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The mitral valve (MV) is one of the four cardiac valves. It consists of two leaflets that are connected to the
left ventricular papillary muscles via multiple fibrous chordae tendinae. The primary functions of the MV
are to allow for the free flow of blood into the left ventricle (LV) of the heart from the left atrium (LA)
during the diastolic and early systolic phases of the cardiac cycle, and to prevent regurgitant flow from
the LV to the LA in deep systole. MV disorders such as mitral stenosis and regurgitation cause significant
morbidity and mortality, and an improved understanding of MV biomechanics could lead to improved
medical and surgical procedures to restore normal MV function in patients with such disorders. Compu-
tational models can realistically capture the anatomical and functional features of the MV and hence can
provide detailed spatial and temporal data that may not be easily obtained clinically or experimentally. In
this study, an anatomical model of a human MV is derived from in vivo magnetic resonance imaging
(MRI) data. Using this clinical imaging-derived model, fluid–structure interaction (FSI) simulations are
performed using the immersed boundary (IB) method under physiological, dynamic transvalvular pres-
sure loads. Computational analyses show that the subject-specific MV geometry has a significant influ-
ence on the simulation results. An initial validation of the model is achieved by comparing the
opening height and flow rates to clinical measurements.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Cardiovascular disease is the leading cause of mortality in
industrialised nations, including the United Kingdom and the Uni-
ted States. In 2007, cardiovascular disease accounted for 34% of
deaths in the UK, totalling just over 193,000 people. When cardiac
valve function is sufficiently impaired, valve repair or replacement
is required. Approximately 39,000 patients have cardiac surgery in
the UK annually, among which heart valve operations are the sec-
ond most common, behind only coronary bypass procedures.

The mitral valve (MV) is a complex apparatus consisting of two
leaflets, a large antero-medial leaflet and a smaller postero-lateral
leaflet, that are each connected via multiple fibrous chordae tendi-
nae to papillary muscles that attach to the wall of the left ventricle
(LV) of the heart. The MV opens to allow blood to fill the LV during
diastole and early systole, and MV closure regulates and prevents
systolic regurgitation of blood from the LV into the left atrium
(LA). This function requires the coordinated action of these interre-
lated elements, and alterations in the structure or function of the
leaflets, chordae, or papillary muscles may impede left ventricular
filling, induce mitral regurgitation, and alter left ventricular
ll rights reserved.
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ejection [1]. An improved understanding of human mitral valve
biomechanics is urgent and important for the optimisation of med-
ical therapies and surgical procedures aimed at restoring normal
MV function in patients with valvular heart diseases.

Comprehensive assessment of MV physiology and pathophysi-
ology requires detailed modelling of patient anatomy and dynam-
ics, and for such assessments to be clinically useful, they must be
based on noninvasive imaging data. Dynamic modelling of MV bio-
mechanics is made challenging by the large deformations experi-
enced by the leaflets, the anisotropic nonlinear elastic behaviour
of the valvular tissue, and the pulsatile haemodynamic loads dur-
ing the cardiac cycle. In addition, there is large inter-subject vari-
ability in the anatomy of the MV apparatus. Imaging techniques
such as magnetic resonance (MR) imaging and echocardiography
[2] allow the visualisation of the cardiac valves and provide data
needed to link anatomy to valvular function, but such imaging
modalities do not yield information on the loads applied to the
valve that arise from the coupled fluid and structural dynamics
of the valve and the blood [3]. Numerical simulation has the poten-
tial to provide detailed biomechanical data, such as in vivo loads
and tissue stresses, that may not be easily determined by standard
clinical or experimental techniques. Therefore, imaging-derived
computational models that account for the observed physiological
conditions are an avenue to further quantitative and qualitative
insight into valvular function. Such data could be used to develop
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quantitative methods for determining patient-specific medical and
surgical strategies for the treatment of valvular heart diseases.

