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Abstract In this work, we introduce a modified Holzapfel-
Ogden hyperelastic constitutive model for ventricular
myocardium that accounts for residual stresses, and we inves-
tigate the effects of residual stresses in diastole using a
magnetic resonance imaging–derived model of the human
left ventricle (LV). We adopt an invariant-based constitutive
modelling approach and treat the left ventricular myocardium
as a non-homogeneous, fibre-reinforced, incompressible
material. Because in vivo images provide the configuration
of the LV in a loaded state even in diastole, an inverse analy-
sis is used to determine the corresponding unloaded ref-
erence configuration. The residual stress in this unloaded
state is estimated by two different methods. One is based
on three-dimensional strain measurements in a local region
of the canine LV, and the other uses the opening angle
method for a cylindrical tube. We find that including resid-
ual stress in the model changes the stress distributions across
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the myocardium and that whereas both methods yield qual-
itatively similar changes, there are quantitative differences
between the two approaches. Although the effects of residual
stresses are relatively small in diastole, the model can be
extended to explore the full impact of residual stress on LV
mechanical behaviour for the whole cardiac cycle as more
experimental data become available. In addition, although
not considered here, residual stresses may also play a larger
role in models that account for tissue growth and remodelling.

Keywords Residual stress · Left ventricle · Finite strain ·
Finite stress

1 Introduction

Even in the absence of externally applied loads, soft tissues
generally are not stress-free. The stresses that remain after
all external loads have been removed are termed residual
stresses. Residual stresses are present in a large variety of
biological tissues and result from tissue growth and remod-
elling occurring over the life span of the tissue (Bovendeerd
et al. 1994).

Fung (1993) and Vaishnav and Vossoughi (1987) appear
to have been the first to consider residual stresses in soft tis-
sues. They found that when a length of artery is excised from a
body, the artery contracts. Thus, in vivo, arteries are stretched
(i.e. subject to a large axial deformation) and tethered (i.e.
held in place) by the surrounding tissue. However, although
an excised artery is not subject to any axial load or to any
traction on its inner and outer surfaces, it is not unstressed;
rather, there remains a residual stress distribution across the
arterial wall. The existence of these residual stresses may
be demonstrated by the so-called opening angle experiment,
first proposed by Chuong and Fung (1986), in which a short
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length of artery in the form of a ring is cut radially. The
ring springs open to form an open sector, thus indicating the
presence of a compressive circumferential stress in the inner
part of the wall of the ring and a tensile circumferential stress
in the outer part. The studies by Han and Fung (1996) and by
Liu and Fung (1989) suggest that most of the residual stress is
released by a single cut. In contrast, Vossoughi et al. (1993),
Greenwald et al. (1997), and Schulze-Bauer et al. (2002)
have shown that a single cut is not sufficient to relieve all
the residual stress in arterial walls. Residual stresses have an
important influence on the mechanical response of the artery
under physiological conditions. It is believed that residual
stress tends to reduce the stress concentration at the inner
arterial wall (Chuong and Fung 1986), and it has been spec-
ulated that residual stresses are distributed so that the stress
distributions across the arterial wall layers are more uniform
at physiological pressures (Rachev and Greenwald 2003).

Finite strain and stress analyses of the left ventricular wall
can further our understanding of the heart in health and dis-
ease. Despite extensive studies of residual stress in arteries,
there have been relatively few studies on residual stress and
strain in the myocardium. Residual stresses could have an
influence on the dynamics of the left ventricle (LV) and on
transmural stress and strain distributions. To date, however,
most ventricular mechanics models have assumed that the
unloaded configuration is a stress-free configuration (Mirsky
1973; Demiray 1976a,b; Bovendeerd et al. 1994; Wang et al.
2013). Indeed, it is an ongoing challenge to recover residual
stress in myocardial tissues both theoretically and experi-
mentally.

Omens and Fung (1990) studied residual strains in rat LV
by measuring the opening angles of equatorial LV slices.
They discovered that equatorial rings opened into arcs with
a mean opening angle of about 45◦. Once ischaemic con-
tracture had set in, they observed a continual increase in the
opening angle, up to approximately 180◦, that was associ-
ated with a dramatic increase in specimen stiffness. Residual
strains were found to be negative (compressive) in the endo-
cardium and positive (tensile) in the epicardium. Rodriguez
et al. (1993) studied the effects of residual stress on the
transmural sarcomere length (SL) distributions in the equa-
torial region of the rat LV. Upon comparing the distribu-
tions of SL between the unloaded but residually stressed
state and the stress-free state, they found that the SL was
uniform across the wall in the stress-free state; however, in
intact tissue, there was a significant decrease in SL from epi-
cardium to endocardium. This gradient is believed to offset
the opposing gradient in sarcomere extension during filling,
thus leading to a more uniform transmural distribution of
SL at end diastole and hence more uniform development of
systolic force. Summerour et al. (1998) used the opening
angle method to estimate residual strains in equatorial slices
of normal and ischaemic rat LV. They did not observe obvi-

ous differences in the residual stress distributions between
normal and ischaemic myocardium. Costa et al. (1997) per-
formed in vitro experiments using biplane radiography in
which columns of beads implanted in the mid-anterior free
wall of the canine LV determined transmural distributions
of the three-dimensional residual strains. To date, no experi-
mental studies have been reported on the residual stress and
strain distributions in human myocardium.

