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Abstract: Shape memory polymers (SMPs) have gained much attention in biomedical fields due to
their good biocompatibility and biodegradability. Researches have validated the feasibility of shape
memory polymer stent in treatment of vascular blockage. Nevertheless, the actual application of SMP
stents is still in infancy. To improve the mechanical performance of SMP stent, a new geometric model
based on metamaterial is proposed in this study. To verify the feasibility and mechanical behavior of
this type of stent, buckling analysis, and in vivo expansion performance of SMP stent are simulated.
Numerical results exhibit that stent of a smaller radius behaves a higher critical buckling load and
smaller buckling displacement. Besides, a smaller contact area with vessel and smaller implanted
stress are observed compared with traditional stents. This suggests that this SMP stent attributes
to a reduced vascular restenosis. To characterize the radial strength of SMP stent, an analytical
solution is derived by the assumption that the deformation of stent is mainly composed of bending
and stretch. The radial strength of SMP stent is assessed in form of radial force. Analytical results
reveal that radial strength is depended on the radius of stent and periodic numbers of unit cell in
circumferential direction.

Keywords: mechanical behavior; metamaterial; radial strength; shape memory polymer stent

1. Introduction

As a kind of smart material, shape memory polymers (SMPs) can recover to their original
shape from the deformed state spontaneously with appropriate stimuli, such as heat [1,2], light [3],
water [4], and so on. SMPs exhibit advantageous properties in large deformation, biocompatibility,
and biodegradability, therefore showing promising applications in biomedical fields [5,6], such as
scaffolds [7], and tissue engineering [8]. In particular, shape memory polymer stents are shown to
reduce the restenosis of a vessel and have stable expansions of the plaque [9,10]. The feasibility of SMPs
in vessel stents has already been validated in experiments [11] and numerical computations [12,13].
Wache et al. proposed the new concept of a SMP stent in drug delivery application [14]. Based on
the highly controlled and tailored deployment of SMP, Baer et al. fabricated the light-activated SMP
stent by thermoplastic polyurethane [15,16]. Their in vitro experimental results showed a full recovery
ratio of a SMP stent. Yackacki et al. synthesized SMP networks and covered the effects of perforations
and packaging temperatures on the recovery of a SMP stent [17]. The study was conducted to repair
larger vessels such as abdominal aorta. In a numerical study, Reese et al. derived a new constitutive
model of large strain and applied the model to describe the thermos-mechanical behavior of SMP
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stent [12]. Kim et al. investigated the feasibility of a shape memory polyurethane (SMPU) stent with a
braided structure [18]. The finite element results showed a comfortable expansion of the SMPU stent.
Furthermore, the specific expansion behavior was conducted by Liu et al. [13]. The work presented
a tunable expansion performance of a SMP stent with recovery temperature and heating rate by a
combined hyperelastic and viscoelastic model. Besides, 3D and 4D printing technologies are used to
manufacture biomaterials structures due to rapid prototyping. Jia et al. proposed a self-expandable
biodegradable vascular stent prepared by 3D printing. The compressed SMP stent showed excellent
shape fixity [19]. Ge et al. presented multi-material SMP architectures with high resolution, which
was up to a few microns [20]. This new 4D printing approach was applied to fabricate SMP stent with
different geometries. Lin et al. summarized the progress of 3D and 4D printing technology of SMPs in
biomedical field [21]. There has been a breakthrough of 4D printing technology in the personalized
customization in the traditional medical field, which provided a new direction. The development of a
shape memory polymer stent has acquired certain success. However, there are still many critical issues
which should be solved before SMP stents can be used in clinical applications, particularly in terms
of stent strength, buckling, and fatigue. In the complex loading environment of blood vessels, there
are arbitrary or dynamic loadings from the pulsation of the heart or the displacement from body’s
movement. Implanted stents also subjected to pressures of the surrounding vessels and blood flow.
Therefore, it is necessary to discuss stability and buckling properties of a SMP stent. In particular,
one should consider the strength of SMP stent due to the relatively small material modulus of SMP
material. From a mechanics point of view, good flexibility for a tortuous vessel and a high radial
strength supporting the plaque are the key attributes for successful SMP stent. Recent research showed
that inadequate radial strength or stiffness had a strong influence on the clinical outcome such as
stent dislocation [22,23]. There is the need to assess and design the radial strength of stent. Previous
works also showed that the irregular mechanical interaction between stent and vessel can result in
nutcracker [24]. One group tried to reduce the localized high stress by increasing the stent length,
however, this would induce stent protrusion into the vascular lumen [25]. Consequently, optimization
of the stent structure is required.

