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Abstract. Although there have been several numerical studies on particle dispersion in mixing layers,
most of them have been conducted for temporally evolving mixing layers. In this study, numerical simula-
tions of a spatially developing mixing layer are performed to investigate particle dispersion under various
conditions. The full compressible Navier–Stokes equations are solved with a high-order compact finite
difference scheme, along with high-order time-integration. Accurate non-reflecting boundary conditions
for the fluid flow are used, and several methods for introducing particles into the computational domain
are tested. The particles are traced using a Lagrangian approach assuming one-way coupling between the
continuous and the dispersed phases. The study focuses on the roles of the large-scale vortex structures
in particle dispersion at low, medium and high Stokes numbers, which highlights the important effects
of interacting vortex structures in nearby regions in the spatially developing mixing layer. The effects of
particles with randomly distributed sizes (or Stokes numbers) are also investigated. Both instantaneous
flow fields and statistical quantities are analyzed, which reveals essential features of particle dispersion
in spatially developing free shear flows, which are different from those observed in temporally develop-
ing flows. The inclusion of the gravity not only modifies the overall dispersion patterns, but also enhances
stream-crossing by particles.

1. Introduction

Understanding the mechanisms of particle movement in free shear flows is very important for many in-
dustrial, environmental and biomedical applications. Examples include: dispersion of diesel and jet engines
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emissions in the atmosphere; medicines dispersed by blood through the vessels; and dust inhaled into hu-
man lungs. All of these problems are related to solid particle dispersion in fluid flows, which often involves
complicated interactions between the dispersed (solid) phase and the continuous (fluid) phase. Depending
on the volume fraction of the dispersed phase, there can be one-way, two-way or four-way coupling. For di-
luted systems (volume fraction < 10−6), only the flow effects on particles are important. For medium particle
concentrations (volume fraction > 10−6), particles will affect the flow field too. For dense particle systems
(volume fraction > 10−3), particle–particle interactions become significant. Even in the simplest case of one-
way coupling, our current understanding is very limited, since different scales of flow motions (e.g. large
scales versus small scales) have different effects on particle transport. If the effects of different particle sizes,
shapes and physical properties are included, the full problem becomes prohibitively complex. Needless to
say, studies in the area inevitably involve considerable simplifications. Free mixing layers have been exten-
sively used as a prototype flow for fundamental studies over the past few decades. Since the early work of
Snyder and Lumley (1971) on the turbulent mixing layer, many experiments have been conducted (e.g. Weis-
brot and Wygnanski, 1988; Wygnanski and Weisbrot, 1988) to study the coherent structures and especially
the pairing processes of plane mixing layers. Direct Numerical Simulation (DNS) is a relatively new tool
but has been successfully used for both temporal (Rogers and Moser, 1992; Moser and Rogers, 1993; Vre-
man et al., 1996) and spatial mixing layers (Stanley and Sarkar, 1997). A comprehensive review on DNS of
single-phase flow and turbulence can be found in Moin and Mahesh (1998).

More recently, DNS on particle dispersion in temporal mixing layers and isotropic turbulence have also
been published. Ling et al. (1998) simulated the particle dispersion in a three-dimensional temporal mixing
layer and obtained the dispersion patterns for particles of different Stokes numbers. Elghobashi and Trues-
dell (1992, 1993) and Truesdell and Elghobashi (1994) simulated particle dispersion in a decaying isotropic
turbulence, and considered the two-way coupling between the particles and the fluid flow, which included
the effects of gravity. Wang and Maxey (1993) calculated the particle motion in a stationary homogeneous
isotropic turbulence. They found that the average settling velocity is increased significantly for particles with
inertial response time and for still-fluid settling velocity comparable with the Kolmogorov scale of turbu-
lence. Marcu et al. (1996) and Marcu and Meiburg (1996) investigated the effects of braid vortices on the
dispersion of particles, and observed that only very low Stokes number particles accumulate at the vortex
center. For moderate values of Stokes numbers, the particles remain trapped on closed trajectories around
the vortex centers, which can be opened by further increasing the Stokes number. Using the database from
particle-laden isotropic turbulent flow simulations, Squires and Eaton (1994) analyzed the influence of par-
ticles on turbulence and found that the balance between entropy production by turbulent vortex stretching
and destruction is disrupted by momentum exchange with the particle cloud.