Using analytical and numerical modelling, Guccione et al.
(1991) studied the passive mechanics of the canine LV using a
thick-walled cylindrical LV model in which the myocardium
is treated as an incompressible hyperelastic material. They
further assumed that the LV is transversely isotropic and may
be described by a four-parameter Fung-type model and that
the residual stress is isotropic. They looked at the effects of
residual strain and stress on the circumferential stress distri-
butions when using opening angles. Nevo and Lanir (1994)
carried out a similar study on the influence of residual strain
on the diastolic function of the LV using a structural model.
Nash (1998) assumed an initial strain field based on the exper-
imental data of Omens and Fung (1990) and used the finite
element method and the pole-zero constitutive law (Hunter et
al. 1997) to develop an anatomically accurate mathematical
model of canine LV. Their computational results, which cov-
ered the whole cardiac cycle, showed that the effects of resid-
ual strain in the LV are small. Guccione et al. (2001) also used
the finite element method to estimate residual stresses during
ventricular volume reduction surgery. When they evaluated
the impact of the residual stress on ventricular function, they
also found that the effects of these stresses are small. Taber
(1991) simulated the beating left ventricle using a nonlinear
laminated thick-shell model with residual strains and dis-
covered that the residual strains in the LV significantly affect
the peak fibre stress and transmural stress gradients near the
beginning of systole. Because of the transmural changes in
fibre orientation in the LV, these effects are not as large as
they are in arteries.

Although most studies on the role of residual stresses in
the LV myocardium suggest that the effects of these stresses
are smaller than those in arteries, mathematically, it is appro-
priate to evaluate the actual stress with residual stress contri-
bution included. In addition, accounting for residual stresses
may be important in models that describe tissue growth and
remodelling because the growth and remodelling processes
may themselves act to set up and to maintain residual stresses.
Recently, Holzapfel and Ogden (2009) proposed a structure-
based constitutive model of ventricular myocardium that
accounts for the locally orthotropic tissue microstructure by
expressing the strain-energy function using fibre-based mate-
rial invariants. In the incompressible case, their strain-energy
function has eight material parameters with relatively clear
physical meanings. Moreover, this model satisfies convex-
ity and strong ellipticity properties that are important both
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mathematically and physically. In this work, we adopt the
approach of Shams et al. (2011), who describe a general
invariant-based method for incorporating residual stresses
into hyperelastic material models, to extend the Holzapfel-
Ogden constitutive law to account for residual stresses.

In previous work, we developed a three-dimensional com-
putational model of the human LV that is derived from non-
invasive magnetic resonance imaging (MRI) data (Wang et
al. 2013). This anatomically realistic model has a rule-based
fibre structure and, in our earlier study, used the original
structure-based constitutive model of Holzapfel and Ogden
(2009) (i.e. without residual stresses). In this work, we use
the method introduced by Shams et al. (2011) to modify the
Holzapfel-Ogden law so that the residual stresses are taken
into account. This constitutive model, along with our MRI-
based anatomic model, is then used to investigate the influ-
ence of residual stress on the mechanical behaviour of the
LV in diastole.

2 Constitutive laws for the passive myocardium

2.1 Constitutive law based on stress-free configuration

Consider a continuum body with stress-free configuration
B0 ⊂ R

3, residually stressed and unloaded configuration
Br ⊂ R

3, and current configuration Bt ⊂ R
3, as shown in

Fig. 1. These configurations are related by a time-dependent
mapping χ0 : B0 ×[0, T ] → Bt , and χ : Br ×[0, T ] → Bt .
Let X0 denote coordinates in the configuration B0, X denote
coordinates in the configuration Br , and x denote coordinates
in the current configuration Bt . If the residual stress is zero,
then Br = B0, χ = χ0, and the deformation gradient tensor
associated with the motion x = χ(X, t) is F = ∂χ/∂X =
∂χ0/∂X0.

Fig. 1 Schematic of the relationships between the stress-free refer-
ence configuration B0, the residually stressed configuration Br , and the
deformed configuration Bt , showing the connecting deformation gradi-
ents F0, F−1

0 , and F

We treat the LV myocardium as a non-homogeneous, non-
linear, incompressible, and hyperelastic material. The con-
stitutive model is described in terms of invariants of the right
Cauchy–Green deformation tensor C = FT F,

I1 = tr(C), I2 = 1

2
[I1

2 − tr (C2)], I3 = det(C), (1)

along with other invariants that are defined below. Because
we model the ventricular myocardium as an incompressible
material, J = det F = 1, and, hence, I3 = 1.

The orthotropic structure of the LV myocardium is
described in the model in terms of the fibre axis f0, the sheet
(cross-fibre) axis s0, and the sheet–normal axis n0 = f0 × s0,
as shown in Fig. 2. Using these material axes, additional
quasi-invariants can be defined to characterize the material
response in these preferred directions (Spencer 1984). In this
work, we follow Holzapfel and Ogden (2009) by introducing
the fibre, sheet, and fibre–sheet invariants,

I4f = f0 · (Cf0), I4s = s0 · (Cs0), I4fs = f0 · (Cs0), (2)

and write the structure-based strain-energy function W =
W (I1, I4f, I4s, I4fs) as

W = a

2b
exp[b(I1 − 3)]

+
∑

i=f,s

ai

2bi
{exp[bi (I4i − 1)2] − 1}

+ afs

2bfs
{exp[bfs(I4fs)

2] − 1}, (3)

in which a, b, ai , and bi (i = f, s, and fs) are eight
non-negative material parameters. The term I4fs plays the
same role as the quantity denoted I8fs by Holzapfel and
Ogden (Holzapfel and Ogden 2009). This is because a quan-
tity denoted I8 will be used below in defining the residual
stress state. The first term in (3) is a Fung-type expression that
corresponds to the contributions to the strain-energy func-
tion of an isotropic ground matrix material. The remaining
terms correspond to the contributions of the cardiac myocytes

Fig. 2 Local coordinate axes of the left ventricle, in which (f0, s0, n0)

are the fibre, sheet, and sheet–normal axes, as detailed in the right
insert (taken from Holzapfel and Ogden (2009)) and described in the
text
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and families of collagen fibres embedded within the tissue.
Because we assume that the fibres support only extension
and not compression, the terms involving I4i for i = f and s
are included in the total energy only if I4i > 1.