To solve the aforementioned issues, we proposed a new geometric model for SMP stent based on
the metamaterial concept. Metamaterials [26–28] are artificial materials or structures which possess
extraordinary physical properties. Mechanical metamaterials are one type of metamaterials which are
man-made structures with superior mechanical properties [29], such as tunable stiffness, high strength,
and negative Poisson’s ratio. Several studies explored the feasibility of auxetic structure applied in
stent design. Ren et al. extended the latest methodology for generating 3D auxetic metamaterials to
develop the metallic auxetic tubular structures [30]. The tubular structure exhibited auxetic behavior
in both compression and tension, which enabled possible application in stents. Geng et al. proposed
a chiral stent with two arrangements [31]. The tensile loading results showed that the chiral stent
behaved negative Poisson ratio. Gatt et al. established an analytical model to describe the mechanical
properties of a rotating square system [32]. Results showed that the prediction of Young’s moduli of
infinitely sized systems was overestimated with finite-sized systems due to the edge effect. Gatt et al.
also studied the suitability of three types arranged hexagonal honeycombs: non re-entrant, re-entrant,
and hybrid honeycombs [33]. Simulation results exhibited possible migration of non re-entrant stent
and higher risk of inflammation of hybrid stent due to shorter supporting length. Ali et al. validated
an effective laser-cutting method to produce stent [34]. Results showed the mechanical behaviors
of the produced stent with auxetic structure depended on the size and angle of individual units.
The mechanical properties of mechanical metamaterials are mainly characterized by the unit cell of
man-made structure, instead of material itself. The metamaterial especially the auxetic structure is
showing a promising application in stent design. In this work, the new geometric model composed of
series of modified auxetic unit cells (re-entrant structure) is developed for the SMP stent.

In the remainder of the paper, we first introduce the geometries of the expansion model of
stent: vessel, plaque, and SMP stent in Section 2. Section 3 will present the constitutive models for
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materials used in expansion stent model: shape memory polymer, vessel, and plaque. Following the
geometric models and constitutive models of expansion model, buckling analysis, and expansion
process simulations are conducted using finite element method (FEM) in Section 4. To establish the
effective assessment rule on the radial strength and stiffness of this type of SMP stent, an analytical
solution on the SMP stent structure is accomplished in Section 5. The analytical results are compared
with numerical results of FEM. Finally, the mechanical performances of the SMP stent with metamaterial
are summarized.

2. Geometries of Expansion Model of SMP Stent with Vessel and Plaque

2.1. Geometric Model of Vessel with Plaque

In this work, an idealized model of a vessel with plaque is shown in Figure 1. For the simplicity,
we assume the geometric model of the vessel with plaque as straight cylindrical tubes. Research
showed a larger radius of a vessel exhibited a higher incidence of stroke, especially when the radius is
larger than 4 mm [35]. Therefore, the outer radius of vessel symbolled with R1 is set as 5 mm. The outer
radius of inner plaque symbolled with R2 is set with 4.9 mm and exhibited a thickness of 0.4 mm.
The length of the vessel and plaque are 20 and 19 mm, separately.
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Figure 1. Geometric model of vessel and plaque (one-eighth).

2.2. Geometric Model of Stent Based on Metamaterial

Research has shown that the structure design of vascular stents is the key to control the mechanical
properties of stent and to improve clinical performance [36,37]. Diverse structures of vascular stent
have been designed for various implant conditions. Gu et al. showed that the structure of the vessel
stent had great importance on restenosis [38]. Therefore, the structure of the stent should be carefully
designed for clinical applications.

Structures of traditional metal stents are usually selected with a small modulus with an aim to
reduce the stiffness mismatch of stent and vessel and the restenosis after implantation. Differently, the
modulus or strength of a SMP stent should be as large as possible due to the low stiffness at the level of
“MPa”. The radial strength should be large enough to expand the blocked vessel and stably support the
vessel. Validated in Karnessis et al.’s work, a stent with re-entrant structure was demonstrated to have
a better kinking property compared with the structure of positive Poisson’s ratio [39]. In this study, to
improve the performance of a SMP stent, a modified re-entrant structure with the vertical side link
mode is developed as the unit cell of the SMP stent (as shown in the Figure 2). This vertical side link
mode was first introduced by Gandi and Olympio to form accordion cellular honeycombs [40].
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To avoid the stress concentration, the blue circled corners are chamfered with the radius of 0.2 mm
in Figure 2. The dimensional parameters defining the unit cell are shown in Table 1. l is the length of
the slanted strut. θ is the angle between the slanted and vertical strut, which also characterizes the
deformation space of the cell. b is the width of the strut. h is the height of the cell. t is the thickness of
stent. D is the diameter of the stent and L is the height of the stent. Except for these parameters, two
new parameters NC (circumferential number of unit cells) and NL (longitudinal number of unit cells)
are introduced to describe the whole stent structure. We have

l sinθ = R sin( π
NC

)

L = NLh
(1)

where R = D/2, L is the height of SMP stent.

