History of Vascular Modelling

William Harvey — discovery of the circulation
1628




Since all things, both argument and ocular
demonstration, show that the blood passes
through the lungs and heart by the force of the
ventricles, and is sent for distribution to all
parts of the body, where it makes its way into
the veins and porosites of the flesh, and then
flows by the veins from the circumference on
every side to the centre, from the lesser to the
greater veins, and is by them finally discharged
into the vena cava and right auricle of the
heart, and this in such a quantity or in such a
flux and reflux thither by the arteries, hither by
the veins, as cannot possibly be supplied by the
ingesta, and is much greater than can be
required for mere purposes of nutrition; it is
absolutely necessary to conclude that the blood
in the animal body is impelled in a circle, and__
IS in a state of ceaseless motion. (1628)
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History of Vascular Modelling

Stephen Hales
1677 —-1761

\egetable staticks 1733

 blood pressure measurements
o flow resistance occurs mainly in the microcirculation
o effects of elasticity of the arteries
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History of Vascular Modelling

Development of fluid dynamics

e Euler
* Daniel Bernoulli (Professor of Anatomy)

* Poiseuille (Physician)




History of Vascular Modelling

Thomas Young
1773 -1829

Developed the theory of wave
propagation in elastic tubes

Thomas Young {1773-1829)

" ... the enquiry, in what manner, and in what degree, the circulation
of the blood depends on the muscular and elastic powers of the heart
and of the arteries, supposing the nature of those powers be known,
must become simply a question belonging to the most refined
departments of the theory of hydraulics.” 1809
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History of Vascular Modelling

Flow profile and the link with atherosclerosis

* \Wormersley 1955 — velocity profile and viscosity
 Caro, Fitz-Gerald & Schroter 1971 — correlation
between low wall shear stress and fatty streaks

e Fry 1973 — transport of lipoproteins through the
arterial wall
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Systemic capillaries of head, neck,
and upper extremities

The Cardiovascular
System:

Pulmonary capillaries of
left lung
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Arteriales

Systemic capillaries of
lower extremities




Pulmonary Circulation

Right Ventricle # Pulmonary Artery # Capillary Blood Vessels # Pulmonary Veins # Left Atrium

» Pulmonary capillary
blood volume 150 ml

» Blood-Gas exchange
area 70 m?
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» Average capillary
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Systemic arteries:

»Consist of
e Large arteries (cm)
« Small arteries (mm)
* Arterioles (100 um)
« Capillaries (50 um)

» Pressure drop across resistance
arteries

Pulmonary vasculature:

» Consists of
 Pulmonary arteries (mm)
 Pulmonary Capillaries (4 um)

> Pressurised venous
system
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Systemic Artery Model

= L]
[ ]

> 1-D cross-sectional
average

» Large systemic

arteries — tapered
vessels

> Structured tree
vascular beds

Olufsen, M.S. et al., Numerical Simulation and Experimental Validation of Blood Flow in Arteries with UNIVERSITY

-, - - - - - _ nf
Structured-Tree Outflow Conditions, Annals of Biomedical Engineering, 28, 1281-1299, 2000. CLASCOW




»> 1D fluid dynamics model for wave-propagation in the large
arteries — nonlinear, moving walls, flat velocity profile with a
boundary layer, solved numerically.

> Smaller arteries modelled as a structured tree using linearised
equations that allow mathematical analysis.

» Use fast recursive algorithms.

» New algorithm to calculate pressure and flow within structured
tree.
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The large arteries




@ Continuity equation -

) A
dg L 0A _

ox 0t

@ Momentum equation -

dt  Ox

dg 0 (q2) N Adp 2wvRq

pdx 4 A

@ State equation -

4 Eh [ Ag
p(x,t)—pg_gr—o (1 A)
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From linearised 1D axisymmetric N-S equations, and Fourier
expansions for u, p and g, we get,

the momentum equation,

2J1(WD]

e where F, = wado (o)

and the continuity equation,

IwCP + @ =0
)x

for the small vessels.
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@ solving (4) and (5) gives,

Q(x,w) = acos(wx/c) + bsin(wx/c)

. 0 | o
P(x.w) =1 m(—a cos(wx/c) + bsin(wx/c))

P(x,w) _ ig '(bcos(wx/c) — asin(wx/c))

> | Z(x,w) = Q(x,w) acos(wx/c) + bsin(wx/c)

Ao(1-Fy)

@ with wave propagation velocity ¢ = °C
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@ Assuming we know the impedance Z(x,w) at the end of a
vessel, we can find the impedance at the root of the vessel.
So we have

Z(0,w) = f(Z(L, w))

@ a bifurcation condition,

1 _ 1 1
Zp  Za,  Zg

@ and terminal conditions Zierm, rmin

@ So we can find the impedance at the root of the structured
tree.
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Flow measurements using MRI