These studies demonstrated that DNS is capable of revealing detailed mechanisms behind movement, due
to its ability of resolving the whole range of time and length scales. Simulations have been carried out in
idealized isotropic turbulence or temporally developing mixing layers, which are quantitatively and in some
aspects qualitatively different from the more realistic spatially developing shear-layer flows. The latter have
not been sufficiently investigated, partly because of the higher computational cost but more importantly be-
cause of increased complexity in the numerical treatment. For example, how to treat the particles entering
and leaving the finite computational domain is still an open question. Furthermore, almost all of the previ-
ous simulations involving particles used incompressible flow formulations. That is understandable, given the
fact that most practical problems occur in a low-speed environment. However, the dispersion of emissions
from jet engines and the whipping-up of dusts in hurricanes are clearly examples of particle movement in
a high-speed flow environment. Therefore, a compressible flow formulation is also important.

This paper focuses on particle dispersion in spatially developing free shear flows. A formulation based
on the complete unsteady compressible Navier–Stokes equations is employed. The numerical discretization,
solution and specification of boundary conditions all feature high-order methods, which are accurate and
memory-saving. A Lagrangian approach is used to trace the particles, which are passively transported by the
fluid flow. The investigation focuses on the effects of spatially developing vortex structures on particle dis-
persion in a transitional free shear flow. A detailed parametric study is conducted on the effects of the Stokes
number and the gravity. This study marks only the first stage in a comprehensive study aimed at understand-
ing and predicting flow-particle interactions in a three-dimensional compressible turbulent medium.

The organization of the paper is as follows: Section 2 presents the basic governing equations for com-
pressible flow and particle motion. Section 3 describes the numerical treatment of particle-laden flow
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simulations. The simulation results are presented in Section 4, with detailed analysis. Finally, conclusions
are drawn in Section 5, together with discussions on the limitations of the present study and possible future
work.

2. Governing Equations

2.1. The Governing Equations for the Continuous Phase

The non-dimensional governing equations for compressible flow are:

∂ρ

∂t
= −∂(ρuj)

∂xj
, (1)

∂(ρui)

∂t
= −∂(ρuiu j)

∂xj
− ∂p

∂xi
+ ∂τij

∂xj
, (2)
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. (3)

For the present mixing layer, all variables are non-dimensionalized by the upper free stream quantities (dens-
ity ρ∗

1, velocity U∗
1 and temperature T ∗

1 ) and the initial vorticity thickness of the mixing layer δω = (U∗
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0 is the initial velocity. ET = ρ(e+
1
2 uiui) is the non-dimensional total energy, e is the internal energy determined by e = cvT where cv is the
constant volume specific heat. The non-dimensional shear stress tensor τij is related to the shear rate by the
Newtonian constitutive equation:
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and qj is determined by the Fourier heat conduction law:

qj = − µ

(γ −1)M2
1 PrRe

∂T

∂xj
. (5)

Here M1 = U∗
1 /C∗

1 is the upper free stream Mach number, C∗
1 is the upper free stream sound speed and

C∗
1 =√

γRT ∗
1 . The Reynolds number of the flow is defined as Re = ρ∗

1U∗
1 δ∗

ω/µ∗
1, and the Prandtl number as

Pr = cpµ
∗/k∗, where k∗ is the thermal conductivity, and cp is the constant pressure specific heat. The non-

dimensional viscosity of fluid is assumed to follow a power law µ = T 0.76, where the exponent is chosen
according to White (1974).

