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Abstract We investigate the behaviour of a dynamic fluid–
structure interaction model of a chorded polyurethane mitral
valve prosthesis, focusing on the effects on valve dynamics of
including descriptions of the bending stiffnesses of the valve
leaflets and artificial chordae tendineae. Each of the chor-
dae is attached at one end to the valve annulus and at the
other to one of two chordal attachment points. These attach-
ment points correspond to the positions where the chords
of the real prosthesis would attach to the left-ventricular
wall, although in the present study, these attachment points
are kept fixed in space to facilitate comparison between our
simulations and earlier results obtained from an experimen-
tal test rig. In our simulations, a time-dependent pressure
difference derived from experimental measurements drives
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flow through the model valve during diastole and provides a
realistic pressure load during systole. In previous modelling
studies of this valve prosthesis, the valve presents an unre-
alistically large orifice at beginning of diastole and does not
close completely at the end of diastole. We show that includ-
ing a description of the chordal bending stiffness enables the
model valve to close properly at the end of the diastolic phase
of the cardiac cycle. Valve over-opening is eliminated only by
incorporating a description of the bending stiffnesses of the
valve leaflets into the model. Thus, bending stiffness plays a
significant role in the dynamic behaviour of the polyurethane
mitral valve prosthesis.

Keywords Mitral valve · Immersed boundary methods ·
Dynamic simulation · Adaptive method · Chordae tendineae ·
Bending stiffness · Boundary conditions · Fluid–structure
interaction · Polyurethane prosthesis

1 Introduction

Heart disease is the major cause of death in the devel-
oped world, with valvular heart disease being one of the
main disorders. It is known, for instance, that the remod-
elling that occurs after a posterolateral myocardial infarction
can alter mitral valve function by creating conformational
abnormalities in the mitral annulus and in the posterome-
dial papillary muscle, leading to mitral regurgitation and
ultimately requiring valve repair or replacement (Einstein
et al. 2010). Each year, approximately 250,000 valve replace-
ment procedures are carried out worldwide (Yoganathan et al.
2004). Prosthetic heart valves may be mechanical or bio-
prosthetic. Mechanical valves are quite durable, but they
can induce thrombosis, and their use therefore necessitates
sustained anticoagulation therapy. Bioprostheses are less
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prone to thrombogenesis but generally fail 10–15 years post-
implantation because of structural degradation. An ideal
valve replacement would produce a low flow resistance, yield
a small regurgitant volume, minimise turbulence, induce
low shear stresses, and avoid stagnation and flow separation
(Yoganathan et al. 2005). More than 50 types of prosthetic
valves have been developed since 1950 (Vongpatanasin et al.
1996). Yet, six decades later, we still use devices that are less
than satisfactory. Understanding valve mechanics using com-
putational modelling represents an important step towards
improved valve designs and could lead to better diagnosis,
treatment and prevention of valvular heart diseases.

Although there have been numerous studies on modelling
heart valves, the mitral valve has been much less exten-
sively studied in comparison to the aortic valve, presum-
ably because of the complex structure of the mitral valve
and its stronger interaction with blood flow and ventricular
motion. Recently, however, there has been increased interest
in computational models of mitral valves, and the sophis-
tication of these models has increased in concert with the
development of numerical methods and imaging modali-
ties. Kunzelman et al. were the first to use a three-dimen-
sional computational approach to simulate normal mitral
function (Kunzelman et al. 1993; Einstein et al. 2003, 2005),
the biomechanics underlying valvular disease (Kunzelman
et al. 1997, 1998a,b), and surgical interventions (Reimink
et al. 1996; Kunzelman et al. 1998a,b). Three-dimensional
dynamic modelling of the ovine mitral valve has also been
performed by Lim et al. (2005), who focused on the asym-
metric stress pattern of the mitral valve. Prot et al. reported
their work on mitral valve simulations in a series of studies
using a transversely isotropic strain-energy functional with
the nonlinear finite element (FE) code ABAQUS (Prot et al.
2007, 2009, 2010; Prot and Skallerud 2009). Recently, their
model has been applied to predict the mechanical difference
between the healthy mitral valve and the valve in a hyper-
trophic obstructive cardiomyopathic heart (Prot et al. 2010)
and active muscle contraction (Skallerud et al. 2011). Kim
et al. (Kim et al. 2007, 2008; Kim 2009) carried out dynamic
simulations of a pericardial bioprosthetic heart valve based
on a FE shell model, although their primary focus is on the
aortic valve. Maisano et al. (2005) and Votta et al. (2007,
2008) used patient-specific FE models to analyse the effects
of annuloplasty procedures. The biomechanical response of
the valve to the Alfieri stitch technique was reported by Dal
Pan et al. (2005) and Votta et al. (2008). The effects of the
annular contraction on mitral valve stress were modelled by
Stevanella et al. (2009). Urankar (2008) used the LS-DYNA
code to model mitral valve fibre stress under various loading
and surgical conditions.