Table 1. Geometric parameters of the SMP stent (for Nc = 12, NL = 8)

l (mm) θ (°C) b (mm) h (mm) D (mm) L (mm) t (mm)

2.4 60 0.4 4.8 7.939 38.4 0.2

3. Constitutive Models of the Vessel, Plaque, and SMP

To explore the mechanical performance of the expansion model of the stent, the constitutive
relationships of the materails need to be determined first. The materials of the vessel and plaque
are assumed incompressible and exhibit superelastic properties. Thus hyperelastic constitutive
models are used to charaterize their materails properties. For the SMP stent material, a series
of constitutive models are developed to describe the unique thermo-mechanical behavior [41,42].
Nevertheless, most constitutive models are confined with describing large deformation of SMPs or
complex expressions [43–46]. In our work, a modified rheological model presented in our previous
work [47] is adapted to analyze the thermo-mechanical behavior of SMP stent. This model uses a
hyperelastic term to replace the elastic constant parameter and is valid to describe large deformation.
The specific shape memory polymer used for stent design in this work is one kind of epoxy-based
shape memory polymer (epoxy DA3) in [48].

3.1. Constitutive Models of the Vessel and Plaque

For the vessel and plaque, polynomial-form hyperelastic models proposed by
Migliavacca et al. [49,50] are employed. The two models were shown to have good description
of the mechanical performance of vessels and plaque. For the vessel, the constitutive equation is
written as

U = C10 · (I1 − 3) + C03 · (I2 − 3)3. (2)

where U is the strain energy density, I1 and I2 are the first and second Cauchy–Green tensor. The value
of C10 and C03 are chosen to be 0.019513 and 0.02976 MPa, separately. For the plaque, the constitutive
equation is expressed as

U = C10 · (I1 − 3) + C02 · (I2 − 3)2 + C03 · (I2 − 3)3. (3)

The value of C10, C02, and C03 are chosen to be 0.04, 0.003, and 0.02976 MPa, respectively.

3.2. Constitutive Model of Shape Memory Polymer

A brief introduction of the modified constitutive model for the SMP stent is presented here. As
shown in Figure 3, the model is composed a series of generalized Maxwell element. The elastic constant
in Figure 3a is replaced by the hyperelastic term in Figure 3b, to enable large strains.
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The constitutive equation of the model shown in Figure 3a is derived as

σ(t) = E0ε0 + ε0

n∑
i = 1

Eie−t/τi . (4)

where σ(t) is the total stress, E0 is the Young’s modulus of the elastic part, ε0 is the strain of the model,
t is the real time, Ei and τi are the Young’s modulus and relaxation time of the Maxwell element, n is
the number of Maxwell elements.

The generalized Maxwell model describes the viscoelasticity of the SMP. The experimental results
in Diani et al. showed the model’s reliability under large deformation [48]. In the generalized Maxwell
model, the relaxation modulus G(t) is written in the form of Prony series

G(t) = G∞ +
n∑

i = 1

Gi · e−t/τi . (5)

where G∞ is the shear modulus at the infinite time and Gi is the corresponding shear modulus of the
Maxwell element.

The specific values of the above parameters are obtained from dynamic mechanical analysis
experiments of the SMP by Fourier transformation. The relaxation moduli can be written by storage
modulus and loss modulus

G(ω) =

√
Gs(ω)

2 + Gl(ω)
2. (6)

Gs(ω) = G0 +
n∑

i = 1

Giτ
2
i ω

2

1 + τ2
i ω

2
. (7)

Gl(ω) =
n∑

i = 1

Giτiω

1 + τ2
i ω

2
. (8)

where Gs(ω) is the storage modulus and Gl(ω) is the loss modulus, ω is the test frequency of dynamic
experiment. Here n is set as 12 which is enough to provide an exact description. From the experiments
in [48], we can obtain that G0 is 1.6 MPa. The specific values of Gi and τi are listed in Table 2.