The perfect gas law is then

p = ρT

γM2
1

= ρ(γ −1)e . (6)

The transport equation of a passive scalar f is also solved for flow visualization (Ramaprian et al., 1989):

∂(ρ f)
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∂xj
+ 1
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∂
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(
µ

Re

∂ f
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)
. (7)

The Schmidt number SC = µ∗/ρ∗D∗ (D∗ is the diffusion coefficient) is assumed to be constant.
In the present study we take both the Prandtl number and the Schmidt number to be unity.
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2.2. The Governing Equation for the Dispersed Phase

Using the equation of motion for a small rigid sphere in a non-uniform flow derived by Maxey and Riley
(1983), and non-dimensionalizing the equation in the same way as for the continuous phase, we obtain
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where v is the non-dimensional velocity of particle; u is the non-dimensional velocity of the undisturbed
fluid evaluated at the center of the particle; dp is the non-dimensional particle diameter, dp = d∗

p/δ∗
ω; α is

the ratio of the density of fluid ρ∗ to the density of particles ρ∗
p , α = ρ∗/ρ∗

p; d/dt denotes a Lagrangian time
derivative following the particle, and D/Dt denotes a time derivative using the undisturbed fluid velocity as
the convective velocity. St is the Stokes number of the particle, which is defined as the ratio of the particle
momentum response time τp to the flow field time scale:

St = τp

δω/U1
= ρpd2

p/18µ

δω/U1
. (9)

The terms on the right-hand side of (8) are the force of Stokes viscous drag, the gravity, the effect of pres-
sure gradient of the undisturbed flow, the added mass and augmented viscous drag from the Basset history
term (the Basset force), respectively.

In the present study a diluted system is considered, with the following assumptions:

(1) the particles are rigid spheres with identical diameter dp and density ρp,
(2) the density of a particle is much larger than the density of the fluid, and
(3) the effect of particles on the fluid is negligible.

With these assumptions, the effect of pressure gradient, added mass and the Basset force in (8) are also
negligible (Ling et al. 1998). Hence the non-dimensional Lagrangian particle equation becomes

dv
dt

= fp(u−v)

St
+ (1−α)

1

St

τp

U1
g, (10)

where fp is the modification factor for the Stokes drag coefficient. As long as the particle Reynolds number,
Rep = |u −v|dp/ν, is less than 1000, fp can be represented reasonably by f = 1+0.15 Re0.687

p (Ling et al.
1998).

The particle position can be obtained by integrating the following equation:

dx
dt

= v. (11)
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3. Simulation Details

The computational domain is chosen to be a rectangular box with a size of Lx × L y = 250×30, as shown in
Figure 1. The grid points used are Nx × Ny = 501×61, which are uniformly distributed in the x direction,
and stretched in the y direction by

y( j) = 1

2

sinh(βys( j))

sinh(βy)
L y, (12)

where s( j) = −1+2 j/(Ny −1), and βy is the stretching factor, chosen to be β = 1.3 for all the simulations.
The grid points were chosen with reference to other published simulations as well as our resolution tests.

The convection velocity of a mixing layer is defined as U∗
c = (U∗

1 +U∗
2 )/2, and the convective Mach

number as Mc = (U∗
1 −U∗

2 )/(C1 +C2), where C1 and C2 are the sound speeds of the upper and lower
free streams, respectively. We choose Mc = 0.04, Reynolds number Re = 200 and λ = (U∗

1 −U∗
2 )/(U∗

1 +
U∗

2 ) = 0.25.

3.1. Initial Conditions

The initial velocity profile of the flow field is set to be a hyperbolic tangent profile

u∗
0(y) = U∗

1 +U∗
2

2
+ U∗

1 −U∗
2

2
tanh

(
2y∗

δ∗
ω

)
. (13)

The initial mean-temperature profile is specified by a Crocco–Busemann relation:

T0 = 1+ M2
1
γ −1

2

(
1−u2

0

)
, (14)

where M1 = 0.05. The mean pressure is assumed to be uniform.
The inflow perturbation has strong influence on the growth of the mixing layer. Suitably selected initial

perturbations can enhance the growth of the mixing layer (Ho and Huerre, 1984; Inoue, 1995). Three types
of inflow perturbations have been tested:
Perturbation 1: u′ = A0 sin(2π f0t),
Perturbation 2: u′ = A0 sin(2π f0t)+ A1 sin(2π f1t +β1), and
Perturbation 3: u′ = A0 sin(2π f0t)+ A1 sin(2π f1t +ϕ1),
where f0 is the most unstable frequency from the linear stability analysis, f1 is the first subharmonic fre-
quency and β1, ϕ1 are the phase shifts between the two frequencies. In perturbation 2 the phase shift β1 is
a constant, chosen to be 45◦, whereas in perturbation 3 a random walking phase shift ϕ1 (< 15◦) is intro-
duced (Sandham and Reynolds, 1989). These perturbations are used to induce vortex pairing in the mixing
layer.

Figure 1. Computational domain and boundary conditions.
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3.2. Boundary Conditions

One of the greatest difficulties in simulating spatially developing shear flow is the formulation of the bound-
ary conditions required for the open computational domain, especially for compressible viscous flow. Since
in most cases the computational box is finite, information passing through the boundaries from outside acts
as a source of errors, which could quickly contaminate the numerical solution inside. As a countermeasure,
a number of non-reflecting numerical boundary conditions (e.g. Thompson, 1987; Poinsot and Lele, 1992)
have been devised in recent years, with considerable success. Thompson (1987) developed a non-reflecting
boundary condition scheme based on the Euler equations. The basic idea is to allow flow structures in the
interior of the computational domain to pass through the boundary while keeping the spurious waves gen-
erated at the boundary out. Poinsot and Lele (1992) generalized Thompson’s formulation by starting from
the Navier–Stokes equations with the viscous terms. In this study the non-reflecting boundary conditions of
Poinsot and Lele (1992) are applied to all the boundaries, as shown in Figure 1. Results from the follow-
ing simulations show that the boundary conditions worked very well in keeping spurious waves out of the
computational domain.

3.3. Particle Treatment

At the beginning of each simulation, particles are uniformly placed at each grid point and set in equilibrium
with the fluid. As the mixing layer develops, they are transported by the fluid and some of them may move
out of the computation domain. To keep constant number of particles inside the box, new particles need to
be added in. There are several different ways of adding particles. Three possibilities are listed below:

(1) Keep a constant number of particles in the domain. Every particle moving out of the domain is re-
entered from the inlet boundary at the same y, but is set to an equilibrium status with the local fluid.

(2) Add equal numbers of particles in both upper and lower streams at the same time interval, ∆t = ∆x/Uc.
(3) Keep the same particle density in both undisturbed streams. This means adding particles into the upper

and lower streams at different time intervals, ∆t1 = ∆x/U1 and ∆t2 = ∆x/U2.

The first method is very similar to the method used in the temporal mixing layer, which is not very suit-
able for the spatial mixing layer as the latter has different boundary conditions at the inflow and the outflow.
The second method tends to leave too few particles in the upper stream before the mixing layer is properly
evolved. This is because particles in the upper stream move out of the domain faster. The third method gives
a uniform particle distribution in the undisturbed streams all the time. This is more likely to happen in a re-
alistic spatially developing mixing layer. The three options were extensively tested and the third method was
found to be more suitable and thus adopted in the final simulations.

3.4. Numerical Methods

The governing equations are spatially discretized using the compact finite difference schemes developed by
Lele (1992). This gives a sixth-order accuracy for all the inner grid points and a third-order accuracy for
the boundary points. The discretized governing equations for both the continuous and the dispersed phases
are marched in time with an explicit third-order compact-storage Runge–Kutta method. The time step is set
according to a CFL-number criterion, which includes effects of both convection and viscous diffusion, as
follows:

∆t = CFL

Dc + Dd
, (15)

where

Dc=πc

(
1

∆x
+ 1

∆y
+ 1

∆z

)
+π

( |ux |
∆x

+ |uy|
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+ |uz |
∆z

)
,

Dd= π2µ

(γ −1)ρM2
1 RePr

[
1

(∆x)2 + 1

(∆y)2 + 1

(∆z)2
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,
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where c is the local sound speed. The theoretical value for CFL is
√

3 for stability of the above time advance-
ment scheme. In actual simulations, preliminary numerical tests were conducted to choose the value for CFL
for a particular problem. Once CFL was determined, the time step was computed for each cell and the small-
est value was used for time advancement. At each sub-time-step of the Runge–Kutta method, after solving
the fluid equations, the flow velocities are interpolated at third-order accuracy to each particle’s position.