For an incompressible material, the Cauchy stress tensor
can be derived from (3):

σ = −pI + F
∑

i=1,4f,4s,4fs

∂W

∂ Ii

∂ Ii

∂F

= −pI + a exp[b(I1 − 3)]B
+2af(I4f − 1) exp[bf(I4f − 1)2]f ⊗ f

+2as(I4s − 1) exp[bs(I4s − 1)2]s ⊗ s

+afs I4fs exp[bfs(I4fs)
2](f ⊗ s + s ⊗ f), (4)

in which p is a Lagrange multiplier introduced to enforce
incompressibility, I is the identity tensor, B = FFT is the
left Cauchy–Green deformation tensor, and f = Ff0 and
s = Fs0 are the fibre and sheet axes in the current (deformed)
configuration, respectively.

2.2 Constitutive law for the residually stressed myocardium

To describe the constitutive law for the residually stressed
myocardium, we choose Br as the reference configuration.
Any subsequent deformation of the body is measured from
Br , and we assume that there is an initial Cauchy stress τ in
this configuration.1 If the traction on the boundary ∂ Br of Br

vanishes, then τ is referred to as the residual stress, which
is necessarily non-uniform and symmetric and satisfies the
equilibrium equation (Johnson and Hoger 1995; Shams et al.
2011):

Div(τ ) = 0. (5)

For the myocardium, we propose that the strain-energy func-
tion W and Cauchy stress σ depend on the residual stress τ

as well as Ii (i = 1, 4f, 4s, 4fs), namely

W = W (F, τ ), (6)

σ = F
∂W

∂F
(F, τ ) − pI. (7)

Following Shams et al. (2011), we introduce the additional
invariants

I6 = tr(τC), I7 = tr(τC2),

I8 = tr(τ 2C), and I9 = tr(τ 2C2) (8)

that depend on both C and τ . For simplicity, we do not include
invariants that involve τ , C, and the fibre directions that are
included in the general theory by Ogden and Singh (2011).
The Cauchy stress tensor is now (Shams et al. 2011)

1 We use the terms initial stress and residual stress interchangeably,
which is in line with the definition used by Biot and Romain (1965).

σ = −pI + F
∑

i

∂W

∂ Ii

∂ Ii

∂F

= −pI + a exp[b(I1 − 3)]B
+2af(I4f − 1) exp[bf(I4f − 1)2]f ⊗ f

+2as(I4s − 1) exp[bs(I4s − 1)2]s ⊗ s

+afs I4fs exp[bfs(I4fs)
2](f ⊗ s + s ⊗ f)

+2W6� + 2W7(�B + B�) + 2W8�B−1�

+2W9(�B−1�B + B�B−1�), (9)

in which Wi = ∂W
∂ Ii

(i = 1, 4f, 4s, 4fs, 6, 7, 8, 9), and � =
FτFT .

Notice that in the unloaded but residually stressed config-
uration Br , F = I, and

B = I, I1 = 3, I4f = I4s = 1, I4fs = 0,

� = τ , I6 = I7 = tr(τ ), I8 = I9 = tr(τ 2),

and hence σ in (7) reduces to τ , i.e.,

τ = ∂W

∂F
(I, τ ) − p(r)

I, (10)

in which p(r) is the value of p in Br . Consequently, (9)
becomes

τ = (a − p(r))I + 2(W6 + 2W7)τ + 2(W8 + 2W9)τ
2, (11)

where all Wi are evaluated at the unloaded configuration, Br .
This indicates that

2W1 = p(r) = a, 2(W6 + 2W7)=1, W8+2W9 =0, (12)

in Br .
Notice that (11) tells us nothing about the specific form

of τ , which could arise through various routes, including
residual strain with respect to the zero-stress configuration,
and which could possibly be determined by a constitutive
law that is different from (3).

In the simple approach to including residual stresses, we
consider small strains, so that B ≈ I. Hence, �B ≈ � and
B� ≈ � in (9). Consequently, we include only the W6 term.
For simplicity, we also assume that W6 is constant. Then,
for consistency with (12)2, W6 = 1/2. Under these assump-
tions along with (12), the modified strain-energy function W
becomes

W = W (I1, I4f, I4s, I4fs, I6)

= a

2b
exp[b(I1 − 3)]

+
∑

i=f,s

ai

2bi
{exp[bi (I4i − 1)2] − 1}

+ afs

2bfs
{exp[bfs(I4fs)

2] − 1} + 1

2
I6. (13)
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In the extended approach, we also specifically include the
term 2W7(�B+B�) in (9), assuming W7 is constant. Similar
to the simple approach, consistency with (12)2 requires W6 =
1/4 and W7 = 1/8. The strain-energy function W is

W = W (I1, I4f, I4s, I4fs, I6, I7)

= a

2b
exp[b(I1 − 3)]

+
∑

i=f,s

ai

2bi
{exp[bi (I4i − 1)2] − 1}

+ afs

2bfs
{exp[bfs(I4fs)

