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SUMMARY

A computational human mitral valve (MV) model under physiological pressure loading is developed using
a hybrid finite element immersed boundary method, which incorporates experimentally-based constitutive
laws in a three-dimensional fluid-structure interaction framework. A transversely isotropic material consti-
tutive model is used to characterize the mechanical behaviour of the MV tissue based on recent mechanical
tests of healthy human mitral leaflets. Our results show good agreement, in terms of the flow rate and the clos-
ing and opening configurations, with measurements from in vivo magnetic resonance images. The stresses
in the anterior leaflet are found to be higher than those in the posterior leaflet and are concentrated around
the annulus trigons and the belly of the leaflet. The results also show that the chordae play an important role
in providing a secondary orifice for the flow when the valve opens. Although there are some discrepancies
to be overcome in future work, our simulations show that the developed computational model is promis-
ing in mimicking the in vivo MV dynamics and providing important information that are not obtainable by
in vivo measurements. © 2014 The Authors. International Journal for Numerical Methods in Biomedical
Engineering published by John Wiley & Sons Ltd.
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1. INTRODUCTION

Dysfunction of the mitral valve (MV) causes significant morbidity and mortality and remains a
major medical problem worldwide. Understanding the biomechanics of human MVs can lead to
the development of new therapies and treatment strategies. Changes in MV geometry could perturb
the stress patterns and affect repair durability [1, 2]. However, measuring detailed stress patterns in
MVs is extremely challenging in vitro and nearly impossible in vivo. Computational models can fill
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in the gap by providing estimated stress patterns from structure-based constitutive tissue behaviour,
dynamic loading conditions, and in vivo deformation [3–5].

Dynamic modelling of MVs is particularly difficult because of the large deformation of the
non-symmetric leaflets, the anisotropic nonlinear elastic behaviour of the valvular tissue, the fluid-
structure interaction (FSI), and the pulsatile haemodynamic loading during the cardiac cycles.
Biaxial testing of the anterior and posterior leaflets [3, 6] has revealed that both leaflets exhibit large
deformations and behave anisotropically, being stiffer along the circumferential direction, with the
collagen fibres oriented predominantly parallel to the annular ring. Ex vivo mechanical tests on
porcine and human mitral apparatus by Prot and colleagues [7–10] and biaxial tests for healthy
human mitral leaflets by Wang et al. [11] also suggest that the MV leaflets are highly nonlinear
and anisotropic.

The in vivo MV mechanical properties are not readily attainable, although limited data have been
obtained from in vivo animal tests together with inverse finite element (FE) analysis. Krishnamurthy
et al. [12] estimated the mechanical response of the anterior mitral leaflets based on radiopaque
markers sewn to sheep MVs, albeit with a linear isotropic material model. Lee et al. [13] inversely
estimated the in vivo material properties on ovine MV anterior leaflets with various nonlinear
anisotropic hyperelastic constitutive laws and found that the transversely isotropic law produced the
most accurate results.

Computational MV models have been studied by a number of groups, mostly based on struc-
tural mechanics approaches. Kunzelman and co-workers were the first to use three-dimensional
FE models to simulate normal mitral function [14], the biomechanics of mitral valve disease
[15, 16], and surgical interventions [16, 17]. Prot et al. [7–9] reported their work on MV simula-
tions in a series of studies using a transversely isotropic strain-energy functional in their nonlinear
FE simulations. Their model was later extended to predict the stress distributions between a healthy
MV and that in a hypertrophic obstructive cardiomyopathic heart [10]. Active muscle contraction
of the MV was also considered [18], which is shown to reduce the leaflet bulging significantly from
previous FE MV models from this group.

One limitation in most of the aforementioned studies is that the valve geometries were typically
taken to be symmetric about the midline of the anterior and posterior leaflets. Three-dimensional
dynamic modelling of the ovine MV has been performed by Lim et al. [19], who studied the asym-
metric stress patterns of the MV. Wenk et al. [20] developed an FE model consisting of the left
ventricle, mitral apparatus, and chordae tendineae from magnetic resonance (MR) images from
a sheep. Recently, Wang et al. [11] presented a patient-specific FE model of a healthy human
MV reconstructed from multi-slice computed tomography scans with detailed mitral leaflet thick-
ness, chordal information, and mitral annulus dynamic motion. Surgical procedures have also been
investigated using structural FE modelling [21–24]. The biomechanical response of the valve to
the Alfieri stitch technique was reported in [25] and [26]. The effects of the annular contraction
on MV stress were modelled in [27, 28]. Other examples of the MV modelling can be found
in [4, 5, 29–32].