Computational studies of the MV have been performed by a
number of groups, many of whom have used structural modelling
to study MV biomechanics. Prot and co-workers reported their
work on MV simulations in a series of studies using a transversely
isotropic strain–energy functional using the nonlinear finite ele-
ment code ABAQUS [4–8]. The effect of annular dilation and correc-
tion have both been studied by Votta et al. [9,10]. Three-
dimensional dynamic modelling of the ovine MV has also been per-
formed by Lim et al. [11], who focused on the asymmetric stress
pattern of the MV. Purely structural heart valve models appear to
be primarily suitable for simulating static configurations, such as
fully-opened or closed valves. Because of the strong interaction be-
tween the blood flow with the MV leaflets and the left ventricular
wall, models of the full dynamic behaviour of the MV require the
description of fluid–structure interaction (FSI) [3]. Kunzelman, Ein-
stein, and co-workers were the first to use a three-dimensional
fluid-coupled computational model to simulate normal mitral
function [12–14]; the biomechanics underlying valvular disease
[15,16]; and surgical interventions [16,17]. A limitation of most
of these studies is that the valve geometries have typically been ta-
ken to be symmetric about the mid-line of the anterior and poster-
ior leaflets [11]; however, the MV is a fully three-dimensional
structure.

Our group has previously developed a sequence of fully three-
dimensional FSI models of a prosthetic MV [18–22]. In these stud-
ies, the dynamic behaviour of a chorded polyurethane mitral pros-
thesis was modelled using the immersed boundary (IB) method,
which accounts for the fluid–structure interaction between the
blood flow and the MV leaflets. Unlike the native valve, this pros-
thesis is actually symmetric about the mid-lines of the leaflets, and
this symmetry was accounted for in the model. In some of these
studies, the motion of the LV was determined by high-resolution
MR imaging of a normal human ventricle, which was used as a
downstream boundary condition [21]. We also demonstrated the
effects of incorporating a model of the bending rigidity of the valve
leaflets [22], which is needed to obtain accurate flow rates and
open configurations, despite the fact that MV leaflets are extremely
thin structures.

In this paper, we describe dynamic modelling of the human MV
that uses patient-specific anatomy derived from MR imaging data
along with physiological, semi-subject-specific loading conditions.
Echocardiography has been historically preferred in the literature
for cardiac diagnostic applications [2] because it offers good tem-
poral resolution, is safe, and is relatively inexpensive. However, it
is difficult to reconstruct the geometry of the MV leaflets from
echocardiographic images. By contrast, MR imaging provides much
higher image quality, primarily because of the higher spatial reso-
lution offered by MR imaging and its lack of speckle texture, and
simplifies the determination of subject- and patient-specific anat-
omy. In our simulations, the image-derived MV model is mounted
in a semi-rigid tube, and dynamic boundary conditions are im-
posed at the inlet and outlet of this tube to produce physiological
transvalvular pressure differences. The equations of fluid–structure
interaction are solved using a staggered-grid version [23–25] of a
formally second-order accurate IB method [26,27]. This discretiza-
tion approach has been demonstrated to yield significantly im-
proved volume conservation when compared to collocated
versions of the IB method [24]. We use families of elastic fibres that
resist extension, compression, and bending to model the thin MV
leaflets and the chordae tendinae using measured human MV
material properties [11,12,28–31]. We use a physiological driving
pressure waveform [32] to simulate a complete cardiac cycle. To
our knowledge, these are the first simulations of the human MV
that use realistic, subject-specific valve geometry in the context
of fluid–structure interaction and dynamic opening and closing
with realistic transvalvular pressure loads.

2. The immersed boundary method

2.1. Mathematical formulation

The immersed boundary method for fluid–structure interaction
treats problems in which an elastic structure is immersed in a vis-
cous incompressible fluid. The immersed boundary formulation of
such problems uses a Lagrangian description of the deformation
and elasticity of the immersed structure along with an Eulerian
description of the viscous incompressible fluid, which is modelled
by incompressible Navier–Stokes equations. Interaction equations
that take the form of integral equations with Dirac delta function
kernels couple the Lagrangian and Eulerian frames. In the present
work, we assume that the fluid possesses a uniform mass density
q and dynamic viscosity l, and that the immersed elastic structure
is neutrally buoyant. We remark that although blood is non-New-
tonian, a Newtonian description is generally considered to be ade-
quate for flows in the heart and large vessels like those considered
herein.