2] − 1} + 1

4
I6 + 1

8
I7. (14)

We remark that adding the residual stress in these approaches
does not introduce any extra material parameters. The next
level of sophistication is to consider all terms, including I8

and I9, in (11); however, as we shall see below, this becomes
unnecessary as the residual stress is small. For the simple
approach, the Cauchy stress tensor is:

σ = −pI + a exp[b(I1 − 3)]B
+2af(I4f − 1) exp[bf(I4f − 1)2]f ⊗ f

+2as(I4s − 1) exp[bs(I4s − 1)2]s ⊗ s

+afs I4fs exp[bfs(I4fs)
2](f ⊗ s + s ⊗ f) + �. (15)

For the extended approach, the Cauchy stress tensor is:

σ = −pI + a exp[b(I3)]B
+2af(I4f − 1) exp[bf(I4f − 1)2]f ⊗ f

+2as(I4s − 1) exp[bs(I4s − 1)2]s ⊗ s

+afs I4fs exp[bfs(I4fs)
2](f ⊗ s + s ⊗ f)

+1

2
� + 1

4
(�B + B�), (16)

in which we emphasize that here we also include the addi-
tional terms 2W7(�B + B�) in (9).

We now simplify the strain-energy function further by
using the empirical fact that shear components of the residual
stress are negligible in the local coordinate system (f0, s0,
and n0), as suggested by Costa’s measurements on canine
LV (Costa et al. 1997), also shown below. Hence, the resid-
ual stress-related invariants I6 and I7 may be represented by
the existing invariants in the Holzapfel and Ogden model
(Holzapfel and Ogden 2009). This is because if the resid-
ual stress components τff, τss, and τnn are in the principal
directions, then we can write

I6 = tr(τC) = τss I4s + τff I4f + τnn I4n, (17)

in which I4n is the I4 invariant associated with the sheet–
normal direction. We can also write

I7 = tr(τC2) = τss I5s + τff I5f + τnn I5n, (18)

in which I5s = s0 ·(C2s0) and similarly for I5f and I5n. Since

I1 = tr(C) = I4s + I4f + I4n, (19)

we can also write

I6 = τnn I1 + (τff − τnn)I4f + (τss − τnn)I4s. (20)

Hence, we can simply use a modified Holzapfel-Ogden
model for a residually stressed myocardium. In the simpler
approach, this is

W = a

2b
exp[b(I1 − 3)]

+
∑

i=f,s

ai

2bi
{exp[bi (I4i − 1)2] − 1}

+ afs

2bfs
{exp[bfs(I4fs)

2] − 1}

+τnn

2
I1 + (τff − τnn)

2
I4f + (τss − τnn)

2
I4s, (21)

in which τi i for i = f, s, and n are functions of X ∈ Br . The
modified model for the extended approach can be similarly
derived, in which I5i (i = f, s, and n) may be written in terms
of I4i and I4i j for i, j = f, s, and n (Holzapfel and Ogden
2009).

In our computations, we choose the eight constitutive
parameters to be those of Wang et al. (2013), who fit the
parameters of the Holzapfel and Ogden (2009) model to the
experimental data of Dokos et al. (2002). These parameters
are shown in Table 1. The initial Cauchy stresses are deter-
mined presently.

2.3 Estimate of the residual stress

It is important to note that the zero-stressed reference con-
figuration B0 defined here is fictitious, as the deformations
inducing residual stresses are probably not compatible, and
probably involve microscopic phenomena such as cell rota-
tions. In particular, residual stresses likely arise from motions
that cannot be described within the standard framework of
continuum mechanics. With this in mind, we propose two
methods to estimate the residual stress for the LV in Br

with respect to B0. (The method used to determine the
unloaded configuration Br is described below in Sect. 2.5.)
One approach to estimating the residual stress is to use the
measured residual strain field of Costa et al. (1997), and the
other is to use the opening angle method.

Table 1 The material parameters from Wang et al. (2013)

a (kPa) b af (kPa) bf as (kPa) bs afs (kPa) bfs

0.236 10.81 20.04 14.15 3.72 5.16 0.41 11.3
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2.3.1 Residual stress estimated from data of Costa et al.
(1997)

Non-homogeneous three-dimensional residual strains in the
mid-anterior part of canine left ventricle measured by
Costa et al. (1997) are shown in Fig. 3. In the unloaded
but residually stressed configuration Br , the Euler–Almansi
strain tensor (relative to the stress-free configuration B0) is
denoted by e0. If the deformation gradient from the stress-
free configuration B0 to the unloaded and residually stressed
configuration Br is F0, and the deformation gradient from Br

to B0 is F−1
0 , as shown in Fig. 1, then the left Cauchy–Green

tensor, say B(r), is

B(r) = F0FT
0 = (I − 2e0)

−1. (22)

Notice that B(r) is generally different from B. Specifically
B = I in Br , but generally B(r) �= I.

We further assume that the fibres are relaxed in the
unloaded but residually stressed configuration Br . Indeed,
there is experimental evidence that the collagen fibres are
coiled and wavy in their unloaded state in arteries (Clark
and Glagov 1985; Dingemans et al. 2000). By considering
the deformation from B0 to Br , we calculate the residual
stresses using the isotropic part of (3):

Ŵ (I (r)
1 ) = a

2b
exp[b(I (r)

1 − 3)], (23)

in which I (r)
1 = tr(B(r)). Then,

τ = F0
∂Ŵ

∂F0
(F0) − p(r)

I

= a exp[b(I (r)
1 − 3)]B(r) − p(r)

I, (24)

Fig. 3 Three-dimensional residual strain distribution, replotted from
the experimental measurements on canine LV by Costa et al. (1997)

with

p(r) = 2W1 = a (25)

from (12)1. Using Eqs. (22)–(24), with the help of (25), we
can completely determine the residual stress tensor.