Although these structural heart valve models are very useful and suitable for static simulations
at the fully opened or fully closed configurations, FSI needs to be accounted for to describe the
dynamics of the MV leaflets because of the strong interaction between the blood flow, the leaflets,
and the left ventricle [33]. Although the arbitrary Lagrangian-Eulerian method is probably the
most widely used in FSI simulations, it usually requires dynamic mesh generation for problems
that involve large structural deformation and can lead to computational difficulties when dealing
with valvular dynamics [34]. For this reason, alternative methods, such as immersed boundary
(IB) [35, 36] and fictitious domain [37, 38] methods, have been employed in valvular FSI simu-
lations. Kunzelman, Einstein, and coworkers first started to use a fluid-coupled three-dimensional
computational model to simulate normal and pathological mitral function [39–41] and studied the
MV closure sound from the closing regurgitation flow. Lau et al. [42] investigated the edge-to-edge
repair technique with FSI and found that after the repair, the stress is 200% greater than in the
normal case, and that there is 44–50% reduction in the peak flow rate. Using a two-dimensional
MV model together with left atrium and ventricle, Dahl et al. [43] studied MV behaviour dur-
ing the diastolic filling based on echo data and concluded that the asymmetric leaflet geometry is
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NONLINEAR MV MODEL WITH FSI 1599

important for accurately predicting the transvalvular flow patterns. Most of these studies used the
commercial package LS-DYNA (Livermore Software Technology Corporation, Livermore, CA) to
implement FSI.

We use open source implementations of IB methods for FSI [36, 44–46] to simulate MV
dynamics. Over the last few years, we have applied the IB method to develop three-dimensional
FSI models of a polyurethane prosthetic MV. In a series of studies, we considered the effects of
the chordae in the MV [45, 46], of the pressure loading condition [35], and of the left ventricular
motion [47], which was prescribed using high resolution MRI from a normal human ventricle. We
also found that, despite the very thin MV leaflets, their bending rigidity is highly relevant for the
effective closing of the MV [48]. The bending effect of the MV is also confirmed by a recent study
of human MV [44] based on in vivo MRI, which shows that patient-specific MV geometry has a sig-
nificant influence on the simulation results. One major limitation of these studies is that the MV is
modelled with discrete isotropic ‘elastic fibres’, which are not readily able to model the anisotropic
hyperelastic mechanical behaviour of the MV leaflets as FE MV models [7, 11].

The aim of this study is to overcome the structural simplifications of our previous MV models
by developing a combined IB and FE MV model. FE-based structural models for the IB method
have been introduced recently [49–53]. One of the schemes, a hybrid finite difference-FE IB method
(IB/FE) [54], has been carefully verified against commercial package ABAQUS [55], and the results
show that the IB/FE model is capable of predicting quantitatively accurate stress/strain distributions
for realistic biomechanical models of the heart. In this study, our MV model is again constructed
from a human MRI study, but here, the IB/FE approach will enable us to model the MV tissue
behaviour using a transversely isotropic model together with the fully dynamic three-dimensional
FSI. This is a major step forward from our previous work [44].

2. METHODOLOGY

2.1. The IB/FE method

The IB/FE approach [54] uses a Lagrangian FE description of the immersed structure along with an
Eulerian finite difference description of viscous incompressible fluid, which is modelled using the
incompressible Navier-Stokes equations. Let � � R3 denote the physical domain occupied by the
fluid-structure system, and let U � R3 denote the reference coordinate system attached to the MV.
Let x D .x1; x2; x3/ 2 � denote fixed physical coordinates, let X D .X1; X2; X3/ 2 U denote
material coordinates attached to the structure, and let �.X; t / 2 � denote the physical position of
material point X at time t , so that �.U; t/ D �s.t/ � � is the physical region occupied by the
structure, and the physical region occupied by the fluid at time t is�f.t/ D �n�s. Let N.X/ denote
the exterior unit normal to X 2 @U in the reference configuration. The IB/FE formulation of the
equations is

�

�
@u
@t
.x; t /C u.x; t / � ru.x; t /

�
D �rp.x; t /C �r2u.x; t /C f.x; t /; (1)

r � u.x; t / D 0; (2)

@�

@t
.X; t / D

Z
�

u.x; t / ı.x � �.X; t // dx; (3)

f.x; t / D
Z
U

rX � Pe.X; t / ı.x � �.X; t // dX

�

Z
@U

Pe.X; t /N.X/ ı.x � �.X; t // dA.X/;
(4)

in which � is the mass density, � is the viscosity, u.x; t / is the Eulerian velocity field of the
fluid-structure system, p.x; t / is the Eulerian pressure field, f.x; t / is the Eulerian elastic force den-
sity, and ı.x/ D ı.x1/ ı.x2/ ı.x3/ is the three-dimensional Dirac delta function. We use the first

© 2014 The Authors. International Journal for Numerical
Methods in Biomedical Engineering published by John Wiley & Sons Ltd.