Let x = (x,y,z) 2X denote Cartesian physical coordinates, in
which X 2 R3 is the physical domain; let s = (r,s) 2 U denote
Lagrangian material coordinates attached to the structure, in
which U 2 R2 is the Lagrangian curvilinear coordinate domain;
and let X(s,t) 2X denote the physical position of material point s
at time t. Throughout the present work, X is taken to be a rectan-
gular box, so that X = [0,Lx] � [0,Ly] � [0,Lz]. The equations of mo-
tion for the coupled fluid–structure system are

q
@u
@t
ðx;tÞþuðx;tÞ �ruðx;tÞ

� �
¼�rpðx;tÞþlr2uðx;tÞþ fðx;tÞ; ð1Þ

r�uðx;tÞ¼0; ð2Þ

fðx;tÞ¼
Z

U
Fðs;tÞ dðx�Xðs;tÞÞ ds; ð3Þ

@X
@t
ðs;tÞ¼

Z
X

uðx;tÞ dðx�Xðs;tÞÞdx; ð4Þ

Fð�;tÞ¼F½Xð�;tÞ�: ð5Þ

Eqs. (1) and (2) are the incompressible Navier–Stokes equa-
tions, which are written in terms of the Eulerian velocity field
u(x, t) = (u(x, t), v(x, t), w(x, t)) and the Eulerian pressure field
p(x, t), along with a body force f(x, t) that is the Eulerian elastic
force density applied by the structure to the fluid. Eq. (5) indi-
cates that the Lagrangian elastic force density generated by the
elasticity of the structure is determined by a time-independent
functional of the configuration of the immersed structure; this
functional is discussed below. Eqs. (3) and (4) are Lagrangian–
Eulerian interaction equations that use integral transformations
with three-dimensional Dirac delta function kernels, d(x) = d(x)
d(y) d(z), to couple the Lagrangian and Eulerian descriptions. Spe-
cifically, Eq. (3) converts the Lagrangian elastic force density F
into the equivalent Eulerian elastic force density f. Notice that F
and f have totally different characters: F(s, t) is a force density
with respect to the curvilinear coordinate system (i.e. F(s, t) dr
ds has units of force), whereas f(x, t) is a force density with re-
spect to the physical coordinate system (i.e. f(x, t) dx dy dz has
units of force). Nonetheless, F and f are equivalent as densities
[33]. Eq. (4) states that the structure moves at the local fluid
velocity, i.e.

@X
@t
ðs; tÞ ¼ uðXðs; tÞ; tÞ; ð6Þ

which is the no-slip condition of a viscous fluid.
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2.2. Elasticity modelling

As in our earlier studies using the IB method to simulate the
dynamics of cardiac valves [18–22], herein we treat the flexible
leaflets of the MV as thin elastic boundaries and the chordae tendi-
nae as elastic beams immersed in the fluid. The elasticity of these
immersed structures is described by systems of elastic fibres that
resist extension, compression, and bending. We choose the
Lagrangian curvilinear coordinates (r,s) so that each fixed value
of s labels a particular fibre, and we compute the total elastic forces
generated by the immersed fibres as the sum of a stretching force
density and a bending force density. Let T = T(s) be the fibre ten-
sion, so that T dr ds has units of force, and let s = s(s) = @X/@s/
j@X/@sj be the unit tangent vector aligned with the fibres. We com-
pute F by

F ¼ @

@s
ðTsÞ þ @2

@s2 j
@2

@s2 X

 !
; ð7Þ

in which j = EI is the bending stiffness coefficient, with E denoting
the Young’s modulus and I denoting the cross-sectional moment of
inertia. For a detailed discussion of this fibre-based elasticity mod-
elling approach, see Griffith et al. [20] and Luo et al. [22]. We remark
that it is possible within the framework of the IB method to model
the chordae tendinae as thin elastic rods [25,34,35], although we do
not use this description herein.

2.3. Numerical methods

We use a fibre-aligned discretization of the Lagrangian equa-
tions and a uniform, staggered-grid discretization of the Eulerian
equations. For further details on these spatial discretizations, see
Griffith [23,24,36]. The time stepping scheme that we use is similar
to that of Griffith [23]; however, in the present work we employ a
second-order Adams–Bashforth scheme for the convective terms
when solving the incompressible Navier–Stokes.