Kaazempur–Mofrad and Weinberg used FE shell mod-
els and fully three-dimensional FE models to predict the
dynamic behaviour of the mitral valve (Weinberg 2005).

Their work incorporated fibre direction as an additional
degree of freedom to model the large-deformation and aniso-
tropic behaviour of mitral valves, and their method was dem-
onstrated using an existing constitutive law for mitral valve
tissue (Weinberg and Kaazempur-Mofrad 2007). Wenk et al.
(2010) developed a FE model of the left ventricle, mitral
apparatus and chordae tendineae from magnetic resonance
(MR) images obtained from sheep. Krishnamurthy et al.
(2009) used inverse FE analysis and radiopaque markers
sewn to the mitral annulus to show that, unlike isolated leaf-
lets, the in vivo elastic response of the anterior mitral leaflet
is linear over a physiologic range of pressures. Arnoldi et al.
(2010) developed mitral valve model-construction software
with a graphical user interface (GUI), in which they inte-
grated FE computations with four-dimensional echocardio-
graphic image processing in a high-performance computing
(HPC) environment. They found this approach to acceler-
ate the process of mitral valve modelling for patient-specific
analysis. There are also several recent review papers on mitral
valve research, each with a different focus (Sacks et al. 2009;
Einstein et al. 2010; Weinberg et al. 2010).

In contrast to the above approaches, in which native human
or animal valves are of primary interest, our group has
developed a sequence of fully three-dimensional fluid–struc-
ture interaction models of a polyurethane prosthetic mitral
valve (Watton et al. 2007, 2008; Griffith et al. 2009; Yin
et al. 2010). In these studies, the dynamic behaviour of
a three-dimensional chorded mitral prosthesis is modelled
using the immersed boundary (IB) method, which accounts
for the fluid–structure interaction between the blood flow and
the mitral valve leaflets. A major limitation of these earlier
models is that, with the exception of Griffith et al. (2009),
they employed a first-order accurate IB method that resulted
in excessive numerical dissipation.

In the present paper, we also model the prosthetic mitral
valve using a formally second-order accurate (Lai and Peskin
2000; Griffith and Peskin 2005) version of the IB method. We
first verify a cell-centred version of the IB methodology by
simulating the flow within a collapsible channel. The results
produced by the IB scheme are shown to be in excellent quan-
titative agreement with results from a well-tested in-house
arbitrary Lagrangian–Eulerian (ALE) code (Luo et al. 2008).
We then use a staggered-grid IB method to model the dynam-
ics of the prosthetic mitral valve. Unlike our previous work, in
which the flow rate is specified at the inlet (Watton et al. 2007,
2008; Griffith et al. 2009), herein, we use pressure boundary
conditions at both the inlet and outlet, allowing us to impose
a pressure difference across the model valve that is derived
from experimental pressure measurements. The imposed
pressure difference drives flow through the model valve dur-
ing the diastolic phase of the cardiac cycle and provides a
realistic pressure load for the closed valve during the systolic
phase of the cardiac cycle and thereby enables us to perform
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more realistic simulations. Using this fluid–structure interac-
tion model of the valve prosthesis, we consider the effects on
the dynamics of the valve of including models of the bend-
ing rigidity of the chordae and of the leaflets. We demon-
strate that when both effects are included in our model, our
computational results agree well with experimental measure-
ments. Our simulations therefore indicate that incorporating
a model of the bending stiffness is highly important, even for
structures as thin as mitral valve leaflets. Although we only
present results using IB models of heart valve dynamics, we
expect that our findings would also hold for other approaches
to modelling the fluid dynamics of heart valves.

2 The immersed boundary (IB) method

2.1 Mathematical formulation

We briefly introduce the immersed boundary (IB) formula-
tion of problems in which an elastic structure is immersed
in a viscous incompressible fluid. This formulation uses a
Lagrangian description of the elasticity of the structure and an
Eulerian description of the momentum, viscosity and incom-
pressibility of the coupled fluid-structure system. Let x =
(x1, x2, x3) ∈ � denote Cartesian (physical) coordinates, in
which � ⊂ R

3 is the physical domain; let s = (r, s) ∈
U denote Lagrangian (material) coordinates attached to the
structure, in which U ⊂ R

2 is the Lagrangian coordinate
domain; and let X(s, t) ∈ � denote the physical position of
material point s at time t . The IB formulation of the equa-
tions of motion for the coupled fluid-structure system is as
follows:

ρ

[
∂u
∂t

(x, t) + u(x, t) · ∇u(x, t)

]

= −∇ p(x, t) + μ∇2u(x, t) + f(x, t),

∇ · u(x, t) = 0,

∂X
∂t

(s, t) =
∫
�

u(x, t)δ(x − X(s, t))dx,

f(x, t) =
∫
U

F(s, t)δ(x − X(s, t))ds, (1–4)

in which u(x, t) is the Eulerian fluid velocity field, p = (x, t)
is the Eulerian pressure field, f = (x, t) is the Eulerian elastic
force density generated by the immersed structure (i.e. the
elastic force density with respect to the physical coordinate
system x = (x1, x2, x3)), F(s, t) is the Lagrangian elastic
force density generated by the immersed structure (i.e. the
elastic force density with respect to the material coordinate
system s = (r, s)), ρ is the (uniform) fluid density, μ is the
(uniform) fluid viscosity and δ(x) = δ(x1)δ(x2)δ(x3) is the

three-dimensional Dirac delta function. For further discus-
sion of the IB formulation of problems of fluid–structure
interaction, see Peskin (2002).

2.2 Numerical discretisation

To approximate Eqs. (1–4), the incompressible Navier–
Stokes equations are discretised on a fixed Eulerian grid, and
the equations describing the deformation and elasticity of
the immersed structure are discretised on a moving Lagrang-
ian mesh that is allowed to cut freely through the back-
ground Eulerian grid. Interaction between Lagrangian and
Eulerian variables is handled by a regularized approxima-
tion to the three-dimensional Dirac delta function, δh(x) =
δh(x1)δh(x2)δh(x3), in which h is the Eulerian grid spacing.
Various formulations of the regularized delta function are
possible, but in the simulations described in this paper, we
use a version of the four-point delta function (Peskin 2002),
so that δh(x) = 1

h ϕ
( x

h

)
with

ϕ(r) = 1

8

⎧⎨
⎩

3 − 2 |r | + √
1 + 4 |r | − 4r2, if |r | ≤ 1,

5 − 2 |r | + √
7 + 12 |r | − 4r2, if 1 ≤ |r | ≤ 2,

0, otherwise.

(5)

This regularized delta function is constructed to ensure that
force and torque are conserved during Lagrangian–Euleri-
an interaction for problems involving periodic or free-space
Eulerian boundary conditions and for problems in which the
immersed elastic structure does not attach to or interact with
exterior physical boundaries in the Eulerian domain (Peskin
2002). In our simulations, however, we use flow chambers
that attach directly to the outer boundaries of the Eulerian
physical domain, where we impose physical boundary condi-
tions. In the vicinity of such physical boundaries, we instead
use the modified four-point delta function of Griffith et al.
(2009). This extended approach ensures that force and torque
are conserved during Lagrangian–Eulerian interaction even
when the elastic structure is attached to physical boundaries
in the Eulerian domain.

2.3 Continuous and discrete elasticity modelling

To describe the elasticity of the immersed structure, it is con-
venient to assume that the structure is described in terms of
overlapping families of elastic fibres and that the Lagrangian
material coordinates s = (r, s) have been chosen so that a
fixed valve of r = r0 labels a particular fibre. The elastic
forces generated by the immersed structure are the sum of
the fibre forces due to extension and bending:
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Fig. 1 (Left) The 4-node element is spanned by four fibre segments;
(right) the bending stiffness for a 3-node beam is computed from a
pair of adjacent fibre segments located within and across the element
boundaries in each direction

F = Fs + Fb = ∂

∂s
(T τ ) + ∂2

∂s2

[
k
∂2X
∂s2

]
, (6)

in which T = T (s) is the fibre tension, τ = ∂X
∂s

/ ∣∣∣ ∂X
∂s

∣∣∣ is the

unit tangent vector in the fibre direction and k is the bending
stiffness coefficient, which is defined as

k = E I. (7)

In this paper, we use a 4-node quadrilateral element to repre-
sent the valve leaflets, see Fig. 1a. Each element is comprised
of 8 fibre segments, and the bending stiffness is computed
from the 3-node beam element consists of a pair of adja-
cent fibres, as shown in Fig. 1b. See Watton et al. (2007) for
a detailed description of this method for generating elastic
fibres from quadratic elements. Note that in Eq. (6), Fs corre-
sponds to forces generated by extension- and compression-
resistant elastic elements, which result in a membrane-type
force, and Fb corresponds to forces generated by bending-
resistant elastic elements, which results in a shell-like force.
A linear elastic response is assumed, as justified by an ear-
lier comparison between simulation and experiment (Watton
et al. 2007).

