is physically

possible for the whole inner region. Thus, in the following we shall derive the asymptotic solution for this case.
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4.3.1. Asymptotic solution for the beam

Since gþ c > 0; from Eqs. (46), (48) and (49), it is easy to see that in the inner region

a ¼ 1=2; %lBe1=2; %kBe�1=2: ð73Þ

Eq. (73) is important, as it shows that the size of the inner region is the order of e1=2: The curvature at the corner is the
order of e�1=2:
Since Eqs. (61)–(63) are uncoupled to the flow inside the inner region, the beam shape near the corner is solely determined

by the boundary conditions, and the influence of the flow only comes in through the interface to the outer solution.

Integration of Eq. (61) gives

*lþ 1
2
*k2 ¼ l0 þ

e
2
%k20: ð74Þ

Multiplying Eq. (62) by *k0=*l and integrating the resultant equation, we obtain

*k02 ¼ *l2 *k2ð %T þ *l� 1þ *k2=4Þ þ c: ð75Þ

where c; determined by Eq. (65), is

c ¼ �el20 %k
2
0ð %T þ l0 � 1þ e %k20=4Þ: ð76Þ

It is clear that c is an OðeÞ constant. Hence Eq. (75) can, for the leading order, be written as

*k02 ¼ *y02ð %T þ *l� 1þ *k2=4Þ: ð77Þ

Substituting Eq. (74) into Eq. (77), and dropping the OðeÞ terms, we have

*k0 ¼ 7*y0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
%T þ l0 � 1� *k2=4

q
; ð78Þ

which can be integrated to give

*k ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
%T þ l0 � 1

p
sinðc17*y=2Þ; ð79Þ

where c1 is again determined by Eq. (65),

c1 ¼ 8y0=2: ð80Þ

As, near *l ¼ 0; we have %ko0 and *y� y0 > 0 (when y0o0), Eq. (79) becomes

*k ¼ �2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
%T þ l0 � 1

p
sin

ð*y� y0Þ
2

: ð81Þ

The solutions of Eq. (74) and (81) can be neatly expressed using the polar coordinates:

y ¼ y0 � 4 arctan S;

l ¼ l0 þ
e
2
ð %k20 � %k2Þ;

%k ¼
2a sin 1

2
y0

cosh as þ cos 1
2
y0 sinh as

; ð82Þ

where a is a constant, and S is a function of s defined as

SðsÞ ¼ tan
y0
4

� �
e�as; a ¼ e�1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
%T þ l0 � 1

p
: ð83Þ

From these we can recover %x and %y using Eq. (63).

4.3.2. Asymptotic solution for the fluid

Now, all we need to do is to find the solution for Eq. (53) or (54) under conditions (66), with gðRÞ as a given function.
The stream function can be denoted by Eq. (68) for *Roo1 and *R >> 1:We assume that it also takes the general form of

C ¼ RMðgðRÞÞfM ðYÞ ð84Þ

for the whole inner region; here M and fM ðYÞ are determined by

sin½ðM � 1Þðg þ pÞ	 ¼ �ðM � 1Þsinðg þ pÞ; ð85Þ

fM ðYÞ ¼ A½F1ðYÞF2ðgÞ � F2ðYÞF1ðgÞ	; ð86Þ

where A is an undetermined constant which depends on the outer solution.
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Using Eq. (84), we can show that Eq. (54) is satisfied to the leading order of OðRM�4Þ; see the appendix. The
boundary conditions %ui ¼ 0 are also approximately satisfied with an error of OðRM Þ:
Denoting the pressure at the interface of the inner and outer regions by %p0u (upstream) and %p0d (downstream), we can

write the pressure at the boundary as

%p ¼ %p0u �
Z s

su

@ðr2CÞ
@n

ds

¼ %p0u �
Z s

su

sinðY� yÞ
@ðr2ðRMfM ÞÞ

@R
þ cosðY� yÞ

@ðr2ðRMfM ÞÞ
R@Y

� �
ds

¼: %p0u � APðsÞ; ð87Þ

A ¼
%p0u � %p0d

Pðsd Þ
; ð88Þ

where su and sd are, respectively, the arc length coordinates of the upstream and downstream interfaces at the

boundary, and n indicates the normal direction of the boundary.