4. Results

4.1. The Effects of Perturbations on the Mixing Layer

The passive scalar contours of the mixing layer with the three different initial perturbations are shown in
Figure 2. The two two-frequency perturbations give much enhanced mixing layer growth rates by trigger-
ing the vortex pairing processes. This is confirmed by the corresponding momentum thickness spread shown
in Figure 3. The single-frequency perturbation saturates much faster, resulting in a rapid drop in the mo-
mentum thickness at about x = 200. On the other hand, the two-frequency perturbations produce almost
monotonic increase in the momentum thickness, with perturbation 3 showing the most consistent trend.
Hence perturbation 3 is used to calculate all the following results.

4.2. Particle Dispersion with Different Stokes Numbers

Dispersion of particles with St in the range of 0.1−100 is calculated for zero gravity first (g = 0). Figure 4
shows the dispersion pattern of particles with St = 4 at t = 315. In the upstream part of the spatial mixing
layer (x = 0−90), the distribution of particles is scarcely affected by the fluid flow, due to a lack of large or-
ganized structures. As the first few large vortices appear due to the Kelvin–Helmholtz instability, particles
are transported across the free streams, resulting in non-uniform particle dispersion patterns. Particles are
seen to be moving away from the vortex cores while accumulating in the regions surrounding the vortices
and in the braid regions. After the vortex merging process following the vortex pairing, larger vortices are

Figure 2. Passive scalar contours of the mixing layer with different perturbations at t = 315.
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Figure 3. Momentum thickness of the mixing layer under different perturbations.

Figure 4. Particle dispersion pattern in the spatially developing mixing layer at t = 315 for St = 4. Plotted are the particle positions.

created, which draw particles from larger distances into the high shear layer regions. Particle distribution
becomes even more non-uniform, with a large area (the vortex core) depleted of particles.

The particle movement and their distribution in the mixing layer are strongly influenced by the size and
consequently the response time of particles, which is measured by the Stokes number. The detailed particle
dispersion patterns resulting from different Stokes numbers are shown in Figure 5 for x = 100−250. The
corresponding vortex contours of the flow field are shown in Figure 5(a). It is seen that particles of small
Stokes numbers (St = 0.1, 1) are carried by the fluid all around the flow field, including the vortex cores.
Since these particles respond quickly to the change of fluid motions, they can follow the fluid closely, which
lead to particle dispersion patterns closely resembling the fluid vortex structures. In other words, particles
with very small Stokes numbers are in a quasi-equilibrium status with the fluid. In contrast, particles with
moderate Stokes numbers (i.e. St = 4, 10) tend to accumulate around the circumference of a vortex and
along the braid between two vortices, which results in some “blank” regions in which few solid particles are
found. This is because of the effects of flow field strains combined with the centrifugal effects. For the high
Stokes number case (St = 100), the general dispersion pattern is similar to that of the medium Stokes number
cases. However, since the particles are so slow to respond and follow the fluid motion, even the roll-up and
rotation of large vortex structures do not disturb many of the particles. Consequently, particle accumulation
in the braid regions and around the vortices is less effective. Some particles even cross the vortex core regions
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Figure 5. The passive scalar contour and the particle dispersion patterns for different Stokes numbers for x = 100−250 at t = 315.
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due to their large inertia. As a result, the depleted regions (without particles) are much smaller than the sizes
of the vortices and particles in the far field are not affected much.