2.4 Feedback forcing

We provide an additional Eulerian feedback-forcing term to
ensure that any Dirichlet boundary conditions are satisfied at
the inlet and the outlet. This additional body force, which is
nonzero only in the vicinity of the physical boundaries, is of
the form

fB(x, t) = κ(ub(x, t) − u(x, t)), (8)

in which ub(x, t) is the prescribed velocity along the bound-
ary ∂� of the Eulerian domain. At open boundaries, where
we impose normal traction boundary conditions, we employ
feedback forcing for only the tangential components of the
velocity in the vicinity of ∂�. We choose κ = ρ

2�t , which is
approximately the largest value of κ permitted by our semi-
implicit time discretisation.

2.5 Implementation

The simulations described herein employ the freely avail-
able IBAMR code (http://ibamr.googlecode.com), an adap-
tive and distributed-memory parallel implementation of
the IB method that provides software infrastructure for
developing fluid–structure interaction models that use the
IB method. IBAMR leverages functionality provided by
other freely available software libraries, including SAM-
RAI (http://computation.llnl.gov/casc/SAMRAI) (Hornung
and Kohn 2002; Hornung et al. 2006), PETSc (http://www.
mcs.anl.gov/petsc) (Balay et al. 1997, 2008, 2009) and hy-
pre (http://www.llnl.gov/CASC/hypre) (Falgout and Yang
2002).

3 Method verification: collapsible channel flow

3.1 Model description and parameters

In this section, we verify a formally second-order accu-
rate cell-centred IB method (Griffith and Peskin 2005; Grif-
fith 2005; Griffith et al. 2007, 2009) implemented in the
IBAMR software framework against an in-house ALE code
(Cai and Luo 2003) on a collapsible channel flow problem.
This problem is chosen because the rich dynamic behaviour
of collapsible channel flows makes simulating fluid–struc-
ture interaction in such systems extremely challenging and
because, for this particular example, our benchmark ALE
code satisfies the geometrical conservation law exactly (Liu
et al. 2011). The numerical model consists of flow in a chan-
nel in which part of the upper wall is replaced by an elas-
tic beam in the plane strain configuration, see Fig. 2. The
rigid channel has width D, and part of the upper wall of
length L , scaled by the channel width D, is replaced by
an elastic beam that is subject to an external pressure load
p̄e. The lengths of the upstream and downstream rigid parts
of the channel are Lu and Ld, respectively, also defined in
reference to the channel width D. Steady Poiseuille flow
with average velocity U0 is prescribed as a boundary con-
dition at the inlet. The extensional and bending stiffness-
es of the beam are EA and EJ, respectively, in which E
is the Young’s modulus for the plane strain problem, A
is the cross-sectional area of the beam (which is equiv-
alent to the beam’s thickness because the beam has unit
width in the z direction), and J is the moment of inertia
of the cross-section of the beam. Pretension in the beam is
assumed to be zero, and the damping and rotational iner-
tia of the beam are ignored. In the ALE code, the beam
is discretized using 6-node triangular elements, whereas in
the IB simulation, the beam is represented using systems
of extension-, compression-, and bending-resistant elastic
elements.
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Fig. 2 The configuration of the
collapsible channel flow
problem (not to scale). In
section B, part of the solid upper
wall is replaced by an elastic
beam. In the IB version of this
model, fluid is present both in
the interior of the channel and in
the space exterior to the
channel; in the ALE model, the
exterior space is treated as a
constant-pressure reservoir

We remark that the physical systems modelled by the IB
method and by the ALE code are slightly different. Spe-
cifically, the IB model describes a collapsible channel that
is immersed in fluid, i.e., a system that includes inertial
effects both within the channel and outside of the chan-
nel. In contrast, the ALE model excludes inertial effects in
the exterior of the channel, thereby effectively treating the
region exterior to the channel as a constant-pressure reser-
voir (Luo et al. 2008). The dynamic behaviour of the two
models therefore differs. However, if the system is stable
and admits only a single steady solution, then as t → ∞,
transient effects will decay, and the equilibrium results of
the two models will be identical. Hence, for verification pur-
poses, we consider a stable flow case used by Liu et al.
(2009), with dimensionless parameters cλ = E A

ρU 2
0 D

= 2,400,

Re = U 2
0 Dρ

μ
= 500, pe = p̄e

ρU 2
0

= 1.95, Lu = 5, Ld = 30

and L = 5. The corresponding dimensional parameters
are E = 0.4785 MPa, U0 = 0.05 m/s, ρ = 103 kg/m3,
μ = 10−3 Pa s, D = 0.01 m, A = 10−4 m2 and p̄e =
4.875 Pa.