It is easy to see in Eq. (87) that p is of the order of RM�2: Therefore, a singularity may occur if Mo2 as R-0:
Interestingly, as R-0; we have M-2 and g-0: Thus we need to check the limit limR-0 RM�2 carefully.

From Eq. (82), we know that %k-2a sin 1
2
y0 as R-0; i.e.,

%xER; %yE1
2 %kR2; gðRÞ ¼ arctan

%y

%x

� �

E a sin
y0
2

R as R-0: ð89Þ

On the other hand, from Eq. (85), we have

ME2�
2g

p
E2�

2a

p
sin

y0
2

R as R-0: ð90Þ

From Eq. (90), it is easy to see that limR-0 RM�2 ¼ 1: In other words, there is no singularity at the upstream corner as

long as the constant a is finite. From Eq. (83), we know that this is true for e > 0: Physically, this makes sense since there
is no longer a sharp corner at the beam ends due to the bending stiffness of the beam. The singularity exists only when

e-0; i.e., the beam becomes a membrane, and then the curvature %k goes to infinity (73). It is noted, however, that when
e is not zero but very small, the curvature %k would undergo a rapid change from order e�1=2 of the inner solution to Oð1Þ
of the outer solution within a length range of Oðe1=2). This means that to solve the system properly using numerical

methods, the grid size needs to be smaller than Oðe1=2).

5. Finite element algorithm

Since a part of the flow boundary is movable, a moving mesh is used to treat the moving boundary problem. As in

Luo and Pedley (1996), the mesh is divided into three subdomains, with subdomain B located under the elastic

boundary, being the movable one. In subdomain B, each node ðzk
i ; Z

k
i Þ is fixed to a line called spine k, which connects a

fixed node ðxk
b ; y

k
bÞ on the bottom of the domain and a node ðzk

e ; Z
k
e Þ attached to a material point on the beam. The spine

k remains a straight line but can rotate when the beam deforms, hence all the nodes on the spines can be stretched or

compressed depending on how the beam is deformed. Therefore, in the deformed mesh, the boundary nodes ðzk
e ; Z

k
e Þ will

move to ðxk
e ; y

k
e Þ; and the internal nodes ðz

k
i ; Z

k
i Þ will move to ðxk

i ; y
k
i Þ; see Fig. 6. The relationship between ðxk

i ; y
k
i Þ and

ðxk
e ; y

k
e Þ is

xk
i ¼ xk

b þ ok
i ðx

k
e � xk

bÞ; ð91Þ

yk
i ¼ yk

b þ ok
i ðy

k
e � yk

bÞ; ð92Þ

where ok
i is a scale factor defined by

ok
i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðzk

i � xk
bÞ
2 þ ðZk

i � yk
bÞ
2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðzk

e � xk
bÞ
2 þ ðZk

e � yk
bÞ
2

q : ð93Þ
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5.1. Finite element equations

Finite element equations are derived using the method of weighted residuals. The elements for flow are triangular

with six nodes, and the elements for the beam are isoparameter elements with three nodes. Using the linear and

quadratic shape functions Li and Ni; we can express the discretized variables as

u ¼
X6
i¼1

uiNiðz; ZÞ; v ¼
X6
i¼1

viNiðz; ZÞ; p ¼
X3
i¼1

piLiðz; ZÞ;

x ¼
X6
i¼1

xiðxeÞNiðz; ZÞ; y ¼
X6
i¼1

yiðyeÞNiðz; ZÞ;

xe ¼
X3
i¼1

xeiN
n

i ðsÞ; ye ¼
X3
i¼1

yeiN
n

i ðsÞ;

y ¼
X3
i¼1

yiN
n

i ðsÞ; l ¼
X3
i¼1

liN
n

i ðsÞ;

k ¼
X3
i¼1

kiN
n

i ðsÞ; ð94Þ

here Nn
i ðsÞ are the values of Niðz; ZÞ on the elastic boundary, xe and ye are the values of x and y on the elastic boundary.