Briefly, let uiþ1
2;j;k
; v i;jþ1

2;k
, and wi;j;kþ1

2
denote staggered-grid

approximations to the components of the Eulerian velocity field
that are defined at positions xiþ1

2;j;k
;xi;jþ1

2;k
, and xi;j;kþ1

2
, respectively;

let pi,j,k denote a cell-centered approximation to the pressure de-
fined at positions xi,j,k; let Xl,m and Fl,m denote approximations to
the position and Lagrangian elastic force density at node (l,m) of
the Lagrangian curvilinear mesh; and let rh�, rh, and r2

h denote
standard staggered-grid finite-difference approximations to the
divergence, gradient, and Laplace operators, respectively, in which
h is the Cartesian grid spacing. We denote by Xn, un, and pn�1

2

approximations to the values of X and u at time tn, and to the value
of p at time tn�1

2.
Given Xn, un, and pn�1

2, we obtain Xn+1, un+1, and pnþ1
2 by first

computingeXnþ1 � Xn

Dt
¼ Rnun; ð8Þ

in which Rn ¼ RðXnÞ is the velocity restriction operator, for which
Un ¼ ðUn;Vn;WnÞ ¼ Rnun is given by

Un
l;m ¼

X
i;j;k

un
i�1

2;j;k
dh xi�1

2;j;k
� Xn

l;m

� �
h3
; ð9Þ
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X
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� Xn
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; ð10Þ

Wn
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X
i;j;k

wn
i;j;k�1

2
dh xi;j;k�1

2
� Xn

l;m

� �
h3
; ð11Þ

in which dh(x) = dh(x) dh(y) dh(z) is the four-point delta function of
Peskin [33]. To obtain a time step-centered approximation to X,
we compute
Xnþ1
2 ¼

eXnþ1 þ Xn

2
: ð12Þ

We next solve

q
unþ1 � un

Dt
þ Anþ1

2

� �
¼ �rhpnþ1

2 þ lr2
h

unþ1 þ un

2
þ fnþ1

2; ð13Þ

rh � unþ1 ¼ 0; ð14Þ

fnþ1
2 ¼ S Xnþ1

2

� �
F Xnþ1

2

� �
; ð15Þ

Xnþ1 � Xn

Dt
¼ R Xnþ1

2

� � unþ1 þ un

2
; ð16Þ

for Xn+1, un+1, and pnþ1
2, in which Anþ1

2 ¼ 3
2 un � rhun � 1

2 un�1 � rhun�1

is an approximation to the nonlinear advection term computed by
a version of the piecewise parabolic method (PPM) [37,38]. Here,
Sn ¼ SðXnÞ is the force prolongation operator, for which

fnþ1
2 ¼ f

nþ1
2

x ; f
nþ1

2
y ; f

nþ1
2

z
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2Fnþ1
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X
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2
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f
nþ1

2
z
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2
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X
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ðFzÞ
nþ1

2
l;m dhðxi;j;kþ1

2
� Xnþ1

2
l;m Þ Dr Ds: ð19Þ

Notice that by construction, S and R are adjoint operators. This
property ensures that the semi-discrete scheme conserves energy
during Lagrangian–Eulerian interaction [33].

This scheme must be modified during the first time step be-
cause time step-lagged values of u and p are not available. During
the initial time step, we first solve

q
~unþ1 � un

Dt
þ An

� �
¼ �rh~pnþ1

2 þ lr2
h

~unþ1 þ un

2
þ fn

; ð20Þ

rh � ~unþ1 ¼ 0; ð21Þ
fn ¼ SðXnÞ FðXnÞ; ð22ÞeXnþ1 � Xn

Dt
¼ RðXnÞ un; ð23Þ

for eXnþ1; ~unþ1, and ~pnþ1
2, where An = un � rhun. We then compute

Xnþ1
2 ¼

eXnþ1 þ Xn

2
; ð24Þ

and finally solve Eqs. (13)–(16), for Xn+1, un+1, and pnþ1
2, except that

we use Anþ1
2 ¼ unþ1

2 � rhunþ1
2 with unþ1

2 ¼ 1
2 ð~unþ1 þ unÞ.