3.2 Results

The undeformed state is used as the initial configuration.
Because the wall stiffness is quite large, the largest sta-
ble time step for this problem is approximately 5 × 10−5 s.
Figure 3a shows that in the IB model, the wall oscil-
lates for approximately 17 s before settling to a steady
state. This quasi-steady solution agrees very well with the
results computed from an FE model using our ALE code
(Cai and Luo 2003) and also with results obtained using
ADINA (Watertown, Massachusetts, United States); see
Fig. 3b.

We remark that although steady-state problems, such as
the one considered in this section, are well suited for use
as verification tests for the IB method, the IB method is
primarily intended for simulating dynamic problems, and
the performance of the IB method may not be competitive
with numerical methods specifically developed for steady-
state flow problems. The strength of the IB method, and
of its implementation in the IBAMR software, is its abil-

Fig. 3 a The y-position of the centre of the elastic beam as a function
of time, and b the shape of the elastic wall at time t = 17 s. These
results show that the transient solution determined by the IB method
implemented in the IBAMR code approaches the steady solution deter-
mined by an in-house ALE code (FBM) and also the steady solution
determined by ADINA. At equilibrium, all three codes produce results
that are in excellent quantitative agreement. In the IB model, the elas-
tic beam is initially flat and aligned with the rigid portions of the upper
channel wall (i.e. with y = 1). The equilibrium shape shown in panel (b)
therefore represents a large deformation from this initial configuration

ity to enable fully coupled fluid–structure interaction sim-
ulations in the dynamic setting for complex three-dimen-
sional geometries, as we demonstrate in the following
section.
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Posterior leaflet

Anterior leaflet

Commissure region

6 anterior chordae

8 posterior chordae Commissure region

(a) (b)

Fig. 4 a The mitral valve mesh, and b the mitral valve mounted on a rigid housing disc. The anterior leaflet has 22,328 fibre segments, the posterior
leaflet has 25,614 fibre segments and the housing disc has 43,404 fibre segments

4 Dynamic simulation of the mitral valve prosthesis

4.1 Model description and parameters

The mitral valve prosthesis that we model is the same as
that considered by Watton et al. (2007, 2008) and by Griffith
et al. (2009) and is shown in Fig. 4. The valve prosthesis is
made of the polyurethane material PurSpan (DSM Biomed-
ical, Berkeley, California, United States) and incorporates
artificial chordae tendineae made of Bionate 750D that orig-
inate from the valve annulus and traverse each leaflet before
exiting at the free margins of the leaflet to attach to the pap-
illary muscle regions of the left-ventricular wall. The pros-
thetic valve has a total of 14 artificial chordae, with eight
in the posterior leaflet and six in the anterior leaflet. The
valve is mounted on a rigid D-shaped annulus that attaches
to the left ventricle, see Fig. 5. The geometry of the model
mitral valve is generated using the SolidWorks CAD software
(Concord, Massachusetts, United States). For the purposes of
the IB simulation, the model valve is further discretised as
a surface that is spanned by overlapping collections of one-
dimensional fibre segments, see Fig. 1.

Each of the chordae has a cross-sectional area of 0.4 mm2

and a Young’s modulus of 30 MPa. The leaflets have a mean
thickness of 0.125 mm and are modelled as a linear elastic
material with a Young’s modulus of 5.4 MPa (Watton et al.
2007). Following Watton et al. (2007), we assume that the
valve leaflets possess a constant stiffness and uniform thick-
ness and that the material exhibits a linear elastic response.
These approximations were tested in earlier work, which
found them to be acceptable for the physiological regime
of interest (Watton et al. 2007). Each chord is attached at
one end to the fixed points of the annular ring and at the
other to one of two chordal attachment points that are fixed
in space. The mitral annulus is fixed to a housing disc that is

0.03
0.04

0.05

0.035
0.04

0.045
0.05

0.055

0.04

0.05

0.06

0.07

0.08

0.09

Chordal 
Attachment Points

Fig. 5 The valve annulus and artificial chordae tendineae. The semi-
rigid D-shaped annulus, shown in black, has a post height of 7.5 mm.
The model chordae, which appear in blue, are comprised of a total of
1,802 fibre segments. Each chord is fixed at one end to the nearly rigid
annular ring and at the other to one of two chordal attachment points
(CAPs). In this study, these CAPs are fixed in space to facilitate com-
parison between simulation and experiment

mounted in a semi-rigid circular tube. All of these structures
are immersed in a rectangular 16 cm×8 cm×8 cm fluid box;
see Fig. 6.