Table 2. Parameters of constitutive model of SMP: shear moduli and associated relaxation times

Gi(Pa) 0.1476× 109, 0.1756× 109, 0.2025× 109, 0.1775× 109, 0.6802× 108, 0.1139× 108, 0.2264×
107, 0.8132× 106, 0.4020× 106, 0.1760× 106, 0.5056× 105, 0.1265× 105

τi(s)
0.3031× 10 −4, 0.1721× 10−3, 0.9768× 10−2, 0.5545× 10−2, 0.3147× 10−1, 0.1787, 0.1014×

101, 0.5757× 101, 0.3268× 102, 0.1855× 103, 0.1053× 104, 0.5977× 104



Polymers 2020, 12, 1784 6 of 21

In the model, the Williams–Landel–Ferry (WLF) equation shows the relationship of time and
temperature, which is expressed as

lg(αT) =
−C1 · (T − Tr)

C2 + T − T
. (9)

where αT is time-temperature superposition shifting factor, C1 and C2 are material constants and Tr is
the reference temperature. In this study we take the following values C1 = 10.17, C2 = 47.35 ◦C and
Tr = 50 ◦C.

The hyperelastic term is written in form of neo-Hookean equation

U = C10(I1 − 3) +
1

D1
(Jel − 1). (10)

where the first Cauchy–Green tensor. Jel is the elastic volume strain. Note that C10 = G′/2,D1 = 2/K′,
where G′ and K′ are the initial shear modulus and bulk modulus at initial time. In this work, K′ is 3.1
GPa. The coefficients C10 and D1 are taken as 393.964 and 0.0006452 MPa.

Implementing the geometrical models and constitutive equations using commercial software
(ABAQUS 6.14), we can perform numerical simulations of mechanical behavior of the SMP stent.

4. Numerical Simulation for SMP Stent with Mechanical Metamaterial

As mentioned before, the stent is exposed to loadings from heart pulsation and blood flows [51,52],
which could result in the stent’s migration and vessel restenosis [24,25]. To investigate the possible
failure modes of the stent, a buckling analysis is performed.

4.1. Buckling Analysis of SMP Stent

Here we simplify that the external loadings of stent including heart pulsation and blood flow can
be modeled as radial pressure. Therefore, the buckling analysis is conducted under radial pressure.
We assume there is no slippage between the vessel and the supporting stent. The movement along the
axial direction of the stent is constrained at both ends. The buckling analysis is conducted at the stent’s
recovery temperature (50 ◦C), at which the stent exhibits a soft state and is easier to go through failure.
The buckling modes for the SMP stent with different radii are presented.

4.1.1. Eigenvalue Analysis

Before nonlinear analysis of the stent’s cylindrical structure, a linear buckling (eigenvalue) analysis
is carried out usin ABAQUS. To verify the feasibility of analysis, a mesh convergence is conducted first.
The first three buckling modes are extracted (as shown in Table 3) with Nc = 8 type stent.

Table 3. The first three buckling modes of SMP stent with Nc = 8

Mode 1 Mode 2 Mode 3
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Table 3 shows the critical buckling loads of three different stent radii for the first three failure
models. We can see that the critical load is larger with the smaller radius (smaller Nc), as shown in
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Figure 4. It could be explained that the stent of a smaller radius behaves a higher stiffness with same
geometric unit cell.
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4.1.2. Nonlinear Buckling Analysis

Actually, the large deformation of structure during buckling often induces nonlinearity and thus
the linear analysis is conservative. Here, we further conducted the nonlinear analysis of the SMP
stents for NC = 8/12/16 using Riks’ method. The load is considered with 1 MPa. Figure 5 illustrates
the buckling performance of the stent with Nc = 8. The curve shows a turning point approximately
at the load proportionality factor (LPF) of 0.02, where the structure first buckles. The critical load is
1 × 0.02 = 0.02 MPa. The nonlinear analysis yields a smaller critical buckling load compared to that
of the linear analysis, due to the nonlinear deformation and material nonlinearity of the SMP stent.
Table 4 shows the static buckling load comparison for different values of radii (or different values of
Nc). The results confirm that a stent with a larger radius buckles more easily.
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Table 4. First order static buckling load of SMP stents with different values of Nc.

Nc 8 12 16

Linear result (MPa) 0.025153 0.015455 0.00876847

Nonlinear Result (MPa) 0.02 0.012 0.0076

The buckling displacement amplitude of the stents is also presented in Figure 6. At the same load
of 1 MPa, the SMP stent with a larger radius shows a larger buckling displacement, which will result in
greater damage to vessels.
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4.2. Expansion of SMP Stent with Metamaterial in a Blocked Vessel

Applying the geometric models and constitutive models of the SMP stent in blocked vessel, the
in vivo expansion performance of the SMP stent of metamaterial is investigated. The deformation
process of the SMP stent is programmed as:

(1) Compress the stent to a smaller radius at a high temperature (T > Tg);
(2) Cool the stent to temperature lower than Tg;
(3) Release the load conducted on the stent;
(4) Deliver the stent to the target vessel;
(5) Stimuli the stent by heat, light, or magnetism;
(6) Remove the stimuli and cool the stent to body temperature.