Note the residual strain generated from this method is
not compatible because the average strain components were
used. In addition, the experimental data are only from along
the mid-anterior free wall of the canine LV. The residual stress
tensor thus constructed is only suited for a cylindrical section
of the LV.

2.3.2 Residual stress estimated by the opening angle
method

Residual stress may be determined by the opening angle
method (Guccione et al. 1991; Rachev and Greenwald 2003;
Alastrué et al. 2008). Here, we approximate the LV as a cylin-
drical tube, Ωcl, and assume that the residual stress can be
released by a radial cut and that the corresponding compat-
ible stress-free configuration is an opened cylindrical sector
Ωop with opening angle α, as shown in Fig. 4.

The opened cylinder is defined in the cylindrical coordi-
nate system with unit vectors (ER, EΘ, EZ ) as

Ri ≤ R ≤ Ro, 0 ≤ Θ ≤ (2π − α), 0 ≤ Z ≤ L , (26)

in which Ri, Ro, and L denote the inner and outer radii and
the length of the ring in the stress-free configuration, respec-
tively. The closed cylinder is defined in the cylindrical coor-
dinate system (er , eθ , ez) as

ri ≤ r ≤ ro, 0 ≤ θ ≤ 2π, 0 ≤ z ≤ l, (27)

in which ri, ro, and l denote the inner and outer radii and
the length of the ring, respectively, in the Ωcl configuration.
The expressions that determine the values for these parame-
ters are

Fig. 4 a The stress-free configuration after a radial cut, and b the
unloaded cylindrical tube with residual stress (sketch taken from
Alastrué et al. (2008))
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Modified Holzapfel-Ogden law for a residually stressed human LV model in diastole 105

r =
√

R2−R2
i

κλz
+r2

i , θ =κΘ, z =λz, κ =2π/(2π−α), (28)

in which λz is the axial stretch, which is assumed to be
constant. The parameter κ is a measure of the opening
angle.

From the incompressibility constraint, we have that
λrλθλz = 1, which allows us to express the other two
principal stretches in cylindrical coordinates as functions of
κ and r ,

λr (R) = ∂r

∂ R
= R

rκλz
, λθ (R) = r

R

∂θ

∂Θ
= κr

R
. (29)

Ignoring end effects, the only non-trivial equilibrium equa-
tion in the cylindrical coordinate system (er , eθ , ez) is

dτrr

dr
+ τrr − τθθ

r
= 0, (30)

with boundary conditions

τrr = 0, for r = ri and r = ro. (31)

Integrating (30) gives

τrr =
r∫

ro

τθθ − τrr

r
dr (32)

For given values of α, Ri, Ro, and λz , and with the help of
(24), we can solve for the circumferential stress τθθ , radial
stress τrr , and longitudinal stress τzz . Since the shear com-
ponents are all zero, this gives us the residual stress tensor τ

in the cylindrical coordinate system (er , eθ , ez). The residual
stress tensor τ in the fibre coordinate system (f0, s0, n0) is
obtained via

τ = QT τQ, (33)

in which Q is the rotation connecting the two coordi-
nate systems. The shear components in the fibre coordi-
nate system are small but non-zero. We assume that these
are negligible, however, in view of the experimental data
(Costa et al. 1997).

2.4 The finite element model

The geometry of the human LV model is derived from MR
imaging of a healthy volunteer (male, age 28) acquired at
the end of diastole, which is identified by the peak of the R-
wave from the subject’s ECG. The computational approach
that we adopt to model the passive mechanics of the LV
is based on the classical pressure-dilatation-displacement
three-field formulation commonly used to overcome locking

problems exhibited by purely displacement-based finite ele-
ment formulations of incompressible elasticity. We use the
decoupled volumetric-isochoric formulation of finite elastic-
ity and decompose the strain-energy function into volumetric
and isochoric parts, with the incompressibility ensured using
a Lagrange multiplier method. Detailed descriptions of the
generation of the geometry and fibre structure, as well as the
finite element procedure, were described previously (Wang
et al. 2013). The LV model is discretized with 48,050 hexahe-
dral elements and 53,548 nodes. Validations using different
meshes and elements were performed in our previous work
(Wang et al. 2013).

To constrain the motion of the model, the longitudi-
nal displacement of the base and the circumferential dis-
placement of the epicardial wall at the base are set to
zero. The remainder of the left ventricular wall, includ-
ing the apex, is left free. A pressure load, generally vary-
ing from 0 to 8 mmHg, is applied on the endocardial
surface. Such loads are typical physiological end-diastolic
pressures.

2.5 The unloaded configuration

An essential requirement of the finite strain model is an
unloaded reference geometry. Since the end-diastolic pres-
sure is not zero, this requires the determination of unloaded
reference geometries that are different from the imaged
ones (Walker et al. 2005; Sermesant and Razavi 2010).
For this purpose, we use an inverse displacement algo-
rithm (Bols et al. 2011), which is especially easy to imple-
ment within a finite element framework. Other similar
methods to determining the unloaded geometry include
methods that compute a multiplicative decomposition of
the deformation gradient tensor (Rodriguez et al. 1994;
Aguado-Sierra et al. 2011). The objective of the itera-
tive scheme is to find the unloaded reference geometry
that minimizes the difference between the measured end-
diastolic geometry and the computed geometry when the
unloaded model is inflated to the measured end-diastolic
pressures.