In previous work using a formally second-order accurate
cell-centred IB method (Griffith et al. 2009), we performed
simulations using a version of this model that included a
model of the bending stiffness of the chordae. In those simu-
lations, we imposed motion of the chordal attachment points
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Fig. 6 The mitral valve and the
housing disc mounted in a
semi-rigid circular tube of
length 16 cm and diameter
5.6 cm. The valve housing is
placed 4 cm downstream of the
inlet of the tube. These structure
are embedded in a
16 cm × 8 cm × 8 cm fluid box.
A time-dependent transvalvular
pressure difference is imposed
across the model valve by
prescribing pressure boundary
conditions at the inlet and outlet
of the tube

that was derived from medical imaging data, and we pre-
scribed the experimentally measured flow rate at the inlet
of the tube along with zero-pressure boundary conditions at
the outlet. We found that the peak pressure was significantly
reduced in comparison to the peak pressures of earlier simula-
tions that used a first-order accurate version of the IB method.
Specifically, the transvalvular pressure difference required to
open the valve was about 4 mm Hg, which compares favour-
ably to the corresponding value of 12 mmHg obtained by
Watton et al. (2007). We noted, however, that during the sys-
tolic phase of the cardiac cycle, the transvalvular pressure
load was much smaller than the experimentally measured
value. This is an important drawback of using flow rate as
a boundary condition for these types of simulations: a real-
istic pressure load across a closed valve cannot be properly
established.

In this study, we overcome this problem by imposing pres-
sure boundary conditions at both the inlet and the outlet
of the model. Specifically, we impose a pressure difference
d P(t) that is based on measurements obtained from flow
experiments that used a prototype of the valve prosthesis.
A schematic diagram of the experimental apparatus is shown
in Fig. 7a; for a detailed description of this apparatus,
see Fisher et al. (1986). The measured pressure difference
d Pexp(t) that we have available to use in our simulations
was determined from two pressure transducers: one that was
placed 2.5 cm upstream of the valve, identified as station U in
Fig. 7a, and another that was placed 5 cm downstream of the
valve, identified as station B in Fig. 7a. Notice, however, that
we employ a flow chamber that is 16 cm long. This length was
chosen to reduce the influence of the boundary conditions on
the dynamics of the model. A consequence of this, however,
is that we cannot use the experimental pressure measure-
ments directly as boundary conditions for the model. Were
we to do so, the simulated pressure difference in the model

measured at stations U and B would generally be smaller than
the experimentally measured difference in pressures at those
locations. Moreover, the corresponding flow rates would also
be smaller. Rather than using the experimental measurements
directly as boundary conditions for our model, we instead set
d P(t) = d Pexp(t)+d Pshift(t), in which d Pshift(t) is an addi-
tional driving pressure that is intended to offset the additional
flow resistance presented by the longer flow chamber used
in the simulations. The value of d Pshift(t) was empirically
determined so that the difference in the computed pressure
between stations U and B is in good agreement with the
experimental measurements, see Fig. 7b. Boundary condi-
tions are also required for the portions of the fluid box that
are exterior to the inlet and outlet of the flow chamber. Solid-
wall boundary conditions are prescribed along the portions
of the x = 0 cm and x = 16 cm boundaries that are exterior
to the circular tube, and zero-pressure boundary conditions
are imposed along the remainder of the domain boundary
(Griffith et al. 2009).

Our simulations use a formally second-order accurate
staggered-grid IB method (Griffith 2009, 2011a,b). The time
step size was set to be �t = 1.25×10−5 s, which was empir-
ically determined to be approximately the largest stable time
step size permitted by the model. Therefore, computing a
complete 0.75 s cardiac cycle requires 6 million time steps,
which required approximately 4 days on a Dell workstation
(dual quad-core Intel Xeon X5450 3.0 GHz processors).

4.2 Results

To investigate the effect on valve dynamics of accounting
for the bending stiffnesses of the leaflets, two simulations
are carried out. In one simulation, we include the bending
stiffnesses of the chordae but not of the valve leaflets; in
the other simulation, we account for both chordal and leaflet
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Fig. 7 a Schematic diagram of the experimental apparatus described
by Fisher et al. (1986), in which flow is driven by a computer-con-
trolled pump that generates pulsatile inflow. To avoid turbulence, the
tubular Perspex section upstream from the valve is filled with straws
that act as flow strengtheners. In the experiments, the flow volume was
80 ml per cycle, with a cycle duration of 0.75 s. The mean downstream
pressure was 95 mmHg. The transvalvular pressure difference was mea-
sured between stations U and B. b The prescribed transvalvular pres-
sure difference, which is imposed over the 16 cm tube (dashdot), and
the computed pressure difference between stations U and B (solid) are
compared to the experimentally recorded pressure difference (solid with
triangles). The corresponding experimental flow rate is also shown
(solid with circles)