2.4. Implementation

The simulations described herein employ the open-source
IBAMR software framework (http://ibamr.googlecode.com), which
provides an adaptive and distributed-memory parallel implementa-
tion of the IB method as well as infrastructure for developing FSI
models that use the IB method. IBAMR leverages functionality pro-
vided by other freely available software libraries, including SAMRAI
(https://computation.llnl.gov/casc/SAMRAI), PETSc (http://www.
mcs.anl.gov/petsc), and hypre (http://www.llnl.gov/CASC/hypre).

3. Human mitral valve model

3.1. Geometry reconstruction from magnetic resonance images

A cine MR scan was performed on a healthy 28-year-old male
volunteer using a 3-Tesla MRI system (Verio, Siemens, Germany).
Twelve planes including the left ventricular outflow tract (LVOT)

http://ibamr.googlecode.com
http://https://computation.llnl.gov/casc/SAMRAI
http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc
http://www.llnl.gov/CASC/hypre


Fig. 1. Magnetic resonance images of the mitral valve. (a) Illustration of the image plane positioned to cover the whole valve. (b) Magnetic resonance image of the mitral valve
showing the two leaflets and manual segmentation.

Fig. 2. Mitral valve reconstruction. (a) The long-axis measurement of mitral annulus from a LVOT slice of the valve; (b) the short-axis measurement mitral annulus from a
four chamber view slice. (c) Final manual segmentation determined from images assembled along the annulus ring.
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were used for MV imaging to cover the entire mitral valve, as indi-
cated by the green1 lines superimposed on the two-chamber view
shown in Fig. 1a. The parameters for the MV MRI scan were: slice
thickness: 3 mm with 0 mm gap; matrix size: 432 � 572; pixel size:
0.7 � 0.7 mm2; frame rate: 25 per second. The MV was reconstructed
at the middle of diastole when the MV is fully open.

The general steps for MV reconstruction included:

� Annulus ring reconstruction. The annulus ring was assumed
to be an ellipse projected on a plane defined by the MV long
axis and short axis shown in Fig. 2a and b.
1 For the color version of this figure, the reader is referred to the on-line version of
this article.
� Two-dimensional leaflet segmentation. MV leaflets were man-
ually segmented on LVOT views using two detached lines to
represent the anterior and posterior leaflets. MR images for
the same views at other times were also used to help iden-
tify MV boundaries.

� Leaflet assembly. MV leaflet segmentations from the stack of
images were assembled along the reconstructed annulus
rings as shown in Fig. 2c.

� Mesh generation. The assembled leaflet were imported into
Gambit to construct the final three-dimensional mesh.

Fig. 3 shows the final mesh obtained from the Gambit mesh
generation software. The leaflet surfaces are very irregular, with
a concave surface in the front of the anterior leaflet and a convex
face close to the annulus when facing the left ventricle.



Fig. 3. Anterior and posterior leaflet meshes.

Fig. 5. Typical time courses of the left ventricular (green) and left atrial (blue)
pressures. The left ventricular pressure has scaled to match the peak systolic
pressure of the volunteer. The difference between these curves is the transvalvular
pressure difference (dash-dot) imposed in the simulations. (For the color version of
this figure, the reader is referred to the on-line version of this article.)
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3.2. Material properties of the mitral leaflets

It has been reported that the modulus of elasticity of the MV leaf-
lets does not vary significantly with deformation [39]. We therefore
model the MV leaflets as a linear isotropic material with a Young’s
modulus of 0.8 MPa following previous studies on ovine MV
[11,12]. We remark that Lim et al. [11] also assumed that the thick-
ness of the leaflets is uniform. In this work, we consider two ap-
proaches to determine the thickness of the leaflets, following the
measurements on a human MV [31]. One approach assumes that
both leaflets have the same uniform thickness of 0.94 mm, and
the other sets the thickness of the anterior leaflet to be 0.97 mm
and the thickness of the posterior leaflet to be 0.92 mm [31].
3.3. Chordae tendinae