From the buckling modes shown in Table 3, a symmetric deformation is observed. Therefore,
only one-eighth of the expansion model including the SMP stent and blocked vessel is studied.
The symmetry loading conditions are used on the expansion model, as shown in Figure 7. A cylindrical
coordinate system is set: U1 represents the radial displacement, U2 represents the rotational angle,
and U3 represents the longitudinal stretch. The rotational angle of the two sides in the longitudinal
direction of the expansion model is set to zero. The longitudinal displacement of one end of the
expansion model is fixed to zero and the other end is free.
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Simulation results of the deformation of SMP stent and plaque can be seen from Figure 8. We
can see that this stent successfully expands the plaque and reaches a stable displacement at the body
temperature. A displacement fluctuation is observed during the last cooling step (6), presumably
because the released recovery force of the SMP stent in step (5) is relocked during the cooling process
and thus the small spring-back appears. On the other hand, as the temperature decreases, the strength
of the stent increases and thus displacement of the stent continuously increases. As the temperature
stabilizes at the body temperature, the displacements of the stent and plaque become steady.
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To study the stretch of the SMP stent and plaque in the longitudinal direction, we collect the length
of the stent and plaque before and after implantation. The longitudinal elongation ratio is defined as

αL =
L′ − L

L
. (11)

where L is the original length and L′ is the deformed length.
After the whole expansion process, we find a stretch of 0.635 mm of plaque and −0.0677 mm of

the stent in the longitudinal direction. Thus, the longitudinal elongation ratios of the plaque and the
stent are 3.3% and −0.35%, respectively. The stent almost has zero deformation in the longitudinal
direction. This zero stretch reduces the interaction of the stent with the vessel and further reduces the
vessel stenosis.

Research has shown that the stress of stented vessel can cause the restenosis of a vessel. Timmins
et al. computationally and experimentally showed that the vascular stent implantation can introduce
the increment of neointimal tissue [53]. Higher stress of the stented vessel was observed in a higher
restenosis area [54]. Gu et al. also made a detailed finite element computation to present the relationship
of stress and restenosis [38]. Their result showed that the excessive stretching of a vessel can result in
proliferation of muscle cells, therefore, resulting restenosis of the vessel. Therefore, the stress level
of vessels after a SMP stent implantation should be given much attention. In Figure 9, the stress
distribution of the expanded vessel and plaque is depicted after the full expansion process. It can be
observed that the stress along the plaque length direction is around 0.02 MPa. Normalizing the length
of vessel, the von Mises stress of three different types of stents including the SMP stent is compared
in Figure 10. We can see that the SMP stent exhibits a much smaller stress distribution and stress
gradient. This indicates that the SMP stent of metamaterial could reduce the restenosis due to the low
implanted stress.
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5. Analytical Model of Evaluating Radial Strength of SMP Stent

Radial strength which represents the ability to resist deformation under pressure is significant
characteristic in development of vascular stents. Evidences [22,23] showed that inadequate radial
strength or stiffness had strong influence on the clinical outcome such as stent dislocation. However,
there is no standard equation definition for radial strength. Previous research analyzing the radial
strength of stent concentrated on experiments [55,56] and numerical calculations [57], where radial
strength or stiffness was often represented or quantified by the responsive radial force. There is
no intrinsic description of the stent’s radial strength determined from geometry. In this work, an
elementary theoretical analysis is conducted to assess the radial strength of the SMP stent.

We first derive the mechanical parameters of the unit cell and then develop the equations to the
whole stent structure. The analytical results are validated against numerical results. Based on the
equivalent modulus derivation, a preliminary radial strength assessment is demonstrated in the form
of radial force.