These observations are broadly in agreement with previous results from temporal mixing layers (e.g.
Martin and Meiburg, 1994), with some exceptions. For example, the dispersion pattern at St = 1 in the tem-
poral mixing layer of Martin and Meiburg (1994) is very different from that observed in the present study. In
their simulation, particles do not fill the vortex cores, contrary to the finding from Figure 5(c). Instead, their
result at St = 1 looks like the present results at higher Stokes numbers, e.g. in Figure 5(d). Their result is
surprising in a physical sense because a unity Stokes number suggests that the time scale of the fluid flow is
equal to that of the particle movement, so that particles should follow the vortex motion closely. Their result
to the contrary suggests that the use of the temporal mixing layer model might have changed the physics of
the particle dispersion. This topic is revisited in the next section.

The most interesting feature of the present spatial mixing layer, however, is the presence of interac-
tions between nearby vortex structures, which affect particle transport. As a result, the dispersion pattern of
particles is not symmetric, in contrast to the findings in temporal mixing layers (Ling et al., 1998). This dif-
ference can be explained in the following. In the case of temporal mixing layers, particles which go out of
the computational domain are re-entered from the inflow, so these particles are always under the influence
of the same vortex. For a spatial mixing layer, however, particles which are transported from one vortex into
another usually have different structures. In the present mixing layer, the differences in vortices at different
streamwise locations are quite large, due to vortex pairing. In addition, it is noted that the upper free stream
velocity is greater than the convection velocity of mixing layer Uc (the rate of convection of the large vor-
tices), and the lower stream velocity is smaller than Uc. Thus particles in the upper free stream move faster
than the vortex, and slower in the lower stream. Hence, particles in the upper stream tend to catch up with
the vortex in front and be transported by the next vortex. However, particles in the lower stream are left be-
hind the vortex in front and are affected by the vortex from behind. The net result is that more particles from
the upper stream are transported to the lower stream than from the lower to the upper stream. This point is
revisited in Section 4.5. These special features of particle dispersion in the spatial mixing layer are absent
from temporal simulations.

The root mean square of the particle number per cell for each x station, Nrms(x) (Ling et al. 1998), is used
to quantify the distribution of particles along the streamwise direction. Nrms(x) is obtained from

Nrms(x) =

 Ncp∑

i=1

Ni(x)2

Ncp


1/2

, (16)

Figure 6. The particle number density Nrms(x) for different Stokes numbers.
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where Ncp is the total number of computational cells in one x station and Ni(x) is the number of particles
in the ith cell of that x station. To eliminate the oscillations in Nrms due to the use of the limited particle
sample in each column, the cell for calculating Nrms is chosen to include four streamwise grid points. The
concentration of particles with different Stokes numbers along the streamwise direction is shown in Figure 6.
The most prominent feature is that the particle concentration is not uniform along the streamwise direction,
with alternating high and low concentration regions. The variation (the amplitude of the fluctuations) in the
concentration increases in the streamwise direction, reflecting the increasing effects of larger vortices. The
Stokes number effects are obvious, with a small Stokes number group (St = 0.1, 1) and a high Stokes num-
ber group (St = 4, 10, 100). For the latter, the low particle concentration regions correspond to the vortex
cores while the high concentration regions correspond to the braid regions. For the former group, however,
the opposite trend is observed. Thus at small Stokes numbers, the vortices seem to be able to draw par-
ticles from surrounding areas and keep them within their borders. Another interesting phenomenon is that
the variation in the concentration along the streamwise direction in the small Stokes number cases is much
smaller than in the high Stokes number cases. This is because particles of smaller sizes can follow the fluid
motion more closely so their concentration is more uniform and less influenced by the strains caused by
large vortex structures. The largest variation in the streamwise concentration occurs for St = 4, a medium
Stokes number. This can be understood as follows: particle concentration (negative divergence) in the braid
region between two vortices and around the circumference of a vortex is promoted by flow strains, whose
effects are more pronounced in the low to medium Stokes number range. Particle divergence from the vor-
tex core is due to the centrifugal effect, which is more effective for medium to high Stokes numbers, that is,
heavy particles. Particle concentration variation in the streamwise direction is due to the combined effects
of the above two factors. It thus seems logical that a medium Stokes number, such as St = 4, has an optimal
combination of the two effects, which gives the largest variation in particle concentration in the streamwise
direction.