We include descriptions of only the primary chordae tendinae.
In our model, these attach to the free margin of the leaflet and
run through the leaflets to the annulus ring. The number and loca-
tion of the chordate are based on anatomical descriptions [1,40].
Each of the chordae is attached to one of two points positioned
Fig. 4. A total of 22 marginal chordae shown in red are defined between the
papillary tips and leaflet free edges. In our simulations, the papillary tips and the
mitral annulus are fixed in place. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
in a plane 40 mm above the annular plane that are taken to
represent the papillary muscle groups. A total of 22 evenly distrib-
uted marginal chordae are defined and between the papillary tips
and leaflet free edges [41,42], with fourteen associated with the
posterior leaflet and eight with the anterior leaflet; see Fig. 4. Both
the mitral annulus and the papillary tips are fixed in space. The
resting lengths of the chordae are set to be longer than their initial
lengths to provide slack that permits the leaflets to close when
subjected to a realistic systolic pressure load. Each of the chordae
was assumed to have a uniform cross-sectional area of 1.15 mm2

and an elastic modulus of 22 MPa [15].

3.4. Driving and loading conditions

We simulate the valve dynamics for a complete cardiac cycle of
0.7 s, starting at mid-diastole, which was the time when the MR
images used to construct the leaflet geometry were obtained. It
is convenient to specify the pressure difference between the inlet
and outlet of the tube in which the MV is mounted. Because sub-
ject-specific transvalvular pressure data were not available, we in-
stead use a typical physiological pressure profile based on human
clinical data [32]. A similar approach was adopted in previous
MV models [5,43]. Here we have rescaled the data so that the peak
systolic pressure is 150 mmHg, matching that of the volunteer; see
Fig. 5.
4. Computational results

In the simulations, the MV annulus is fixed to a housing disc
that is mounted in a semi-rigid circular tube immersed in a
16 cm � 8 cm � 8 cm fluid box, as shown in Fig. 6. A transvalvular
pressure gradient is prescribed across the length of the tube, and
zero-pressure boundary conditions are employed along the
remainder of the domain boundary [20]. The fluid pressure and
instantaneous streamlines generated by the model are shown in
Fig. 7 when the valve is fully open and fully closed. The valve opens
at a driving pressure of approximately 5 mmHg and is subject to a
physiological downstream pressure load of 150 mmHg when fully
closed.



Fig. 6. The mitral annulus is fixed to a housing disc and mounted at the location of x = 0.04 m in a semi-rigid circular tube of length 0.16 m. The valve apparatus, including the
valve leaflets and chordate tendinae, are attached to the annulus. These structures are all immersed in a 16 cm � 8 cm � 8 cm rectangular fluid box.

Fig. 7. (a) The fluid pressure field along the plane of x = 0.04 m bisecting the MV, shown when the MV is fully open (top), plotted from �200 Pa to 750 Pa, and fully closed
(bottom), plotted from �20,000 Pa to �100 Pa. (b) The corresponding instantaneous streamlines of the flow, coloured by the velocity magnitude (top: from 0 to 2.3 m/s,
originating from the inlet, and bottom: from 0 to 0.35 m/s, originating from the outlet). (For the color version of this figure, the reader is referred to the on-line version of this
article.)
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The closed and open configurations of the model valve are
shown in Fig. 8 along with the corresponding MR images. Notice
that in the septilateral direction, the MR image shows that the
anterior leaflet surface was convex (with respect to the left ventri-
cle) near the annulus and concave near the free edge throughout
systole and diastole. Such a pattern is consistent not only with re-
ports from animal models [44,45] but also with experimental
observations in humans [46]. In our simulations, the aforemen-
tioned curvature pattern can be seen in diastole when we use
either a uniform leaflet thickness or different thicknesses for the
anterior and posterior leaflets, but is observed in systole only when
we use different thicknesses for the leaflets. A more detailed com-
parison of results obtained when using these different assumptions
is shown in Fig. 9, where the chordae embedded in the anterior



Fig. 8. Side view of the mitral valve mid-diastole (t = 0.005 s, top); fully opened (t = 0.1 s, middle); and mid-systole (t = 0.3 s, bottom). (a) MR imaging data; (b) model results
obtained when using a uniform thickness for the two leaflets; and (c) model results obtained when using different thicknesses for the anterior and posterior leaflets. Notice
the model that includes differences in the thickness of the leaflets is in better agreement with the clinical data.
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leaflets are used to show the shape of the leaflet. These results
make it clear that when we assume that both leaflets have same
thickness, the stiffness of the anterior leaflet is too small and the
stiffness of posterior leaflet is too large.