5.1. Mechanical Behavior of SMP Stent Unit Cell

The SMP stent is arranged in a series of auxetic unit cell, which represents the mechanical
performance of the whole structure. Masters et al. proposed that the global mechanical parameters of
the whole tubular structure can be computed by assuming the struts behaving as fixed-guided beams
or rods [58]. Considering the linking method of the unit cell, we presume that the deformation of
unit cell is composed of stretch and bending. As shown in Figure 11, in the y-direction, the stretch
dominates the mechanical behavior of the unit cell and in the x-direction this structure exhibits the
most bending property.
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For modulus of the y-direction, it is assumed that the unit structure only deforms along the axial
direction, and the two ends of inclined walls are fixed in the x-direction. The total stretch deformation
becomes the sum of the vertical member stretch and deformation components of the slanted members
in the y-direction. Thus, applying the stress of the y-direction σy, we write the total stretch as

εtotal
y =

σy
(
h + 2l cos2 θ

)
l sinθ

bhEs
. (12)

where Es is the modulus of stent material.
Then the stiffness of unite cell in Y direction can be written as

Etotal
y =

σy

εtotal
y

=
Eshb

(h + 2l cos2 θ)l sinθ
. (13)

The strain in the direction x induced by the y direction force σy is zero

ε
y
x = 0 (14)

and the Poisson ratio is written as

νx = −
ε

y
x

εtotal
y

= 0. (15)

Similarly, in the X direction, we assume that bending absolutely dominates the mechanical
behavior of the unit cell. The deformation is determined by the bending of the slanted members.
Applying the stress of the X direction σx, the total strain in the X direction can be expressed as

εtotal
x =

σxtl2h cos2 θ
24EsI sinθ

. (16)

where t is the thickness of unit cell and I is the moment of inertia and I = b3t
12 .

Then the modulus of the unit cell in the X direction is

Etotal
x =

σx

εtotal
x

=
24EsI sinθ
tl2h cos2 θ

. (17)

At the vertical side link method, strain in the y-direction induced by the x-direction force is very
small and can be treated with zero. Therefore, the deformation in the y-direction induced by σx can be
written as

εx
y = 0. (18)

The corresponding Poisson ratio is
νy = 0. (19)
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We also use the ABAQUS FE approach to calculate the homogenized mechanical properties of the
unit cell [59]. Note that the effective length of the slanted edges should be modified as

le f f = l−
b

sinθ
. (20)

and the le f f is used to replace l in Equations (12)–(19).
For the SMP stent, there are two states in the process of expansion: the glassy state when delivering

into vessel and the rubbery state when expanding the plaque. Therefore, the moduli at the two states
are calculated. The FEM results are compared with the two analytical expressions: derived solutions
in this paper and Olympio’s theory in [40]. From the results shown in Figure 12, we can find that at
different material states and with different geometry parameters, good agreement is achieved between
the two theories and finite element method for the description of Young’s modulus in Y direction.
For Young’s modulus in X direction, both analytical solutions behave a correct trend while the theory
in this work provides more accurate results. With a fixed width of inclined walls and vertical walls,
varying the included angle θ and length ratio h/l, the analytical solutions could provide an effective
description for the equivalent modulus at two directions.
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Figure 12. Stiffness of the unit cell in the x- and y-directions from two theoretical analyses and the FEM
simulation (where E11 is the modulus in the x-direction, and E22 is the modulus in the y- direction):
(a) Modulus at the rubbery state and glassy state with different θ; (b) Modulus at the rubbery state and
glassy state with different h

l .

The analytical results of Poisson ratios of the unit cell in two directions at glassy state are compared
with FEM results in Figure 13. There is a good agreement for νy with two results, which validates that
the unit cell behaves a zero Poisson ratio in y-direction. However, the FEM results for νx shows that
there is deformation of unit cell in the x-direction under σy. We can see that the deformation of inclined
walls plays a more important role with a smaller included angle θ and a larger length ratio h

l . This
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means the assumption for the deformation of inclined walls in the x- direction is over constrained.
However, the maximum Poisson ratio is 0.0669 according to the FEM results with θ = 45◦. That is to say
the deformation of inclined walls in x-direction have a relatively small contribution to the deformation
of unit cell. Thus, the Poisson ratio of νx is still treated with zero.
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5.2. Mechanical Properties of SMP Stent through Analytical Approach

For the closed cylindrical structure, there are geometric relationships between the unit size and
the whole structure size (as shown in Equation (1)).

As the longitudinal deformation is stretch, the longitudinal modulus of stent can be derived as

EL =
σL

εL
=

EsbL sin(θ)

LR sin( πNc
) sin(θ) + 2NL(R sin( πNc

) cosθ)2 . (21)

where σL is the longitudinal stress applied on the cross section of the stent and εL is the corresponding
longitudinal strain.

Similarly, the circumferential strain of the SMP stent is bending so the circumferential modulus of
stent is

EC =
σC
εC

=
24EsI sinθ tan2 θNL

t(R sin( π
NC

))2L
. (22)

where σC is the hoop stress applied on the hoop surface of stent and εC is the corresponding
circumferential strain.