4.3. Dispersion of Particles with Random Stokes Numbers

In each of the above-mentioned simulations the Stokes number is uniform, although different Stokes num-
bers are used in different simulations. In reality, however, particles entering a practical system are expected
to have different sizes with correspondingly different Stokes numbers. The particle sizes in a chosen system
are also expected to have a particular statistical distribution, such as Gaussian. The effects of particle size
distributions are especially important and complex for spatially developing mixing layers, as different-sized
particles at different locations are affected by different vortex motions. Here without reference to a particular
system, we study a case in which the particle size or the Stokes number has a random distribution within the
limits of St = 1−100. Results are shown in Figure 7. It can be seen that the dispersion pattern is highly com-
plex, representing the superposition of different effects. However, some trends are still identifiable. Partly
because the Stokes numbers used are all above or equal to 1, the circumference and the braid regions have
high particle concentrations, in agreement with earlier observations in the medium and high Stokes number
cases. The dispersion patterns seem to be the result of the superposition of the patterns obtained at the indi-
vidual Stokes numbers concerned. However, the situation would be far more complex if the particle–particle
interactions were included.

4.4. Particle Transport Across Streams

The mechanisms behind particle transport in the spatially developing mixing layer can be more clearly
identified by focusing on particles crossing streams. In Figure 8 the dispersion patterns of particles orig-
inating from the upper stream are shown for different Stokes numbers. It is clear that particle movement
initially occurs along the interface between the two free streams. Thus particle concentration increases in
regions of high strains, especially in the braid regions. As the vortices roll up, particles are carried from
the upper stream to the lower stream by the “tongues” of the large vortices. For particles of small Stokes
numbers, they respond quickly and follow the streamlines of the flow. They eventually fill the vortex core
regions. Larger particles are less responsive and are reluctant to follow the fast-moving vortex tongues.
So they do not fill the vortex cores completely. Even if they are carried by the flow to the vortex core,
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Figure 7. Dispersion pattern resulting from particles of different sizes with randomly distributed Stokes numbers. (a) Square:
St = 1−10; triangle: St = 10−20; circle: St = 20−30. (b) Square: St = 30−40; triangle: St = 40−50; circle: St = 50−60.
(c) Square: St = 60−70; triangle: St = 70−80; circle: St = 80−90; diamond: St = 90−100.
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Figure 8. Distributions of particles originating from the upper stream at t = 315.

they are drawn away due to the centrifugal effects. This is most noticeable by focusing on the braid region
before and after the vortex pairing. Before the vortex pairing, the braid region has high particle concen-
tration. As the vortex pairing process proceeds, the braid region between the pairing vortices gradually
becomes the vortex core of the merged vortex. However, due to the centrifugal effect, particles are drawn
towards the vortex circumference so that in the end there are very few particles left in the vortex core
of the enlarged vortex. In the case of the largest Stokes number (St = 100), particles only start to be af-
fected by the flow at about x = 100, while in the low Stokes number (St = 0.1) case the location is about
x = 50. In the lateral direction (y direction), the extent to which the large vortices affect the particle move-
ment is also much less. What is interesting in Figure 8(e) is the appearance of particles which oscillate
across the stagnation lines along the braid regions. Such particle oscillations have been observed in the
stagnation point flow of Martin and Meiburg (1994). These happen because heavy particles of large iner-
tia initially cross the stagnation line, and are then pushed back by flow of the opposite direction. Similar
conclusions can be drawn from Figure 9, which shows the corresponding dispersion patterns of particles
originating from the lower stream. It is noticed, however, that there is no symmetry or anti-symmetry
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Figure 9. Distributions of particles originating from the lower stream at t = 315.

between Figures 8 and 9, due to the vortex interactions in the streamwise direction as discussed above.
From these results, the total percentage of particles crossing the streams can be calculated. This is shown
in Figure 10 for different Stokes numbers, which confirms the above observations in a quantitative term.
It is clear that the percentage of particles transported across streams decreases with the Stokes number,
with that percentage three times higher in the low Stokes number (St = 0.1) case than in the high Stokes
number (St = 100) case.