The basic procedure is as follows. In the first step,
the imaging-derived end-diastolic model is treated as an
unloaded reference state and inflated to an end-diastolic LV
pressure. An approximation to the inverse of the resulting
deformation is then applied to the imaged end-diastolic mesh
using a backward-displacement method, thereby yielding
a new unloaded reference configuration. This procedure is
repeated until convergence is achieved. For further details,
see Bols et al. (2011). This procedure converged to within
2.7 % of the measured chamber volumes in six iterations.
The maximum displacement between the computed and mea-
sured end-diastolic geometries is about 0.15 mm. The finite
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Fig. 5 a The imaged end-diastole configuration at a loading pressure
8 mmHg, and b the unloaded configuration determined by an inverse
displacement analysis

Fig. 6 The “cylindrical region” of the LV, where residual stress is con-
sidered. Residual stresses are not included near the apex

element meshes based on MR images at the end-diastolic
and estimated unloaded configurations are shown in Fig. 5.
Because it is difficult to keep track of the fibre structure during
these iterations, a new rule-based fibre structure is generated
for the finite element mesh in each newly generated reference
configuration.

The parameters are chosen to be: α = 85◦, along with
Ri = 2.5 cm, Ro = 4.2 cm, and λz = 1.

2.6 Finite strain in the LV model with residual stress

Because the residual stress tensor is estimated from limited
experimental data or from the opening angle method for a
cylinder, we are only able to consider the residual stress
in the “cylindrical region” of the LV geometry shown in
Fig. 6. To compute the total stress under external loading,
we choose the rule-based fibre structure with the fibre angle
changing from −60◦ to +60◦, and the sheet angle from −45◦
to +45◦, as used by Wang et al. (2013). We consider two
loading pressures: 3 mmHg (early diastole) and 8 mmHg
(late diastole).

Fig. 7 The transmural residual stress along the mid-anterior free wall
of the LV model at approximately two-third the distance from base to
apex, using Costa’s residual strain data

3 Results

3.1 Residual stress estimates

3.1.1 Residual stress from Costa’s residual strain
measurements

Using (23) and (24), we can compute the transmural dis-
tributions of the residual stress along the mid-anterior free
wall at approximately two-thirds the distance from base to
apex. Figure 7 shows that the residual stress τff is slightly
compressive on the endocardial surface and tensile near the
epicardial surface. This agrees with the result for residual
stresses in arteries (Liu and Fung 1989; Han and Fung 1996).
The overall magnitude of the residual stress components is
not large, which has also been observed previously (Guc-
cione et al. 1991; Nash 1998). In particular, we observe
that all the shear components are negligible, and hence
τff, τss, and τnn can be considered as the principal residual
stresses.

3.1.2 Residual stresses by the opening angle method

For comparison, we use an opening angle α = 85◦ in the
following computations. The transmural distributions of the
residual stress components are shown in Fig. 8. Results from
both the opening angle method and the Costa measurements
are in good qualitative agreement with the results of previous
research (Guccione et al. 1991; Taber 1991) in that there is an
increased residual stress that is tensile near the sub-epicardial
wall, and increased compression near the endocardium. This
residually stressed configuration helps the LV wall to cope
with the physiological pressure loading. However, the open-
ing angle method seems to underestimate significantly the
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Fig. 8 Transmural distributions of the residual stress estimated using
the opening angle method in the unloaded configuration for an opening
angle of 85◦

residual stress in the LV; it has been reported that the mean
opening angle in the rat LV is about 45◦ (Omens and Fung
1990), whereas we found the opening angle method can only
predict a residual strain comparable in magnitude to the mea-
surement by Costa et al. (1997) when the opening angle is
increased to 85◦. This suggests that the residual stress within
the LV may not be released by a single cut and that 3D
measurements are necessary to provide accurate estimate for
residual strains. We also observe that the shear components
are non-zero when using the opening angle method, but these
are much smaller than the normal components as shown in
Fig. 8 and hence can be neglected.

3.1.3 Early diastole

Using data from Costa et al. (1997), we show the vertical dis-
placement with and without the residual stress and their dif-
ference in Fig. 9. The average difference is −0.05±0.05 mm,
indicating the effect of the residual stress is to shorten the
long axis slightly. The three-dimensional distributions of the
fibre stress σff in the LV from the model with and without
residual stress are shown in Fig. 10. Notice that the distribu-
tions obtained with and without residual stresses are similar.
Notice also that Fig. 10d shows that for most of the epicardial
region, including residual stresses increases σff.

The transmural distribution of the fibre stress along
one mid-ventricular path is shown in Fig. 11; the path is
shown in Fig. 9a. The residual stress mainly affects σff

in the sub-epicardial region (28 % increase at the epicar-
dial surface), whereas for σss and σnn, the effect of resid-
ual stress is to increase the stresses in the sub-epicardial
region and to decrease the stresses in the sub-endocardial
region.

Results obtained by the opening angle method are similar
and are shown in Fig. 12. The transmural stress distribution
along the mid-ventricle path is shown in Fig. 13.

Table 2 summarizes the mean stress components σff, σss,
and σnn at the endocardial and epicardial surfaces with and
without the residual stresses. To help to interpret these results,
the differences of these stress components obtained with and
without including residual stresses are also shown. It is more
evident from the opening angle method that the residual stress
seems to increase stress in the epicardial surface and decrease
it in the endocardial surface. The averages of σff, σss, and σnn

are decreased by 6 %, 6 %, and 27 % along the endocardial
surface, respectively, and increased by 7 %, 50 %, and 45 %
along the epicardial surface, respectively.