Int. J. Numer. Meth. Biomed. Engng. 2014; 30:1597–1613
DOI: 10.1002/cnm



1600 H. GAO ET AL.

Piola-Kirchhoff stress tensor Pe to describe the stresses generated by the immersed structure. Pe is
determined from the passive hyperelastic properties of the leaflets by a strain-energy functional W
through Pe D

@W
@F , in which F D @�=@X is the deformation gradient associated with the structural

deformation. Thus, the total Cauchy stress � of the coupled fluid-structure system is

� .x; t / D
²
� f.x; t /C � e.x; t / for x 2 �s.t/;

� f.x; t / otherwise.
(5)

� f is the fluid-like stress tensor defined as

� f D �pI C �ŒruC .ru/T �; (6)

in which p D p.x; t / is the hydrostatic pressure and � e is the elastic stress tensor that is related to
Pe by Pe D J � e F�T , with J D det.F/

Although we refer to � e and Pe as the structural stress, we remark that they are not the total
stresses of the immersed structure but only account for the stresses associated with the hyperelastic
material response. The total stress of the immersed structure is � D �pI C �ŒruC .ru/T �C � e;
see Eq. (5). Eq. (3) specifies that the velocity of the immersed structure is derived from the Eulerian
velocity field, which implies

@�

@t
.X; t / D u.�.X; t /; t/: (7)

Notice that Eq. (7) implies that if r � u D 0, then @J=@t D 0. Consequently, if J D 1 at t D t0,
then J D 1 for all t > t0.

In the numerical implementation, the Eulerian equations of motion are discretized by a finite
difference method, and the Lagrangian equations are discretized with an FE method. Therefore, an
equivalent weak formulation of the definition of f in (4) is introduced as

f.x; t / D
Z
U

F.X; t /ı.x � �.X; t // dX; (8)

Z
U

F.X; t / � V.X/ dX D �
Z
U

Pe.X; t / W rXV.X/ dX; (9)

in which F.X; t / is the Lagrangian elastic force density and V.X/ is an arbitrary Lagrangian test
function that is not assumed to vanish on @U . Although Eqs. (4) and (8)–(9) are equivalent in the
continuous setting, they lead to different numerical schemes, and Eqs. (8)–(9) allow F.X; t / to be
determined via a standard total Lagrangian FE scheme. Further details are provided by [54].

The simulations described herein employ the open-source IBAMR software framework, which
provides an adaptive and distributed-memory parallel implementation of the IB method and an
infrastructure for developing FSI models that use the IB method. IBAMR leverages functionality
provided by other freely available software libraries, including SAMRAI (https://computation-rnd.
llnl.gov/SAMRAI), PETSc (http://www.mcs.anl.gov/petsc) and hypre (https://computation-rnd.llnl.
gov/linear_solvers).

2.2. MV geometrical model

An MRI study was performed on a healthy 28-year-old male volunteer using a 3-Tesla MRI system
(Verio, Siemens, Germany). The study was approved by the local NHS Research Ethics Committee,
and written informed consent was obtained before the scan. Twelve planes along the left ventric-
ular outflow tract (LVOT) view were imaged to cover the entire MV. Typical parameters are: slice
thickness, 3 mm with 0 mm gap; matrix size, 432 � 572; in-plane pixel size, 0:7 � 0:7mm2; and
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NONLINEAR MV MODEL WITH FSI 1601

frame rate, 25 per cardiac cycle. Short-axis and long-axis views of the ventricle were also acquired
to provide additional geometrical information, such as the heads of papillary muscles.

The MV was segmented in the middle of diastole when it is opened by using an in-house MATLAB

(The MathWorks Inc., Natick, USA) code. The segmentation method is similar to that in the previous
work [44]. Detailed steps are described in the Appendix. The MV leaflet are meshed with 154,000
tetrahedral elements with at least two elements across the leaflet thickness.

2.3. Material models

The leaflets of the MV are modeled as an incompressible fibre-reinforced material, in which the
strain-energy is a functional of invariants of the right Cauchy-Green deformation tensor C D FTF
that takes the form

Wleaflet D C1.I1 � 3/C
af

2bf

�
exp

h
bf
�
I ?f � 1

�2i
� 1

�
; (10)

in which I1 D trace.C/ is the first invariant of the right Cauchy-Green deformation tensor and
If D f0 � .Cf0/ is the square of stretch in the fibre direction, with f0 denoting the unit tangent to the
fibre direction field in the reference state. The modified invariant I ?f is defined in terms of If by

I ?f D max.If; 1/: (11)

This ensures that the load-bearing collagen fibres embedded in the MV leaflets only bear the loads
in extension but not compression. The material parameters C1, af, and bf were fit to equal-biaxial in
vitro tests on a healthy human MV carried out by [11] as shown in Table I.