The Petrov–Galerkin method is used to discretize the fluid and beam equations where the weighting and shape

functions are not the same. Care needs to be taken when choosing the weighting functions for the beam equations. This

is due to the difficulty of making the discretized algebraic equations (23)–(26) linearly independent. To choose the

appropriate weighting functions for the system, numbers of different combinations were explored, and the ones which

gave converged results were implemented in the code. The one which seems to give the best performance in terms of

accuracy and convergence is to choose dNl=dl as the weighting function for the residuals (see below) Rex; Rey;ey ; Rel;
and Nl as the weighting function for Rek:
The finite element equations can be then written in a matrix form as

M
dU

dt
þ KðUÞU� F ¼ R ¼ 0; ð95Þ

where U is the global vector of unknowns ðui; vi; pj ; xk; yk; yk; lk; kkÞ: M is the mass matrix, KðUÞ represents a nonlinear
matrix including the convective and diffusion terms, F is the force vector, and R is the overall residual vector, given by

R ¼ ðRx;Ry;Rc;Rex;Rey;Rey;Rel;RekÞ
T; ð96Þ

where the subscripts x; y; c indicate the corresponding residuals of the x- and y-momentum and continuity in fluid, and

ex; ey; ey; el; ek indicate the corresponding residuals of Eqs. (23)–(26) for the beam.

xe , ye

k
ζe , ηe

k k

k

ζ i , ηi
k k

k k

xi , yi
k k

xb , yb
k k

Fig. 6. A sketch of the movable spine.
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We found that, in order to get a robust numerical scheme, it is better to evaluate the integrals in the undeformed

configuration, so that the variation of l during the numerical iterations will not cause the scheme to become unstable.
It is worthwhile mentioning that, if the finite element equations of the solid are derived from the variational principles

of energy as was done by Heil (1997), then this difficulty of matching the weighting and shape functions will not occur.

The reason we did not choose the energy approach is because it is easier to see the physical terms in the form of Eq. (23)

and (24), and to relate the model to the previous ones. This approach is also much easier to implement into the structure

of the existing code.

6. Code validations and comparison with asymptotic solutions

Validations for the numerical code are performed in the following different ways. First, the fluid solver is switched

off. Constant external pressure (=1.95) and pre-tension (T ¼ 178:8Þ; and very small values of cl and ck (ck ¼ 10�10 and

cl ¼ 10�5) are imposed. In this case, the beam behaves like a membrane, which should obey the Laplace law, pe ¼ T=R

and takes the shape of a circular arc with a radius R: As ck is zero in the numerical sense, we are able to impose zero

bending moment (ckk ¼ 0) and the geometrical boundary conditions (y ¼ 1) at the beam ends. The numerical results

showed that, as expected, l and k are virtually constants along the beam, equal to 1.0001 and 0.010906, respectively,
except at the close vicinity of the beam ends. Note that R ¼ 1=k agrees almost exactly with that given by the Laplace
law, and the numerical wall shape is indeed a circular arc.

Secondly, the fluid solver is switched on, and the numerical results for very small values of ck and cl are compared

with those of the fluid–membrane model by Luo and Pedley (1996), shown in Fig. 8. It is easy to see that the difference

between these two models is indeed very small.

Thirdly, for large values of ck and cl; three different combinations of shape and weighting functions were used; all of
them led to the same converged results.

Finally, the numerical results at the upstream corner of the beam are compared with the analytical asymptotic

solution. The agreement between the two solutions is excellent for all the four variables, see Fig. 7.