Both the direct strain measurement and the opening angle
method show that there are some non-negligible differences
in the stress distribution when residual stress is included, par-
ticularly near the epicardial region. As discovered by Guc-
cione et al. (1991), Taber (1991), Nash (1998), and others,
residual stress tends to reduce the total stress in the sub-
endocardium and to increase the stress in the sub-epicardium,
therefore releasing the stretch of SL during loading. This is
particularly evident for the residual stress resulting from the
opening angle method, as in Fig. 12. The results also demon-
strate that both methods of estimating the residual stress give
quantitatively similar results.

To see whether the simpler approach (i.e. considering
only the I6 term in the strain-energy function with resid-
ual stresses) is sufficiently accurate for these analyses, we
also compare the results obtained by the simple approach
to results obtained by the extended approach (i.e. in which
the effects of the I7 term are also included). Comparisons
between the two approaches are shown in Figs. 11 and 13.
It is clear that the results from both approaches are almost
identical. We conclude that the simpler model is sufficient
for this case.

3.1.4 Late diastole

The transmural distribution of the stress along the mid-
ventricular path obtained when the endocardial loading pres-
sure is increased to 8 mmHg is shown in Fig. 14 for residual
stresses obtained from the Costa data and in Fig. 15 for resid-
ual stresses obtained by the opening angle method. These
results show that the overall impact of the residual stress is
similar to that of early diastolic pressure loads, but in this
case, the net effect of the residual stresses is reduced. Dif-
ferences between the results from the Costa data and the
opening angle method are somewhat greater in late diastole
as compared to early diastole. However, because both meth-
ods involve significant simplifications for the LV model, we
do not further discuss these differences. These results are
included mainly to demonstrate that including residual stress
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Fig. 9 The three-dimensional distribution of the vertical displacement
in the LV for the model with residual stress (a), without residual stress
(b), and their difference (c). The simpler approach to incorporating

residual stresses is used to obtain these results. Notice that the path over
which stresses are displayed in subsequent figures is shown in panel (a)

Fig. 10 The fibre stress σff for the model with residual stress from the
Costa data (a); similar to (a), but here without residual stress (b); the
region in which the difference between (a) and (b) is negative (c); similar
to (c), but here showing the region where the difference is positive (d);
the region where the difference between σss with and without residual
stress is negative (e); similar to (e), but here showing the region where

the difference is positive (f); the region where the difference between
σnn with and without residual stress is negative (g); and similar to (g),
but here showing the region where the difference is positive (h). The
simpler approach to incorporating residual stresses is used to obtain
these results

could change the total stress in the physiologically loaded
state.

3.1.5 Pressure–volume relations

Finally, we determine the end-diastolic pressure–volume
relation with and without the residual stresses. Results are
shown in Fig. 16. We find that the pressure–volume curve
seems not to be affected by the presence of the residual
stress. This agrees with the modelling prediction of Taber

(1991), as well as measurements of Klotz et al. (2006),
who also confirmed that the influence of the residual stress
on the pressure–volume curve is negligible. This is not
surprising, because classical measurements like P–V loops
are often less sensitive to detailed mechanical changes.
A similar finding was reported by Eriksson et al. (2012),
who found that the non-negligible role of heterogeneity
in structural fibre/sheet orthotropy is not reflected in the
P–V curves generated by models with or without heterogene-
ity.
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Fig. 11 Transmural distribution of Cauchy stress components along
path 1 shown in Fig. 9a for a σff, b σss, and c σnn. Solid curves indi-
cate the total stress with the residual stress estimated from the data of
Costa et al. (1997) using the simple approach to incorporating residual

strains, using the extended approach (marked with circles), and without
residual stress (dashed). In these simulations, the endocardial loading
pressure is 3 mmHg

Fig. 12 Similar to Fig. 10, but here using the opening angle method to determine the residual stresses

Fig. 13 Similar to Fig. 11, but here using the opening angle method to determine the residual stresses
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Table 2 Stress means and
standard deviations along the
endocardial and epicardial
surfaces at an endocardial
loading pressure of 3 mmHg

σff (kPa) σss (kPa) σnn (kPa)

Endocardial surface

Without τ 2.9 ± 1.6 −0.33 ± 0.32 −0.15 ± 0.35

With τ (Costa et al. data) 2.9 ± 1.6 −0.34 ± 0.31 −0.17 ± 0.35

With τ (opening angle) 2.8 ± 1.5 −0.35 ± 0.30 −0.20 ± 0.35

Difference (Costa et al. data) −0.01 ± 0.07 −0.004 ± 0.01 −0.01 ± 0.02

Difference (opening angle) −0.16 ± 0.15 −0.02 ± 0.05 −0.04 ± 0.06

Epicardial surface

Without τ 1.23 ± 0.77 0.04 ± 0.08 0.11 ± 0.13

With τ (Costa et al. data) 1.28 ± 0.8 0.04 ± 0.08 0.11 ± 0.13

With τ (opening angle) 1.31 ± 0.8 0.06 ± 0.08 0.16 ± 0.14

Difference (Costa et al. data) 0.05 ± 0.09 0.0 ± 0.02 0.0 ± 0.02

Difference (opening angle) 0.08 ± 0.11 0.02 ± 0.03 0.05 ± 0.04

Fig. 14 Transmural distributions of the Cauchy stress components for
a σff, b σss, and c σnn along the mid-ventricular path at an endocardial
pressure of 8 mmHg. The solid curves show the total stress including

the residual stress estimated from the Costa data, and the dashed curves
exclude the residual stress. Only the simpler approach is used