Following our previous study [55], we found that it is useful to employ a modified structural stress
tensor Pe defined as

Pe D
@Wleaflet

@F
� C1F

�T C ˇs log.I3/F
�T ; (12)

in which I3 D det.C/ D J 2 and ˇs D 500 kPa. The pressure-like term C1F�T ensures that
for F D I;Pe D 0, which reduces the magnitude of the pressure discontinuity in the Eulerian
pressure field and thereby the magnitude of the spurious volume loss at fluid-solid interface. The
term ˇs log.I3/F�T is a penalty term to reinforce the incompressibility constraint in the Lagrangian
form, because even though incompressibility is enforced in the Eulerian equations, the numerical
interpolation of the Eulerian velocity to the solid region may not always yield a divergence-free
discrete Lagrangian velocity field. This additional constraint has been shown to yield more accurate
stresses [55].

Although linear tetrahedral elements will yield volumetric locking for sufficiently large values of
ˇs , comparisons to the same MV model with ˇs D 0 verified that for the value of ˇs used in this
study, our model does not experience volumetric locking because the two models have comparable
deformations under the same static loading.

The chordae tendineae are assumed to be isotropic and modelled as a neo-Hookean material:

Wchordae D C.I1 � 3/; (13)

Table I. Material parameter values for the strain-energy
function Wleaflet.

C1 ( kPa) af (kPa) bf

Anterior leaflet 17.4 31.3 55.93
Posterior leaflet 10.2 50.0 63.48

© 2014 The Authors. International Journal for Numerical
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in which C is spatially homogeneous but takes the value of 9.0 MPa in systole and 0.54 MPa in
diastole. These values are based from the measurements of human MV chordae [56]. Similarly, the
structural tensor Pe in the chordae tendineae is defined as

Pe D
@Wchordae

@F
� CF�T C ˇs log.I3/F

�T : (14)

2.4. Boundary conditions and implementation

In the simulations, we set � D 1:0 g/ml and � D 4 cP, and we fix the MV annulus to a housing disc
that is mounted in a rigid circular tube immersed in a 10 cm � 10 cm � 16 cm fluid box (Figure 1).
The fluid box is discretized with spacings �x1 D �x2 D 0:125 cm; �x3 D 0:1 cm, corresponding
to a regular 80�80�160 Cartesian grid. In the numerical scheme, the singular delta function kernel
appearing in Eqs. (3) and (8) is replaced by a standard four-point regularized version of the delta
function [36]. The integral transforms appearing in the interaction equations are approximated using
dynamically generated Gaussian quadrature rules that ensure a density of at least two quadrature
points per Cartesian mesh width. After computational experimentation, a time step size of 2.5e-5 s

Figure 1. The saddle shaped mitral annulus is fixed to a non-planar rigid housing disc mounted to a semi-
rigid circular tube of length 16 cm (not shown). The chordae are anchored to two papillary attachment points.

These structures are all immersed in a 16 cm � 10 cm � 10 cm rectangular fluid box.

Figure 2. A typical human pressure profile, scaled to the subject-specific peak systolic pressure, is used
in the simulations. Note that only the rapid diastolic filling and the systolic phases are modelled; see text

for further discussion.

© 2014 The Authors. International Journal for Numerical
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NONLINEAR MV MODEL WITH FSI 1603

Table II. Cartesian grid sensitivity analysis, comparing the mean and maximum
displacements from the mitral valve leaflets.

Average displacement (mm) Maximum displacement (mm)

Cartesian grid fully opened fully loaded fully opened fully loaded

80 � 80 � 160 1˙ 1:8 2˙ 3:4 8.2 15.1
96 � 96 � 198 1˙ 1:8 2˙ 3:5 8.3 15.2
112 � 112 � 224 1˙ 1:9 2˙ 3:6 8.6 15.8

Notice that essentially grid-resolved results are obtained for an 80�80�160 Cartesian
grid.

(a)

(b)

(c)

Figure 3. The in-plane view of the fluid pressure field perpendicular to ´-axis, when the mitral valve is fully
opened (a), just closed (b), and fully loaded at the peak pressure of 150 mmHg (c).

is chosen in the explicit time stepping scheme. Further details of the spatial discretizations and time
stepping scheme are provided by [54].

We specify the pressure differences between the inlet and outlet of the tube. Because subject-
specific transvalvular pressure data are not available, we instead use a typical human physiological
pressure profile rescaled to the cuff pressure of the subject, so that the peak systolic pressure is
150 mmHg§; see Figure 2. We do not model the left ventricle, so only the rapid filling phase of
the diastole and the systolic phase are modelled here. This is because in the slow diastolic filling

§Note that this subject’s blood pressure pressure is slightly higher than average.