It is worth noting that in this case the assumptions made in Section 5 are indeed satisfied: ReL2 ¼
7500ooe�ðaþgÞ ¼ e�M=2Ee�1 ¼ 2:5� 106; and that e ¼ 0:4� 10�6:
In carrying out the numerical calculations, the grid size is chosen such that the boundary layer of a scale

Oð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ck=ðL2clÞ

p
Þ can be resolved. In this case, the boundary layer width is estimated to be about 0.0141, and the grid is

chosen to be 40� ð60þ 120þ 240Þ with a stretch ratio of 1:10 towards the corners in both directions.
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Fig. 7. Comparison between the asymptotic and numerical beam solutions at the downstream corner for cl ¼ 2: Solid lines—
asymptotic solutions, dotted lines—numerical solutions.
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7. Results

Following Luo and Pedley (1996), the nondimensional parameters are chosen to be: Lu ¼ 5; L ¼ 5; Ld ¼ 30; D ¼ 1;
Re¼ 300; pe ¼ 1:95; T ¼ 178:8=b; where T is the pre-tension which can be scaled down using a constant bð> 1Þ: In the
following, we will often use b to refer to different values of the pre-tension. The bending stiffness is in the range of
ck ¼ 105210�5; and a fixed ratio of ck=cl ¼ 10�5 is used throughout. This ratio is equivalent to choosing the thickness

of the wall to be about 1% of the channel width, see Eq. (20).

The elastic wall shapes with different values of cl and ck for a fixed pre-tension (b ¼ 90) are shown in Fig. 8. As is

expected, when cl and ck are very large, the beam behaves like a rigid wall. The deformation of the wall increases as the

wall stiffness decreases. The upstream end of the beam is seen to bulge out as cl falls below 102: This bulging
phenomenon of the upstream end is also observed in the fluid–membrane model when the tension is below a certain

value or the Reynolds number exceeds a particular value (Luo and Pedley, 1995). As cl becomes less than 1; the wall
configuration closely resembles the one of the membrane model. In other words, the fluid–membrane model is a

reasonable approximation for steady flow in collapsible channel if cl is of order 1 or lower.

Similarly, we can compare the results of the fluid–beam model with the fluid–membrane model for a fixed wall

stiffness and with different values of pre-tension; see Fig. 9.

It can be seen that if the pre-tension of the beam is chosen to be equal to the tension in the membrane, the membrane

model would present much greater wall deformation than the beam, especially in the upstream part. The wall

deformation in the downstream end does not differ as much in the two models. The maximum wall collapse in the two
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Fig. 8. The elastic wall shape at difference values of cl and a fixed pre-tension, b ¼ 90: - - - - - - - - , cl ¼ 1010; – – – – , cl ¼ 106;
................ , cl ¼ 104; – - – - – - – , cl ¼ 1000; - - - - - - - - - , cl ¼ 100; —-—- , cl ¼ 10; ———— , cl ¼ 1; —— , membrane. Note that

the membrane shape is very close to the beam shape for cl ¼ 1:
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Fig. 9. The wall shapes of (a) the fluid–beam model, and (b) the fluid–membrane model (Luo and Pedley, 1996) for ck ¼ 10�4; cl ¼ 10;
and different values of the pre-tension parameter b: The pre-tension for (a) is kept to be the same as the tension for (b).
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cases is also comparable. However, it should be noted that the minimum y coordinate in the beam does not shift

towards the downstream end as much as the membrane.

The results of the two models can also be compared while keeping the true tension at downstream end, which is the

final tension after loading, of the beam to be the same as in the membrane. This then gives a different picture of the wall

shapes; see Fig. 10.

In this case, the differences between the two models are not as significant as shown in Fig. 9. However, the main

tendency is still that the upstream wall deformation is smaller in the beam model than in the membrane, and not

surprisingly, the difference increases as the wall stiffness increases. On the other hand, the wall seems to collapse more in

the beam model as the wall stiffness increases, and the minimum y location shifts towards upstream. These subtle

differences may not be important for steady flow, but could have significant influences on the unsteady flow when

stability of the system is considered.

The flow field for cl ¼ 2; ck ¼ 2� 10�5 and b ¼ 90 are shown as the streamlines and pressure contours in Figs. 11

and 12(a). The pressure contours at the upstream corner is shown separately in Fig. 12(b) and (c).

It is clear that the pressure singularity that existed for the fluid–membrane model at the upstream corner does not

occur in the fluid–beam model. However, to resolve the boundary layer numerically, the grid has to be adjusted such

that the smallest elements near the corner have dimension of about 0.002, so that the length scale of the boundary layer

of Oð10�3LÞ can be resolved according to the asymptotic analysis. Indeed, it is found that, for smaller values of cl and

ck; it is extremely difficult to obtain numerical convergence. This is because using the current mesh generator, it is not
easy to decrease the grid size further without seriously distorting the elements at the corner.