The flow rate through the valve is shown in Fig. 10. These data
further support the finding that the model that uses different
thicknesses for the anterior and posterior leaflets yields a closer
agreement to the measurements. It is also clear that this model
produces smaller flow oscillations during closure. We remark that
the second peak in the measured flow rate is due to the left atrim
contraction. This additional ventricular loading is not considered in
our simulation.
5. Discussion and conclusions

In this study, we described the development of an anatomically
realistic human MV model based on in vivo MR imaging data, and
we presented fully three-dimensional FSI simulations using this
model under physiological, dynamic transvalvular pressure loads.
An initial validation of the model is provided by comparing the
computed opening shape and flow rates to clinical measurements
from the volunteer who provided the anatomical data used to con-
struct the model.

Recent in vivo studies have highlighted the importance of
anterior leaflet shape in MV closure [43]. The anterior leaflet was



Fig. 9. The shape of the MV in the closed configuration as shown by fibres
embedded in the leaflets for the cases in which different thicknesses are used for
the leaflets (red-solid) and the case in which the same thickness is used for both
leaflets (blue-dotted). This view shows that the anterior leaflet is convex near the
annulus and concave near the free edge only when we use different thicknesses for
the two leaflets. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

Fig. 10. Flow rates produced by the mitral valve models along with clinical flow
data obtained from phase contrast cine MRI. Agreement between the model results
and the experimental data is best when the model includes different thicknesses for
the anterior and posterior leaflets.

424 X. Ma et al. / Computers & Fluids 71 (2013) 417–425
observed clinically to be convex (with respect to the LV) near the
annulus, and concave close to the free edges in the septilateral
direction [44–46]. This shape is observed in our simulations, but
only when we assign physiological thicknesses [31] to the two leaf-
lets. These results suggest that differences in the thicknesses of the
leaflets play an important role in maintaining the physiological
curvature of the MV. Accounting for the difference in the thick-
nesses of the leaflets also reduces the effective resistance of the
valve and increases the flow rate during diastole, yielding better
agreement between the computed flow rate and the clinical data.
The flow rate is proportional to the opening orifice of the MV
[47], which is one of the key aspects in MV performance. These
results highlight that these thickness differences also have an
important functional role.
We note, however, that there remains some discrepancy be-
tween the computed and measured flow rates, particularly as the
flow is decelerating. Specifically, much larger oscillations are seen
in the computed flow rates when compared to the clinical mea-
surements. We expect that this is primarily because of the lack
of realistic compliance in the pressure loading provided by our
model [22]. We also assumed the uniform thickness within each
leaflet; however, in the real valve, there is a small spatial variation
in the thickness [31]. Each of these limitations in the model could
have additional impacts in the shape changes, but they have not
been taken into account in this work.

It was convenient to develop the initial geometrical model of
the MV leaflets from a fully open configuration. We also kept the
mitral annulus and papillary muscle tips fixed in space. Doing so
required us to set the resting lengths of the chordae to be longer
than their initial lengths to allow the valve to close when subjected
to a physiological pressure load. A more realistic approach, not
considered here, would be to incorporate a description of the kine-
matics of the papillary tips, as done previously [19,21].

Another limitation of this work is the relatively simple isotropic
material model that is use to describe the MV leaflets. The real
valve is anisotropic, with collagen fibres distributed along the cir-
cumferential direction. We are presently developing an extension
of this model that accounts for this material anisotropy within
the context of the nonlinear hyperelastic MV constitutive model
of May-Newman and Yin [48]. To do so, we plan to replace the
present fibre-based elasticity model by a nonlinear finite element
method using a recent extension of the IB method [49].
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