© 2014 The Authors. International Journal for Numerical
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(a)

(b)

(c)

Figure 4. Similar to Figure 3, but here showing the fluid velocity field.

and atrial contraction, the transvalvular flow results mostly from the passive deformation of the left
ventricle. Without a model of the left ventricle, slow diastolic filling and atrial contraction cannot
be modelled with the proper boundary conditions. This is different from rapid filling, in which the
transvalvular flow is due to the suction caused by the left ventricular relaxation. In systole, the
boundary conditions can also be easily approximated with the systolic pressure and the papillary
muscle movement, as done in other studies [48]. The rapid diastolic filling lasts for around 0.2 ms,
during which time 80% of transvalvular flow occurs [57]. The pressure profile for the part of the
cardiac cycle we modelled is shown in Figure 2. Zero-pressure boundary conditions are applied
along the remainder of the domain boundaries, similar to our previous study [44].

A grid convergence study is performed with 80 � 80 � 160; 96 � 96 � 198, and 112 � 112 � 224
Cartesian grids. Table II shows the average and the maximum displacement of the MV model when
fully opened and loaded. Notice that only small differences in the computed values are observed for
80 � 80 � 160 when compared with two denser Cartesian grids. For computational efficiency, we
use the 80 � 80 � 160 grid for all subsequent simulations.

3. RESULTS

The fluid pressure fields from the IB/FE MV model are shown in Figure 3 at the three time instants
indicated in Figure 2: when the valve is fully opened (t D 0:1 s); just closed (t D 0:22 s); and
fully loaded at the peak systolic pressure (t D 0:35 s). The valve opens at a driving pressure gra-
dient of approximately 10 mmHg and withstands a significant physiological transvalvular pressure
gradient when closed. The complete closure of the leaflets occurs at a transvalvular pressure gra-
dient of around 80 mmHg and then undergoes minor further deformation before reaching the peak

© 2014 The Authors. International Journal for Numerical
Methods in Biomedical Engineering published by John Wiley & Sons Ltd.

Int. J. Numer. Meth. Biomed. Engng. 2014; 30:1597–1613
DOI: 10.1002/cnm



NONLINEAR MV MODEL WITH FSI 1605

Figure 5. Instantaneous streamlines when the mitral valve is fully open.

(a) (b) (c)

(d) (e) (f)

Figure 6. Cine images of the human mitral valve and the sub-valvular apparatus (3-chamber view) show-
ing the MV position at the beginning of the simulation (a), when fully opened (b), and just closed (c).
The corresponding MV model predictions are shown in (d, e, f), coloured or greyscaled by displacement

magnitude.

transvalvular pressure difference (150 mmHg), as shown in Figure 3(b) and (c). Notice that our MV
model has small gaps near the commissure area even in the fully closed state, although these are
very small and there is no flow leakage in the IB/FE simulations.

The corresponding velocity fields are shown in Figure 4 and indicate a strong jet flow towards the
outlet (the left ventricular side) when the MV opens. As the MV closes, there is a closing regurgita-
tion across the MV, as shown in Figure 4(b), which is responsible for the first heart sound. Figure 4(c)
shows the velocity pattern when the transvalvular pressure difference peaks. An interesting view is
provided by the streamlines when the MV is fully opened, as shown in Figure 5. Here, the flow is
first channelled by the two leaflets, then the chordae act as the second orifice [58] and split the jet
flow into three paths, with the main stream moving towards the LV apex and side streams flowing
towards the walls.

The deformed MV leaflets are compared with the corresponding MRI in LVOT view in Figure 6.
Qualitatively, the opening and closing configurations of the simulated MV show good agreement
with the MRI measurements. However, there is evidence of some discrepancy, particularly in the
anterior leaflet when fully closed: the modelled MV bulges into the left atrium, in contrast with
that of the corresponding MRI (Figure 6(c)). This is presumably because of simplifications in the
chordal model, or the lack of strut chordae.

The flow rate through the valve is shown in Figure 7 along with the measured flow rate from phase
contrast MRI, as well as the flow rate obtained from a fibre-based IB MV model [44]. When the MV
is open, the flow rates from both the IB and IB/FE MV models are comparable with the measured
value, with slightly lower peak values. However, the IB/FE model seems to predict a slightly higher
regurgitation closing flow (10.8 mL vs. 9.4 mL), followed by much smaller oscillations compared
with the previous IB MV model.

The stress and strain distributions along the fibre directions are shown in Figure 8. When the
MV is fully open, most of the two leaflets are stretched along the fibre direction, and the stress

© 2014 The Authors. International Journal for Numerical
Methods in Biomedical Engineering published by John Wiley & Sons Ltd.