Finally, results for different downstream transmural pe � pd (pd ¼ 0) are also calculated for b ¼ 90; and cl ¼ 1; see
Fig. 13(a). The corresponding wall shapes of the fluid–membrane model are shown in Fig. 13(b). It can be seen that as

pe reduces from 1 to 1.5, in both models, the elastic wall changes from the fully bulged shape into mostly collapsed

shape. It looks that the effect of increasing pe for a given tension is similar to decreasing tension for a given downstream

transmural pressure. Note that, for pe ¼ 3; the solution in the fluid–membrane model is not attainable, because the
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Fig. 10. The shapes of the beam for different values of cl: The final tension at the downstream beam end is kept to be the same as in the
membrane, b ¼ 90: – – – – , cl ¼ 1; ............. , cl ¼ 10; – - – - – - – , cl ¼ 100; —— , membrane.
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Fig. 11. Streamlines for cl ¼ 2; ck ¼ 2� 10�5 and b ¼ 90: The streamlines are plotted for an equal interval of 0.06.
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downstream membrane has the tendency of being sucked into the rigid section, which causes the numerical scheme to

break down.

8. Discussion

When comparing results between the beam and membrane models for the same values of tension, we have to be

careful which tension we refer to. In the beam model, the control parameter is the pre-tension, i.e., the initial tension

when no fluid load is applied. The final tension in the beam varies according to the fluid loading. In the membrane

model, there is no such a thing as the pre-tension. Tension is usually referred to as the one after loading, and was

assumed to be a constant in the fluid–membrane model (Luo and Pedley, 1996). For small values of ck and cl; the
difference between these two definitions is small, but for cl > 1; there are significant differences, as shown in Fig. 14, for
b ¼ 90: It is also noted that the tension in the beam model is far from being constant, especially near the downstream

corner, see Fig. 15. This is because near the corner, the slope of the beam has to undergo a great change from a finite

value to zero at the boundary. This causes a sudden compression in the longitudinal direction, and hence changes the

final tension in the beam, since the final tension Tfinal in the beam is the sum of the pre-tension T and the change of the
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Fig. 13. The wall shapes of (a) the fluid–beam model, and (b) the fluid–membrane model (Luo and Pedley, 1996) for cl ¼ 1; b=90, and
different values of pe: The pre-tension for (a) is kept to be the same as the tension for (b). - - - - - - - -, pe ¼ 1; ............. , pe ¼ 1:5;———,
pe ¼ 1:95; – - – - – - – , pe ¼ 2:5; – – – – , pe ¼ 3:
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Fig. 12. Pressure contours for cl ¼ 2: (a) Pressure contours in the domain from x ¼ 4� 20; with a contour interval of 0.3. (b) The
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principal stretch in the longitudinal direction:

Tfinal ¼ T þ clðl� 1Þ: ð97Þ

The upstream corner also exhibits a similar phenomenon but to a much smaller degree, as the change of wall slope is

much smaller at the upstream corner.

If we keep the pre-tension in the beam to be equal to the tension in the membrane, the deformation in the membrane

model is significantly greater than that in the beam model for large values of b: However, if we keep the final tension at
the downstream end of the beam to be the same as the tension in the membrane, then the results of the two models do

not differ so much. However, in practice, final tension cannot be used as a control parameter, since it is a calculated

variable. Note that to achieve the results in Fig. 10, iterations are needed and the corresponding values of the pre-

tension are found to be: cl ¼ 1; b ¼ 85; cl ¼ 10; b ¼ 99; cl ¼ 100; b ¼ �71: It is clear that, for cl ¼ 100; the beam
needs to be compressed to have the desired final tension. As compression is usually not applied for collapsible tube or

channel experiments, this means that for larger values of the bending and stretch stiffness, there is a range of values of

tension where the beam and membrane models are not comparable.