bending stiffnesses. The simulated valve opening sequences,
as viewed from the inlet boundary of the circular tube in
which the valve is mounted, are shown in Fig. 8, panels
(a) and (b). The corresponding experimental recordings are
shown in Fig. 8c. Note that while the valve is open, the pos-
terior chordae are clearly more taut than the anterior chordae.
This is a consequence of the design of this mitral prosthe-
sis. Specifically, the motion of the posterior leaflet is more
constrained than that of the anterior leaflet. This phenome-
non is observed both in the simulations and in corresponding
experiments. This design defect also causes large strain and
stress, as discussed in our previous studies (Watton et al.
2007, 2008).

Figure 8 clearly demonstrates that the best agreement
between simulation and experiment is obtained when both the

chordal and the leaflet bending stiffnesses are included in the
model. In particular, the model that includes leaflet bending
rigidity does not suffer from over-opening at the beginning
of diastolic phase. When we neglect the bending stiffness
of the leaflets, the leaflets are overly flexible, permitting the
development of a much larger orifice in comparison to the
experimental results. In fact, in this case, part of the anterior
leaflet exceeds the boundary of the annulus. These results
also suggest that chordal bending rigidity plays an important
role in proper valve closure. The fact that the chordae exert
forces that act to close the valve is clearly seen in Fig. 9.
A similar phenomenon can also be seen in the experimental
pictures around this time; see Fig. 8c.

The fluid pressure field generated by the model is shown in
Fig. 10 at times when the valve is fully open and fully closed.
The valve opens at a driving pressure difference of approxi-
mately 8 mmHg and is subject to a significant, physiological
pressure load when closed. These loading conditions are sub-
stantially more realistic than those of our earlier simulations.

The flow rates yielded by the model with and without
leaflet bending stiffnesses are shown in Fig. 11. It is inter-
esting to see that if we only include the chordal stiffness, the
computed flow rate is much larger than the experimental data,
because the valve over-opens and yields an unrealistically
low resistance to forward flow. Adding bending stiffnesses
to the leaflets leads to a much closer agreement between
simulation and experiments, including reduced oscillations
in the flow record after valve closure.

The simulated and experimental effective valve orifice
areas are plotted in Fig. 12. These quantities are estimated
using the Gorlin formula (Gorlin and Gorlin 1951),

A = k
Q√

d PU B
(9)

in which A is the effective orifice area in cm2, Q is
the flow rate in litre/min, d PU B is the difference in the
pressure between stations U and B in mmHg, and k =
1/(0.7∗44.5∗0.06) is an empirical constant (Rapaport 1985).
It should be mentioned that the Gorlin formula is derived
from a simplified description of fluid dynamics that can result
in inaccuracies if the flow transients are strong, as occurs
during valve opening and closure. We remark that the nor-
mal orifice area of a native mitral valve is 4–6 cm2, whereas
the estimated orifice area in both the experiment and in the
simulation with leaflet bending forces is only about 2.5 cm2,
suggesting the need for further improvement to the current
design.

5 Discussion and conclusion

In this study, we presented simulation results obtained via
a fluid–structure interaction model of a chorded prosthetic
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Fig. 8 View of the mitral valve
from the inflow boundary during
a complete cardiac cycle. a The
model valve with both chordal
and leaflet bending stiffnesses,
b the model valve with only
chordal bending stiffnesses and
c the experimental recording.
The bending stiffnesses of the
chordae assist in valve closure;
however, to prevent
over-opening of the valve
leaflets, it is necessary also to
include leaflet bending
stiffnesses in the model
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Fig. 9 View of a model mitral valve that includes both leaflet and
chordal bending stiffnesses, showing that the chordae help to close the
valve at t = 0.4 s

mitral valve, and we compared these results to measure-
ments obtained from corresponding experiments using a real
valve prosthesis. Our model accounted for both the chordal
and leaflet bending stiffnesses, and it used a formally sec-
ond-order accurate IB method. Previous simulations by this
group using a first-order accurate IB method and periodic
boundary conditions (Watton et al. 2007, 2008; Yin et al.