The radial modulus of the SMP stent is defined as

ER =
P

(Dp −D)/D
. (23)

where P is the applied external pressure, D and Dp are the original and deformed diameters of the stent.
Using the force equilibrium as shown in Figure 14 (at the same deformation of radius), we can get

2F = P ·D
F = σC · t

(24)

where F is the equilibrium force resulted from pressure P or hoop stress σC.
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Then we can obtain a relationship between ER and Ec
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P
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24EsI sinθ tan2 θNL
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To verify the efficiency of Equations (21–25), we compare the FEM results and analytical results
for the whole stent structure. To obtain the numerical values of modulus in the radial and longitudinal
directions, the symmetric boundary conditions of the numerical models are set, as shown in Figure 15.
The displacement in the x-direction of the A-A section and the displacement in the y-direction of B-B
section of stent are restricted. Applying a same displacement on two ends of the stent, the numerical
value of the longitudinal modulus can be obtained by the corresponding stress and strain. Similarly,
the numerical value of radial modulus can be obtained by applying a certain pressure on the outer
surface of the stent.
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Figure 16 presents the numerical and theoretical results of longitudinal modulus of SMP stent
which are symbolled with El-FEM and El- THEORY. From Figure 16, it can be found that there is
an obvious discrepancy between FEM simulation and the analytical analysis for Nc = 4 stent. This
could be explained by the fact that when the circumferential number is too small, to reach enough
compressed strain, the bending deformation starts to dominate the deformation behavior of the stent.
Therefore, a modified coefficient (0.88, 0.12) representing the bending and stretch proportion is added
to give a more accurate description of the SMP stent which is symbolled with EL-M (as shown in
Figure 16a,b). The coefficients are effective for the longitudinal modulus of SMP at both rubbery and
glassy states.

Figure 17 shows the comparison of the numerical results and theoretical results for the radial
modulus. To improve the accuracy of the equations, the deformation mechanism of the stent is
optimized. Considering the difference of the closure of stent and the infinity of the unit cell, the
circumferential deformation is reconsidered as a combination of bending and stretch. In other words,
the slanted members of the stent bended and compressed simultaneously when the stent is compressed.
Therefore, the radial strain is written as

εr = αεbr + (1− α)εsr. (26)

where εbr and εsr are the radial components of bending and stretch deformation of the slanted members,
respectively, and α is the bending proportion in the total strain.
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Assuming the slanted members only stretch when loaded σx, the bending deformation in the
x-direction of unit cell is derived as

εx =
σxh sinθ

2bEs
. (27)

Extending the deformation to the whole structure of stent, the radial modulus of stent can be
written as

ER =
t

R(α
t(R sin π

NC
)2L cos2 θ

24EsNLI sin3 θ
+ (1− α) L sinθ

NL2bEs )

. (28)

The modified theory fits the FEM results well. The specific values of α are shown in Table 5. It can
be seen that the bending deformation play a more important role for the stent with the smaller Nc.

Table 5. Bending proportion of radial strain of the stent.

Nc 4 8 12 16

α 0.3 0.35 0.35 0.4
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As shown in Figure 17, a good agreement between the numerical and theoretical results is
obtained. That is to say, this analytical solution can successfully describe the mechanical properties of
the metamaterial-based SMP stent. Tunable modulus of SMP stent can be achieved by changing the
heating temperature [13] as well as selecting different geometric parameters. Thus, both the numerical
and theoretical results show that the stent with a smaller Nc exhibits a larger modulus and thus a larger
radial deformation resistivity. In other words, the SMP stent with smaller radius could provide larger
radial force under the same expansion displacement requirement.

Now we try to define the radial strength, which is the important indicator of stent’s performance.
The radial strength of a stent represents its ability to resist the deformation induced by outer pressure.
As there is not a standard definition or equation for the radial strength of stents, in this study, we use
the radial force (RF), which comes from the applied pressure, to define the radial strength.

The definition of the radial force can be written as

FR = P · S. (29)

where P is the loaded radial pressure, S is the radial area, S = 2πR.
Then we can obtain

F = ER · εR · 2π ·R =
2πt

R(α
t(R sin π

NC
)2L cos2 θ

24EsNLI sin3 θ
+ (1− α) L sinθ

NL2bEs )

· (R′ −R). (30)

where R′ is the programmed deformation radius which is smaller than stent’s radius (R).
In practice, the size of a blocked vessel is predetermined, and therefore, the programmed

deformation radius for a stent with different geometries is the same. From Equation (30), keeping the
same geometric unit cells, we can find that if a SMP stent is deformed to a same target radius, the stent
with the bigger radius has higher radial force. This is because the stent with a bigger radius undergoes
a larger deformation and thus accumulates more radial force.