It is worth mentioning that, for the membrane model, it is found that when the tension drops below a critical value

(b=180 for Re=300), the numerical scheme breaks down and a steady solution is not attainable (Luo and Pedley,
1995). This is also true in the beam model if ck falls below a certain value, although the critical value of pre-tension is
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Fig. 14. Distribution of the final tension along the beam if the pre-tension is kept the same as the membrane model, with b ¼ 90; for
different values of cl:

9.975 9.98 9.985 9.99 9.995 10

0

2

4

6

x

T
en

si
on

 Cλ= 100

Membrane

Cλ= 10

Cλ= 2
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much lower in the beam model; see Fig. 16(a) for cl ¼ 1: This again is because the final tension is actually much greater
in the beam than the corresponding membrane.

It is found that for cl > 3; unlike the membrane model, there always exists a steady solution in the beam model for all
values of the pre-tension, and the corresponding elastic wall approaches a limiting wall shape as T-0 (b-N); see

Fig. 16(b) for cl ¼ 10: This is important because the value of cl is about 10
3–105 for living tissue materials,1 and about

104–105 for rubber like material (Fung, 1993).

Fig. 17 shows the results for different values of the pre-tension T with cl ¼ 103: It is also observed that there is no
upstream bulging or downstream sucking present for cl > 103:
Even for a zero pre-tension, there still exists a steady solution as long as the bending stiffness is above a certain

critical value; see Fig. 18. As mentioned before, this is the region beyond the limit of the previous membrane model.

This is also in agreement with the work of Matsuzaki and Fujimura (1995), where they found that a steady solution for

the channel wall always exists as long as the wall stiffness is accounted for.

Although the influence of the corner may not be important for the far field in steady flow, it could well be much more

important in unsteady flow when self-excited oscillations occur. This is currently being investigated.

The limitation of the new model is that the physical linearity assumed for the beam may not be valid if the wall

deformation is too large. In addition, it is still a two-dimensional approach to the original complicated three-

dimensional system of flow in collapsible tubes. Therefore, the direct application of this model to collapsible tube flow is
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Fig. 16. The elastic wall shape at lower values of tension for the fluid–beam model: (a) cl ¼ 1; the numerical scheme breaks down as
b > 345:3: - - - - - - - - , b ¼ 210; – – – – , b ¼ 240; ................ , b ¼ 270; – - – - – - – , b ¼ 300; - - - - - - - - - , b ¼ 330;—— , b ¼ 345:3: (b)
cl ¼ 10; There is no limit for b; the wall shape approaches to a limiting shape as b-N: - - - - - - - - , b ¼ 200; – – – – , b ¼ 300;
................ , b ¼ 500; – - – - – - – , b ¼ 1000; - - - - - - - - - , b ¼ 104; —— , b ¼ 1010:
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Fig. 17. The beam shapes for different values of pre-tension when cl ¼ 103: Note that even for a zero value of tension (b-N), the

wall deformation is still not very large: - - - - - - - - , b ¼ 1; – – – – , b ¼ 30; ................ , b ¼ 60; – - – - – - – , b ¼ 90; - - - - - - - - - , b ¼ 180;
— - — - , b ¼ 1000; —— , b ¼ 1010:

1The value of cl will decrease with the wall thickness ratio. However,even in dog’s venae cavae where the wall thickness ratio is lower

[h=D ¼ 0:006 (Pedley, 1980)], cl is still of Oð100).
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likely to be limited. Nevertheless, a study on the simpler version of the original three-dimensional fluid–structure

interaction problem will serve to improve our understanding of the fundamental behaviour of the system. Most

importantly, this work makes it possible to have direct comparisons with two-dimensional channel flow experiments,

which can in principle be conducted. Finally, it is worth pointing out that although it is possible to apply the current

numerical code to two-dimensional axisymmetric tube flow, which appears to be a step closer to the three-dimensional

tube flow, it is not pursued here since we are mainly interested in the mechanisms of self-excited oscillations, which

when they occur, are not axisymmetric.