Int. J. Numer. Meth. Biomed. Engng. 2014; 30:1597–1613
DOI: 10.1002/cnm



1606 H. GAO ET AL.

Figure 7. Flow rate comparison between the predictions of the IB/FE model, a previous IB model [44], and
the flow measurements obtained from a phase contrast cine magnetic resonance imaging study. Note that

only the measured flow rate in rapid filling phase of diastole is plotted, which lasts for 0.2 s.

(b)

(e)

(c)

(f)

(a)

(d)

Figure 8. The fibre strain when the mitral valve is fully opened (a), just closed (b), and fully loaded at a
transvalvular pressure of 150 mmHg (c). The corresponding fibre stress distributions are shown in (d–f),
respectively, which is capped at a peak stress of 500 kPa to remove unrealistic high stress concentrations at

the chordae insertion areas.

Figure 9. Three local regions in the anterior leaflet are defined for further stress analysis.

© 2014 The Authors. International Journal for Numerical
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Table III. Average regional stress and strain along the fibre direction on the three local regions defined in
Figure 9 when the mitral valve is fully opened, just closed, and fully loaded with peak systolic pressure.

Stress along fibre directions (kPa) Strain along fibre directions

Regions Fully-opened Just-closed Fully-loaded Fully-opened Just-closed Fully-loaded

Trigon 1 �2:9 92 193 �0:004 0.04 0.04
Trigon 2 �0:8 72 144 �0:004 0.02 0.02
The belly region 17 79 142 0.04 0.02 0.02

Table IV. Summary of chordae tendineae tension
when the mitral valve is fully loaded with maximum

systolic pressure 150 mmHg.

Chordae Number Average force (N)

Anterior associated 6 0:68˙ 0:31
Posterior associated 8 0:23˙ 0:15

level is lower (Figure 8(a) and (d)). When the MV is just closed, high stress concentrations occur
in the fibrous trigones of the anterior leaflet and along the valvular ring. Towards the commissures,
there are compressive stresses, particularly in the neighbourhood of the wrinkles. When approaching
the highest systolic pressure, the strain and stress patterns (Figure 8(c) and (f)) are similar as the
distributions when the MV is just closed (Figure 8(b), (e)), but the high stress area increases, which is
most visible in the belly and annular ring regions of the anterior leaflet and higher than the posterior
leaflet.

We sampled three local regions in the anterior leaflet for detailed analysis of stress and strain.
These include two trigones and one belly region, as shown in Figure 9. The average stress and
strain of these regions are summarized in Table III. We can see that when the MV is fully open, the
fibres of the belly region are stretched, as indicated by the positive strain, and the stress is higher
compared with the trigone regions. Immediately after the MV has closed, the stresses increase in
all regions; however, at this point, the two trigones experience higher stress levels compared with
the belly region. This pattern remains the same when the MV experiences systolic pressure loads,
although the stresses are nearly doubled.

Table IV summarizes the average chordae tendineae tension when the MV is fully loaded with
the maximum systolic pressure of 150 mmHg. The average force for each chordae associating with
the anterior leaflet is 0.68˙0.31 N, which is substantially higher than that of the chordae of the
posterior leaflet. The tensions in the two papillary muscles are 3.0 N and 3.34 N, respectively. The
tension experienced by the chordae and the papillary muscles are comparable with values from other
studies [7, 60].

4. DISCUSSION

In this paper, we presented a new IB/FE model for a human MV using in vivo MRI-based anatomy
and fibre-reinforced hyperelastic laws. This approach allows us to predict the stress and strain
patterns in the MV leaflets with experimentally determined constitutive parameters, which is not
possible using our previous IB models [44], as well as to include FSI dynamics. The model is val-
idated by comparing the computed opening and closing configurations and flow rates to clinical
measurements from the same volunteer from whom the MV model is constructed.

IB methods have been widely used to simulate the dynamics of the heart and its valves [35, 44, 48,
59, 61–63]. Most earlier IB MV models used discrete collections of elastic fibres to represent the real
MV structure [44]. Although these ‘explicit fibre’ models are well suited for describing extremely
anisotropic materials, it is challenging to link such descriptions to experimental data and to use
hyperelastic constitutive laws designed for fibre-reinforced soft tissue mechanics. Recent extensions
of the IB method are able to incorporate finite strain elasticity models for the solid region [49–53],
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including that used herein. Our results show that this combined IB/FE approach is able to gen-
erate a three-dimensional FSI model that can simulate in vivo MV dynamics during diastole
and systole.

Compared to our previous work [44], significant improvements are incorporated in the current
IB/FE MV model. Namely: (1) the MV leaflets are described with a continuum mechanics frame-
work; (2) the annulus ring is reconstructed from clinical images, not an assumed planar elliptic
shape; (3) transversely isotropic constitutive laws are used for the MV leaflets, not the isotropic lin-
ear material model; and (4) detailed stress and strain fields are determined, which are not available
in our previous IB MV model [44].