@ Inflow - Periodic waveform.

e Conserved flow, g, = g4, + 94,-

e Continuous pressure, pp = pg, = Pd,-
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Pulmonary Arterial System
Data R

in a dichatomously Bbranching system (see

Inlegroted Dala for the Total Pulmonary Arierial Sysiem

Dinme ter Length Capillarvy bed
Order Numbhber of branches (mm) fmm} End branches t%;

17 1.000 30.000 90.50 3.000 X 109 1.000 X 10°

16 3.000 14.830 32.00 1.000 % 109 3.333 X 10

15 2000 R.060 10500 S0 L7 LODY % 10

14 2000 10 5.820 20,70 1.376 L7 4.588

1.3 6600 > 10 3.650 [ 7.90 3.983 Los 1.328

12 20080 X 1E 2.090 [ {150 1.15% 10# 4.863 = 101

11 6.750 x 10¢ 1.330 6.0 3.470 1 1.157 > 10—

1) 10# (L850 4.69 8.918 1 0a 20972 » 1072
1(F 525 3.16 4 803 104 1.602 » 10-2
10 33l 2.10 1.604 104 5437 X 1072
1k 0,224 1.38 3.358 10 L7586 > 10—
10¢ 0. 138 (.91 1.787 10# 3957 X 10#
1e irik=6 0.65 2975 107 1.992 X 10~
10} 0054 0.44 1.995 L0 6.630 > M0-E
1) D054 0.29 (. 64 1 2.221 > L0~®
107 0,021 0.20 2370 1o F.900 = 10
100 0,013 (.13 1. 00 3.333 » 107

HKAXXAKXAAXXHAAXAKKK

= b e G ER =] gD

Cuapillary bed (%) 1s the calculated percent of the total capillary bed supplied by one branch of a given order. [y
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The Pulmonary Arterial Tree

For any vessel r =o' B'r,

&r

daughterl =al

parent and r.daughterz — ﬂ r.parent

Cast of the pulmonary arteries and branch
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Structured Tree

@ Provides outflow condition to model for large arteries.

@ Structured tree of elastic vessels.

. . o o,
e Scaling relations ry, = arp,  rg, = Brp.

=
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Parameters determining
parent/daughnter radius ratios

n=(ry+ry)/r, =116&1.08

[ =T +0, =27
a=rylr, andg=r,/r,
y=alp




Results for systemic arteries:
simulated versus measured flow rates
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200

Pressure

(lglgle)) 100

0.5

0 time (sec)

Pressure pulse for successive generations in the
femoral artery vascular bed
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* Pressure pulse for successive generations.

» Note propagation of the pressure wave.

* Pressure decreases and becomes steadier in the smaller vessels.
* Pressures depend on length to radius ratios and area ratios, but
do not depend strongly on the number of generations.
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Intravascular pressure as a
function of vessel diameter
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25 2 15 1

l0g, (1) [um]

Shows extremes & mean for
branches in the femoral
structured tree.

Mean pressure > 50 log,,(r).
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The Large Pulmonary Arteries

FPulmonary trunk

Right pulmonary arteries —

Infarior vena cava
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A model for pulmonary circulation

UNIVERSITY

Need to link arteries and veins criscow




Physical Properties of the Pulmonary Circulation

@ Arteries
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Pulse propagation in the pulmonary and systemic arteries.



Elastic Properties of the Pulmonary Circulation

@ Arteries
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Measurements of large pulmonary
arteries




Inflow data - pulmonary artery

Have good quality flow measurements
In the large vessels

A
T,
M%\‘Wﬁi
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400

time (ms)

24 year old male

24 year old male
mean of 4 pulmonary veins +- SD

4|_:||:| )
time (ms)

»% : -fi
UNIVERSITY

of
GLASGOW




Small pulmonary arterioles
and venules

» Assume arterial and venous trees are
topologically similar so that trees of vascular
beds can be linked together.

» Obtain a matching condition to link the large
arteries with the large veins by calculating an
overall admittance for the whole bed of small
vessels.




Governing eguations

) 1 f)p v 0
— = ——
M I or o
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Q( £z, u.;) = a (:OS(u.u: J,fIC) + bSiI](u.:;[: fc:)

P(r,w) = (i/gu)(—asin(wzx/c) + beos(wx/c))

Q1 \ _ 9w ( —Cp 1 Py
Q2 ) Sp I —Cr Ps

where C';, = cos(wL/c) and S, = sin(wL/c¢), meaning that

Y(w) T SfL ( 1 _erL )

1s the admittance matrix for any one artery or vein when w = 0.