9. Conclusion

A more realistic fluid–beam model for a two-dimensional flow in collapsible tubes is proposed in this paper. Both

numerical and asymptotic methods are used to study this new model. A finite element code is further developed for the

strongly coupled fluid–structure interaction problem, and a localized asymptotic solution is derived for the corners

where a boundary layer exists. It is found that as the bending stiffness goes to zero, the curvature of the beam near the

ends approaches to infinity in the manner of Oðe�1=2Þ: Therefore to solve the problem accurately using the numerical

means, it is important to have the grid size smaller than e1=2: It is also found that the flow and structure equations are
uncoupled in the corners of the beam ends even for Re of Oð103Þ: Comparisons between the asymptotic solutions and
numerical ones showed an excellent agreement.

The results of the new model are compared with the fluid–membrane model. It is discovered that for clp1; the fluid–
membrane model is a very good approximation to fluid–beam model, at least for steady flow.

In the membrane model, it was found that there is a limit value of tension when a steady solution is not attainable,

but for the beam model, this again depends on the wall stiffness. If the stiffness parameters are not too small, then as the

pre-tension T-0; the elastic wall approaches a finite limiting shape, and there always exists a steady solution. This is
because the membrane tension corresponds to the final tension in the deformed configuration, and it approximates to

the pre-tension only for very small values of the wall stiffness.

For greater values of the wall stiffness, however, there are significant differences between the two models. This will be

highly important for most bioengineering applications, because the wall stiffness for biological materials can be much

greater than those of a membrane. Although only steady flow is considered in this paper, the model is valid for unsteady

flow. Using this new model will allow us to explore the mechanisms of self-excited oscillations in a more realistic

parameter region and make it possible to compare with the corresponding two-dimensional experiments.
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Appendix. Error estimation for Eq. (84)

From Eqs. (85) and (86), we know that

fM ðYÞ ¼ 0;
@fM ðYÞ
@Y

¼ 0 at Y ¼ �p or Y ¼ gðRÞ: ðA:1Þ

The velocities can be obtained using Eq. (84) as

uR ¼
@C

R@Y
¼ RM�1@fM

@Y
; ðA:2Þ

uY ¼ �
@C
@R

¼ MRM�1fM þ RM@M

@R
fM lnR þ

@fM

@M

� �
: ðA:3Þ

It is easy to see that the right-hand side of Eq. (A.2) and the first term on the right-hand side of Eq. (A.3) is OðRM�1Þ
and becomes zero at boundaries given by Eq. (A.1). Also, Eq. (86) states that fM and @fM=@M are the same order of the

constant A: Consider the fact that Re lnR-0 as R-0 for any e > 0; the order of the second term on the right-hand side
of Eq. (A.3) depends on the order of @M=@R: We can estimate the order of this term from

@M

@R
¼

@M

@g

@g

@y
@y
@s

@s

@R
; ðA:4Þ

where @y=@s is the curvature of the beam, @s=@R ¼ 1=cosðy� gÞ: Using Eq. (85), we have

@M

@R
¼

�ðM � 1Þ½cosðg þ pÞ þ cosððM � 1Þðg þ pÞÞ	 2a sinðy0 � yÞ=2
½sinðg þ pÞ þ ðg þ pÞsinððM � 1Þðg þ pÞÞ	 cosðy� gÞ

@g

@y
: ðA:5Þ

Since j@g=@yjp1 for the problem of concern, @M=@R is roughly the same order of the constant a: This means the second
term on the right-hand side of Eq. (A.3) is about OðRM Þ: So, boundary condition uR ¼ 0 is exactly satisfied, the

boundary condition uY ¼ 0 is approxomately satisfied with the error of OðaARM Þ:
Similarly, substituting Eq. (84) into Eq. (54), we find

r4C ¼ RM�4 M2ðM � 2Þ2fM þ ðM2 þ ðM � 2Þ2Þ
@2fM

@y2
þ
@4fM

@y4

� �
þ OðRM�3Þ: ðA:6Þ

Substituting Eq. (71) and (86) into Eq. (A.6), we deduce that the first term on the right-hand side of Eq. (A.3) is zero.

Hence, the errors for Eq. (54) are of OðRM�3Þ:
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