Fig. 15 Similar to Fig. 14, but here using the opening angle method to determine the residual stresses

4 Discussion

We have modelled the effects of residual stresses on LV
mechanics using a modified Holzapfel-Ogden model. Appli-

cations of this model show that the residual stress in the
human LV could make non-negligible changes in the stress
distributions at physiological pressures in diastole. Since esti-
mates of the residual stress are necessarily limited by the lack
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Fig. 16 The normalized pressure–volume curves with and without
residual stresses. All of these agree well with the experimental mea-
surements by Klotz et al. (2006)

Fig. 17 Transmural distributions of the residual stress in the unloaded
configuration, in which the residual stress is estimated from the strain
measured by Costa et al. (1997) and the full orthotropic Holzapfel-
Ogden model

of three-dimensional strain data in the LV, the results pre-
sented herein are therefore primarily illustrative, and may
not give the full scale of the impact of residual stress in the
LV. With the given assumptions, however, we have not found
any changes in the pressure–volume curve in diastole when
incorporating residual stresses into our model.

In the foregoing, we have assumed that the residual stress
behavior is governed by the isotropic matrix, which may be a
point of debate. To evaluate the impact of this assumption on
the determined residual strains and stress distributions upon
endocardial pressure loading, we also perform similar com-
putations, but now employing the full orthotropic Holzapfel-
Ogden model to evaluate the residual stress. Results are
shown in Figs. 17 and 18. These data show that the sub-
epicardial fibre stress is even greater if we use the full

Fig. 18 The transmural fibre stress distribution at an endocardial pres-
sure load of 3 mmHg (a) and 8 mmHg (b). Here, A is the curve with
residual stress estimated from the anisotropic model, B is without the
residual stress, and C is with the isotropic model. In all computations,
the simpler approach is used

anisotropic model. Hence, the impact of using a different con-
stitutive model for residual stress could be significant. This
poses further research challenges concerning the choice of
the most suitable constitutive law for evaluating the residual
stress, probably at the microscopic level. However, we note
that, as before, the pressure–volume curve is not affected by
the residual stress if we use the anisotropic model (data not
shown).

In determining the unloaded configuration, we have made
two further assumptions. One is that the unloaded configura-
tion is in equilibrium with the addition of the residual stresses
obtained from limited experimental data or by simplified
opening angle methods. In practice, the residual stresses com-
puted by either approach do not strictly satisfy the condition
(5), and hence the addition of residual strains results in a
shift in the unloaded configuration. It may be important to
determine the unloaded configuration and the residual stress
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distributions simultaneously; however, doing so is beyond
the scope of the present work. In addition, because we have
access only to limited experimental data on residual stresses
or strains, it is not clear that the significant additional effort
required to determine the unloaded configuration and resid-
ual stress states simultaneously is well justified. The other
assumption is that the fibre structure may be regenerated
using the rule-based algorithm in the unloaded configuration.
This last assumption is made because it is difficult to track the
fibre structure during the inverse analysis; regenerating the
fibre structure simplifies the implementation significantly.

In an effort to find the simplest way to include the
residual stresses, we have shown that residual stress in the
myocardium can be represented accurately by a modified
Holzapfel-Ogden model. This modified model can readily
be applied to similar problems in which the residual stress
tensor has the principal directions in the fibre coordinate sys-
tem. For more general problems, our results suggest that the
contribution from a single I6 term is sufficient to model the
residual stress.

Overall, the residual stress has some effects, particularly
on the fibre stress and cross-fibre stress, although the extent
of this seems to be less significant later in diastole when pres-
sure is higher. However, it does not necessaily follow that the
impact of the residual stress would be further decreased in
systole, when the pressure reaches its peak. This is because
the additional coupling terms of residual stress to larger
strains and fibre directions will come into play, which are
ignored in the present study. When a more general theory
similar to that of Ogden and Singh (2011) is employed, the
effect of the residul stress on the whole cardiac cycle may
be more significant.This may also be the case when more
detailed experimental measurements of residual strain are
available for the whole LV, including the apex. In addition,
we remark that the presence of residual stress may have a
significant impact on myocardial growth and remodelling,
which have not been modelled here. Indeed, the growth and
remodelling processes may themselves act to establish and
to maintain residual stresses.

5 Conclusions

In this paper, we proposed a modified Holzapfel-Ogden
model for the myocardium in diastole which includes a basic
contribution from residual stress. This work follows on the
theoretical framework of Holzapfel and Ogden (2009) and
of Shams et al. (2011). We found that using only one extra
invariant, I6, in the strain-energy function is sufficiently accu-
rate for the finite strain models considered herein. The mod-
ified constitutive model allows the residual stress to be con-
sidered without too much additional computational effort.
Using this constitutive law, we carried out stress and strain

analyses using a MRI-derived human left ventricular model.
The residual stress is applied to the unloaded configuration,
which is determined by an inverse displacement analysis.
Two different methods of estimating the residual strain are
considered. One is from the three-dimensional strain mea-
surements of canine LV, and the other uses the opening angle
method. Each of these methods involves simplifications and
can only estimate the residual stress in the cylindrical section
of the LV, which could underestimates the magnitude of the
true residual stress field inside the LV. Our results show that
even the simplified residual stress representations, in which
the coupling terms with fibre directions are ignored, could
make non-negligible changes in the stress distribution in the
human LV model at physiological pressures in diastole. Fur-
ther experimental data are required to investigate fully the
effects of residual stresses and to determine the most suitable
constitutive laws for capturing the residual strain and stress in
the LV.
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