In addition, we should notice that there is an ultimate stress which is limited by the deformation
space (θ) of the unit cell. As mentioned in Equation (26), we give the definition of the circumferential

strain, for which the largest strain is εu =
le f f ·sinθ·NC

2πR . Then we can obtain a maximum circumferential
stress and ultimate radial force (URF) as

σu = Ecεu. (31)

Fu = 4·π·t·σu. (32)

The F which is smaller than the maximum compressed force Fu is effective. For example, with the
same geometric unit cell (h = 4.8 mm, l = 2.4 mm and θ = 60◦), we find that if we compress the stent
with radius 8.03 mm (Nc = 12) to radius 4.5 mm (smaller than that of the plaque), the radial force would
be 2.08× 10−4N, while the actual limited force is 1.82× 10−4N from Equation (32). Therefore, a stent
with this radius could not reach the expansion requirement. Furthermore, we discuss the practicability
of SMP stent with a fixed radius of 8.03 mm. The difference of the URF and RF of an SMP stent is
written as

DF = F− Fu = 2πR · ER · (εu − εR). (33)

The SMP stent is of practicability when DF is larger than zero. There is a positive correlation of DF

and (εu − εR), when (εu − εR) can be normalized with parameters of circumferential numbers NC and
the programmed radius R′. The difference of targeted strain and ultimate strain is derived as

εu − εR =
(R · sin( π

NC
) − b) ·NC

2πR
−
(R−R′)

R
. (34)
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From Figure 18, we can find that for targeted radius of 4.5 mm in this work, a SMP stent with
radius of 8.03 mm is unable to expand the blocked vessel due to its inadequate deformation. If the
radius of vessel blockage is larger, such as 5.0 mm and 5.5 mm shown in Figure 18, then a stent with
radius of 8.03 mm is effective with different circumferential numbers. The region marked with blue
box represents the field where SMP stent is able to reach the required compression displacement.
A maximum deformation space is found at Nc = 6. Similarly, we discuss the effect of radius on the
deformation space of a SMP stent (as shown in Figure 19). It can be seen that a smaller radius provides
a larger deformation space at the same circumferential number as well providing more permutations
for stent design.
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This analytical solution reveals that the radial force is dependent on the radius and deformation
space of the stent. Notably, the number of the periodic unit cell in the circumferential direction has a
great effect on the deformation ability of the stent. Figure 19 shows that the stent obtains the largest
deformation space when Nc reaches to the value of five or six. If the symmetry of the stent is considered,
Nc should be six. From point of view of the radial force, the stent radius should be selected as the
largest possible. However, from the point of view of buckling properties, a SMP stent with a smaller
radius is preferred. Therefore, there is comprehensive consideration in selecting the stent radius.



Polymers 2020, 12, 1784 18 of 21

Results show that a tunable radial force of an SMP stent can be obtained by varying the radius of the
stent and periodic circumferential numbers of the stent unit cell.

As the loading environment of a blocked vessel is complex and dynamically changing, the
proposed analytical approach could be improved in future, to consider more factors such as the
vessel–stent interaction, the wall shear force induced by blood flow. Nevertheless, our analytical
description can already be used to provide some primitive guidelines for the design and assessment of
the SMP stents.

6. Conclusions

For SMP stents, the self-expanding method makes a less harmful expansion for vessel plaque,
while the strength should be carefully programmed to provide enough radial support force. In this
study, a new geometry model for the SMP stent of metamaterial was proposed. This geometric model
can reduce the axial stretch in length during expansion, due to the zero Poisson’s ratio. The simulation
results revealed that the SMP stent has a comparatively small stress and stress gradient distribution
of the expanded plaque. Therefore, we can say this geometric model of the SMP stent is effective to
reduce the restenosis. The buckling analysis gave possible failure modes of the SMP stent under the
complex mechanical environment of a blood vessel and indicated a smaller radius was superior to a
stable expansion. Furthermore, a preliminary theory to assess the radial strength of the SMP stent
was presented. The good agreements between the numerical and analytical results are found. We
also provided a tunable radial strength of the SMP stent by changing the geometric parameters. In
conclusion, this new geometric model based on metamaterial for the SMP stent is very promising in
supporting a blocked blood vessel. The proposed analytical solution to evaluate the radial strength of
the stent can also be used to provide guidelines for the design of the SMP stent structure.
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