Fig. 11 Flow rates computed by the mitral valve models with and with-
out leaflet bending stiffnesses, along with flow rates measured from the
experimental test rig. Agreement between the model results and the
experimental data is best when the model includes both chordal and
leaflet bending stiffnesses

2010) suggested that the model mitral valve would not close
unless additional pressure is added. This study shows that, by

Fig. 10 The fluid pressure field
along a plane bisecting the
model valve shown when the
mitral valve is fully open and
fully closed. We remark that a
realistic pressure load can be
established when the valve is
closed only by using pressure
boundary conditions at both the
inlet and the outlet of the model
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Fig. 12 Effective valve orifice area as a function of time during the
opening phase, as determined by the Gorlin formula

including the chordal bending force in the model, the closure
dynamics of the valve are improved significantly. Unless we
include leaflet bending stiffness in our model, however, the
valve leaflets remain overly flexible. Specifically, without
such bending-resistant forces, the valve over-opens during
the initial portion of the diastolic phase of the cardiac cycle,
resulting in a valve orifice that is significantly larger than
observed in corresponding experiments. Much better agree-
ment in valve orifice size is achieved when we include the
valve leaflet bending force. In addition, nonphysical oscilla-
tions that occur upon valve closure are greatly reduced when
such forces are included in the model. These findings high-
light the importance of accounting for the bending stiffness
in the dynamic simulation of the mitral valve.

The current model has been improved from our previ-
ous mitral valve models (Watton et al. 2007, 2008; Griffith
2009; Yin et al. 2010) in several important aspects. Pressure
boundary conditions are imposed, and the mechanical repre-
sentation has been improved by accounting for the bending
rigidity of the leaflets and the chordae. In addition, the model
predictions are much closer to experimental data throughout
the cardiac cycle, including both the opening and closing
phases. We have also performed a quantitative verification
of the IB method for a challenging problem in collapsible
channel flow.

The present work also has several limitations. First, the
mechanical structure of the mitral valve is modelled quite
simply as a mesh of elastic fibres, and the bending stiffness
is only provided along each fibre. This may contribute to
the discrepancy between the predicted results and the exper-
imental data, a discrepancy that is reduced but not eliminated
in the present simulations, see Figs. 8 and 11. To better model

the nonlinear mechanical behaviour of the mitral valve leaf-
lets, it may be important to use a modelling approach that
permits more sophisticated elasticity models. One approach,
which we aim to pursue in future work, would be to employ a
FE discretisation of the valve and to use experimentally char-
acterised strain-energy functionals to describe the elasticity
of the valve leaflets. Extensions of the IB method that permit
such FE-based elasticity models have been developed over
the past decade (Zhang et al. 2004; Boffi et al. 2008; Griffith
and Luo 2011), and one such extension of the IB method
is already implemented within the IBAMR software used to
perform the simulations described herein (Griffith and Luo
2011). Second, although more realistic pressure boundary
conditions are implemented in the present simulations, these
boundary conditions do not include any feedback mecha-
nisms that are able to adjust the flow and pressure result-
ing from compliances in the experimental setup. We believe
that the lack of realistic compliance in the loading condi-
tions is the principal reason for the oscillations seen after
t = 0.5 s in our simulations. Future work on incorporating
more realistic loading conditions is clearly required. Third,
the annular ring in our model is assumed to be planar and
fixed in space, whereas in case of a native valve, it is saddle
shaped and deformable. In fact, in the real valve prosthesis,
the annulus is rigid, and whereas the valve ring is not pla-
nar, accounting for this in the model may not be required to
obtain realistic chordal force distributions and leaflet stresses
(Prot et al. 2009). Finally, although the mitral valve is gen-
erally described as a passive structure, Prot and Skallerud
(2009) found that their FE mitral valve model yields unreal-
istic deformations when the active muscle fibres of the ante-
rior leaflet are neglected. A passive model of the mitral valve
leaflets is appropriate in the present setting, in which we
are modelling a passive polyurethane mitral valve prosthe-
sis; however, the results of Prot and Skallerud suggest that
our model may be of limited use if applied to interpret the
behaviour of a native mitral valve.

In summary, we have successfully simulated the dynamic
behaviour of a chorded mitral valve prosthesis and, in doing
so, highlighted the importance of accounting for the bend-
ing stiffnesses of the leaflets and artificial chordae tendi-
neae of the valve prosthesis. Although our observations are
drawn from an IB model of the mitral valve that describes
the elasticity of the valve in terms of systems of elastic fibres,
we believe these findings would apply equally to structures
with more traditional continuum-based descriptions. That is
to say, we expect that a valve leaflet model that does not
account for bending stiffnesses is unlikely to perform ade-
quately in the dynamic setting. Therefore, constructing the
realistic, dynamic models of native cardiac valves and valve
prostheses that are needed to improve clinical outcomes for
the large number of patients suffering from valvular heart
diseases will require either a shell-type formulation, like that
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used in the present work, or a fully three-dimensional descrip-
tion of the elasticity of the cardiac valves.
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