Using cine MRI, MV leaflet delineation is most clearly defined in diastole when the transvalvular
pressure difference is minimal because the influences from blood flow are minimized [64] and the
MV is fully open. By sewing miniature markers onto the MV leaflets of 57 sheep, Rausch et al. [65]
calculated in vivo strain in the anterior leaflets using reference states corresponding to minimum
left ventricular pressure, end-diastole, and the beginning of rapid diastolic filling, and they found
that the strain and strain rates are almost insensitive to the choice of the reference configurations.
With this in mind, we reconstruct the MV structure in mid-diastole, and because the transvalvular
pressure difference is minimal, this is also close to the zero loading state. We also keep the mitral
annulus fixed in space, but allow the papillary muscle to move towards the leaflets during systole
with a maximum displacement measured from the corresponding cine MRI. Doing this allows the
leaflets to close when subjected to a physiological pressure load, as we found previously [46, 47].

From Figure 8(a), (b), and (c), it is clear that the strains along the fibre directions are tensile for
most of the regions in the anterior leaflet during the cardiac cycle, but some regions that are com-
pressed during closing. Similar results have been reported previously [27, 41]. Our model prediction
of the circumferential strain range seems to agree well with the measurements from in vivo mea-
surements. For example, Rausch et al. [65] measured the peak in vivo circumferential strain (along
the fibre directions in this study) in the belly region of the anterior leaflet, which is 3:5˙ 3:6%. By
defining a circular region with a 0.5 cm radius in the belly region of the anterior leaflets, the average
strain along fibre directions from our IB/FE model is 3:6˙4:0%, which is comparable with Rausch’s
results and also lies in the range reported by Sacks et al. [66] from in vivo studies (2:5 � 3:3%).

On the other hand, mitral leaflet strain estimated from some in vitro measurements seem to be
higher than our predictions. Jimenez et al. [67] measured strain in the (porcine) anterior leaflet centre
using a left heart simulator, and they found that their peak circumferential strain is 11˙4.9% in the
normal annular configuration. Similar peak circumferential strain (around 10%) in the leaflet center
was also reported in the in vitro studies by Sacks et al. [68] and He et al. [69, 70], although the
range of the peak circumferential strain can be as low as 2% [70] (within one standard deviation).
The difference in strain between the in vivo and in vitro measurements was also noted by Rausch
et al. [65]. It is not clear if the difference is due to the general difference between the porcine (used
in the in vitro studies), ovine (used in the in vivo studies), and human valves (used in our study),
or by the incapability of in vitro models to accurately reproduce the mechanical and hemodynamic
environment (in terms of the material property, boundary condition and the initial geometry) of the
MV. We also note again that the peak systolic pressure of 150 mmHg used in the simulation is
slightly higher than a typical value (100–140 mmHg).

The peak average stress along the fibre direction in the belly region is 115 kPa and is 169 kPa
and 134 kPa for the two fibrous trigons (Table III) These predicted stress levels are of similar order
to results of other published MV models [5, 41]. Jimenez et al. [60] also measured different types
of chordae systolic tension and the forces experienced by the papillary muscles in their in vitro
experiments. They reported the peak systolic tension of 0.95˙0.35 N in the anterior strut chordae
and of 0.35˙0.16 N in the anterior marginal chordae. In our model, the average tension in the
anterior chordae is 0.68˙0.31 N, which is comparable with the range reported by Jimenez [60] and
the model results by Wang et al. [11]. The maximum papillary muscle forces are found to be 4.3 N
and 4.6 N from Jimenez’s experiments [60], and 4.51 N and 5.17 N from Wang’s model [11]. These
are also comparable with our predications of 3.0 N and 3.34 N.

Although our results are in good agreement with MRI observations and measured flow
rates, some model limitations are worth mentioning. For example, the modelled anterior leaflet
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appears to bulge into the left atrium, in contrast with that of the cine MRI. Also, there are small
gaps in the commissure areas when the valve is fully closed. This is due to the difficulties of recon-
structing the subvalvular apparatus accurately from cine MRI, especially for the commissure areas
and chordae tendineae. We have to build these relying on anatomical descriptions widely adopted
in other studies [9, 10, 30, 33, 44]. More accurate geometry reconstruction may be possible using
computed tomography (CT) images. For example, Wang and Sun [11] constructed MV models with
chordal origins and insertion points by using multislices CT images. However, CT scans may not
be used with healthy human subjects because of the radiation risk. Real time three-dimensional
echocardiography could be another promising way to obtain detailed MV structure either non-
invasively or with limited invasiveness [30], although the reproducibility is not as good as with CT
and MRI. Current in vivo MRI is not able to quantify the fibre directions in the moving MV leaflets,
and therefore their distributions are usually modelled using ‘rule-based’ methods [7, 30, 33, 41, 44],
following experimental observations [6]. Recently, Lee et al. [71] developed a microanatomical MV
models from in vitro experimental measurements by mapping the measured collagen fibre architec-
ture using the small light scattering techniques to the MV models from the same ovine MV leaflets.
Non-invasive methods are needed to quantify the in vivo fibre architecture.