Admittance Matrix

R
Q = Q 1 Y 2
I 1
@ Whenw #0
g, pgl [ —C; 1 )
Y(w) = ==L 12
( ) SL qc ( 1 - ( )
@ Whenw =0
pgl 7r} 1 -1
Y(0)=— 13
(0) qc 8,u-L( -1 1 (13)
Gareth D.A. Vaughan Pulse propagation in the pulmonary and systemic arteries.



Linking an Arterial and Venous tree

AI‘ILEI‘IES/

{1'0 ﬁD

Y(w)

@ [ wo Vessels in Parallel

Y=Y"4Y" (14)

@ [wo Vessels in Series
det(YA) + YAYE ~YAYE
—YAYE det(YB) + YA YE
(15)

Gareth D.A. Vaughan Pulse propagation in the pulmonary and systemic arteries.



Matching conditions for the large
arteries and veins
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Pulmonary disease

e Group I - Pulmonary Arterial Hypertension - in this group of condi-
tions, the pathophysiology is located in pulmonary arteries and arterioles
of less than 500pm diameter, with increased stifiness and resistance in the
smaller vessels [7] [12].

e Group III - Pulmonary Hypertension in association with hypoxic
lung disease - this group includes conditions that involve pulmonary vas-
cular remodelling (typically affecting vessels of less than 500um diameter)
and loss of the pulmonary vascular bed (vascular rarefaction) due to un-
derlying respiratory disease [15].

Group IV - Chronic Thromboembolic Pulmonary Hypertension
- here, the problem is initially located in larger vessels with increased
stiffness and decreased cross-sectional area. Eventually there may be in-
volvement of the small vessels in the same way as Pulmonary Arterial
Hypertension [2] [3].
UNIVERSITY

of
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Pulmonary Hypertension, Lankhaar et al. 2006

NONFH CTEPH IPAH

zs\/“’\__\-

750

Pressure (mmHg)

=

500
250
T \V N
-250
0 0.2 04 06 08 0 02 04 06 08 1 0 0.2 04 06 08
Time (5) Time (s) Time (5)

Fig. 2. Example of a preprocessed and synchronized pressure-flow pair for each patient group. Note that diastolic flow is set equal to zero. NONPH, no
pulmonary hypertension (control); CTEPH, chronic thromboembolic pulmonary hypertension; IPAH, idiopathic pulmonary arterial hypertension.

Flow (ml/s)

AJTP-Heart Cire Physiol « VOL 291 « 0CTORER 2006 « www . ajpheart org

Gareth D.A. Vaughan Pulse propagation in the pulmonary and systemic arteries.



Pulmonary Arteries
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Left Pulmonary Arery
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Pulmonary Veins
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e Group I - Pulmonary Arterial Hypertension - in this group of condi-
tions, the pathophysiology is located in pulmonary arteries and arterioles
of less than 500um diameter, with increased stiffness and resistance in the
smaller vessels [7] [12].
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e Group III - Pulmonary Hypertension in association with hypoxic
lung disease - this group includes conditions that involve pulmonary vas-
cular remodelling (typically affecting vessels of less than 500um diameter)
and loss of the pulmonary vascular bed (vascular rarefaction) due to un-
derlying respiratory disease [15].

Main Pulmonary Artery, vy = 0.6
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Effects of rarefaction
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e Group IV - Chronic Thromboembolic Pulmonary Hypertension
- here, the problem is initially located in larger vessels with increased
stiffness and decreased cross-sectional area. Eventually there may be in-
volvement of the small vessels in the same way as Pulmonary Arterial
Hypertension [2] [3].
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@ normal microcirculation @ normal microcirculation
O increased rarefaction s °cc O increased rarefaction
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. averages of 7 waveforms from 7 healthy

Individuals. Normal microcirculation — solid circle. Increased
rarefaction — open circle.
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Parameters determining
parent/daughnter radius ratios

n=(ry+ry) /1, =1.16&1.08
[ =T +05,&=27
a=rylr,and g=r,/r,

y=alp=r,lr,




Normal vs Increased Rarefaction in the
Microcirculation - Flow

@® normal microcirculation
O increased rarefaction

29t eeetee,,
sastry o ",
(1) 00 J-'Q-...'l
X ___cudx o “hooos

o s ) 5%

0.6

time (s)

averages of 7 healthy individuals.
Normal microcirculation — solid circle. Increased rarefaction — open circle.

n=(rg+ry)/r, =1.16&1.08
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« First numerical simulations of periodic pulsatile
flow In the full pulmonary circulation.

o First calculations of pressure drop in small arteries.

o Comparisions between clinical data and model
results.

 Evidence of changes in large vessel waveforms
assoclated with changes in physiology of vascular
beds, similar to those seen clinically.
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Many challenges: flexible,
complex, individual, able

to sustain a great range of
flow rates and regimes.
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