4.5. Influence of Gravity

To investigate the influence of gravity on particle movement, we impose standard gravity, g∗ = 9.81 m/s2,
in the negative y direction. The particle dispersion patterns for St = 4 with and without gravity are
show in Figure 11. As expected, particles move downwards in gravity as they are heavier than the
fluid. As a result, the dispersion patterns are also changed slightly. Although not plotted, it has been
observed that the effects of gravity increase for particles with larger Stokes numbers. The percentage
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Figure 10. Effects of the Stokes number on the percentage of particles crossing streams.

Figure 11. Effects of gravity on the particle dispersion pattern (St = 4, t = 315).
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Figure 12. The effects of gravity on particles transported, St = 4. (a) Percentage of particles transported from upper stream to lower
stream (b) Percentage of particles transported from lower stream to upper stream (c) Percentage of particles crossing stream.
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of particles transported from one free stream to another is shown in Figure 12. Gravity is seen to en-
hance particle transport from the upper stream to the lower stream, but suppress the reverse process.
The most interesting result is that the total percentage of particles transported across streams is increased
with gravity. This is again related to the asymmetry in the present spatial mixing layer, discussed ear-
lier. As the upper stream moves faster than the convection speed (Uc) of the large vortex structures
while the lower stream moves slower than Uc, particles in the upper stream are influenced by faster
rotating motions so that the upper stream brings more particles into the lower stream. Since gravity
enhances particle transport in the more effective direction, the overall efficiency of particle transport
is improved.

5. Discussions and Conclusion

Numerical simulation of particle dispersion has been carried out in a spatially developing mixing layer.
The instantaneous particle distribution patterns and key statistical data have been analyzed. The study
highlights the important effects of interacting vortex structures in nearby regions on particle transport,
which are absent from the temporally developing mixing layers. Effects of the particle Stokes num-
ber have been carefully examined. The low, medium and high Stokes numbers lead to different instan-
taneous particle dispersion patterns in relation to the large vortex structures. Particle density concen-
tration along the streamwise direction shows large variations, whose amplitudes increase with stream-
wise location. These reflect the different effects of vortex cores, braids and circumferences on particle
dispersion, and the increasing strengths of the vortices along the streamwise direction. The dispersion
pattern resulting from particles with randomly distributed sizes has also been analyzed. The mechan-
isms for particle dispersion in the spatial mixing layer have been further investigated by focusing on
the particles that cross the streams. The number of particles moving from the upper stream into the
lower is larger than that moving in the opposite direction. This is due to the asymmetric vortex struc-
tures developing from the spatial mixing layer. It is also related to the interactions between vortices
in nearby regions, which are present only in the spatial mixing layer. The effects of gravity on par-
ticle transport and distribution have also been investigated. In addition to modifying the overall par-
ticle distribution, the presence of gravity increases the total percentage of particles being transported
across streams. The above simulations have been limited to a transitional flow at low Reynolds and
low Mach numbers, even though the methodology is designed for fully compressible flow. Previous
studies by the authors and others have shown that free shear flows (e.g. mixing layers and jets) are
dominated by two-dimensional large-scale structures, even at higher Reynolds numbers. So the above
two-dimensional simulations are suitable and the conclusions about particle dispersion are valid until
the Mach number is much larger. As the Mach number increases to 0.4 or larger, three-dimensional
effects become important (Luo and Sandham, 1994). The effects of small-scale motions will also be-
come more important, especially if higher Reynolds numbers are also used. The longer term goal of
the study is to include high Mach number and high Reynolds number effects, although the compu-
tational cost is expected to be extremely high for spatial mixing layer simulations. The above re-
sults can also be made more general if the particle–particle interaction and/or the particle–fluid inter-
action are included. The Stokes number effects, for example, cannot be separated from the particle–
particle collisions, if the particle sizes are sufficiently large. Therefore, the present study represents
just one step towards solving the highly complex problem of particle dispersion under more realistic
conditions.
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