Moreover, we have only used simplified primary chordae inserting into the leaflets from the free
edges, following our previous work [44–46]. In particular, we have not reconstructed the marginal,
basal and strut chordae separately, which have different mechanical properties. This may be partially
responsible for the MV bulging towards the left atrium. Chordae are bundles of collagen fibres, and
some groups modelled these using anisotropic hyperelastic constitutive laws [7, 11]. We model the
chordae as isotropic neo-Hookean material because in diastole, the chordae are usually compressed
when MV opens and behave like an isotropic material. In systole, the chordae are stretched and
a much higher stress is generated because of the stretched collagen fibres. This is modelled using
a much higher chordae stiffness in the systole. Overall, this is a simplified model of the chordae
structure that has reproduced the measured in vivo dynamics of MV. With new developments in
clinical imaging it may be possible to model more detailed patient-specific chordae structure and its
effect on the MV behaviour in the future.

Finally, our initial configuration is partially open, and it is in general very difficult to fully close
an opened complex MV configuration that is not initially driven from a fully closed state. Inaccurate
geometric details in the commissure areas may be partially responsible; another reason may be that
the flows around the MV are not fully physiological due to the absence of the left ventricle.

5. CONCLUSION

In this study, we have developed a new human MV model using a hybrid IB/FE approach, which
combines FSI simulations with cine MRI and a transversely anisotropic, hyperelastic constitutive
model. This model is a significant enhancement from our previous work because it provides dynamic
stress distributions, which are found to be concentrated around the annulus trigons and the belly of
the anterior leaflet. The model results agree well with the opening and closing leaflet configurations,
and with flow rates, estimated from MRI measurements. Although there are still some discrepancies
between the model predictions and in vivo observation, with improved imaging techniques and
further work, it is possible to develop more realistic MV models that could be applied to study
MV diseases.

APPENDIX

A. Detailed segmentation of the human MV model

� Leaflet segmentation: the anterior and posterior profiles were manually segmented on cine
images of LVOT views (Figure A.1(a)). An uniform leaflet thickness of 1 mm was assumed, as
shown in Figure A.1(c).
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(a) (b) (c)

Figure A.1. (a) Manual segmentation of leaflets from left ventricular outflow tract images, (b) papillary
muscle attachment points shown as the two (green) points on the right, and (c) segmented curves used to

assemble the mitral valve leaflets, with the papillary muscle attachment points marked.

(a) (b) (c)

Figure A.2. (a) The reconstructed three-dimensional mitral valve model along a spatial annulus ring, with
the anterior and posterior leaflets and the chordae. The detailed fibre architecture is shown in (b) for the

anterior leaflet and (c) the posterior leaflet.

� Annulus ring: In each cine image, physical position location that connects the MV leaflets and
the ventricular wall were identified as the annulus ring, see Figure A.1(b and c), indicated by
the blue squares.
� Papillary attachment points: Two papillary muscles were identified from the LVOT and short-

axis cine images, as shown in Figure A.1(b), indicated by the green squares.
� Geometry reconstruction: The segmented leaflet and papillary heads were imported into Solid-

Works (Dassault Systèmes SolidWorks Corp., Waltham, MA, USA) for three-dimensional
geometrical reconstruction via B-spline surface fitting, as shown in Figure A.2(a).
� Chordae tendinae: A total of 16 evenly distributed primary chordae tendinae were defined

based on anatomical descriptions, with 10 associated with the posterior leaflet and six with
the anterior leaflet. In our model, the chordae attach to the free margin of the leaflets and run
through the leaflets to the annulus ring. These structures model the function of the chordae
and we have not separated the contributions from the marginal chordae, strut chordae, and
secondary chordae due to the lack of information from the MR images. Similar chordae struc-
ture was used in our previous study [44]. Each of the chordae is connected to one of the two
papillary muscle heads as shown in Figure A.2(a), and each is assumed to have a uniform cross-
sectional area of 0.16 mm2, with a thickness of 0.4 mm and average length of 32˙ 6 mm. The
papillary heads are allowed to move towards the MV leaflets during systole with displacements
measured from the cine MR images, which permits the leaflets to close when subjected to a
high systolic pressure.
� Collagen fibre architecture: The embedded collagen fibres were defined along the circumfer-

ential direction (parallel to the annulus ring) [3] for both the anterior and the posterior leaflets,
as shown in Figure A.2(c) and Figure A.2(d).
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