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Periodic arrays of gyrotactic plumes in bioconvection
S. Ghorai and N. A. Hill
Department of Applied Mathematics, University of Leeds, Leeds LS2 9JT, United Kingdom
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Using the continuum model of Pedleyet al. @J. fluid Mech.195, 223 ~1988!# for bioconvection in
a suspension of swimming, gyrotactic micro-organisms, the existence and stability of periodic
arrays of two-dimensional plumes in deep chambers are investigated. The system is governed by the
Navier–Stokes equations for an incompressible fluid coupled with a micro-organism conservation
equation. These equations are solved numerically using a conservative finite-difference scheme. In
sufficiently deep chambers, the plumes are sometimes unstable to varicose or meandering modes. A
linear stability analysis for an infinitely deep plume predicts the growth rates of these instabilities
and agrees well with the numerical results. ©2000 American Institute of Physics.
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I. INTRODUCTION

Bioconvection is the term used to describe the pheno
enon of spontaneous pattern formation in suspension
micro-organisms such as bacteria and algae~Pedley and
Kessler1!. In all cases, the micro-organisms are 3%–5
denser than water and on average they swim upwards~al-
though the reasons for up-swimming may be different
different species!. Micro-organisms respond to certa
stimuli by swimming, on average, in particular direction
These responses are calledtaxes, examples beinggravitaxis,
phototaxis, chemotaxis, and gyrotaxis. Gravitaxis indicates
swimming opposite to gravity,phototaxisdenotes swimming
towards or away from light, andchemotaxiscorresponds to
swimming up chemical gradients.Gyrotaxisis swimming di-
rected by the balance of torques due to gravity acting o
bottom-heavy cell and shear flow. We consider gyrotaxis
this paper.

Gravitaxis in small micro-organisms is a passive orie
tation mechanism unlike active responses to external stim
such as chemotaxis or phototaxis. In large cells or in mu
cellular organisms, the force of gravity can be ‘‘sense
dynamically by cilia or statically by movable organelles su
as statoliths and otoliths. However, such mechanisms are
usually found in the smaller single cells, which are oft
simply orientated by their own asymmetry. Cells swim ra
domly but, for example, if a neutrally-buoyant cell is bottom
heavy ~i.e. its center of gravity is posterior to its center
buoyancy!, the cell will tend to swim vertically upwards in
the absence of any other stimuli resulting in~negative! gravi-
taxis ~Kessler2!. Such cells are also gyrotactic in that a loc
velocity gradient will produce viscous torques on the ce
body tending to tip it away from the vertical. If the cells d
tend to swim upwards, the top layer of the suspension
51070-6631/2000/12(1)/5/18/$17.00
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comes denser than the layer below. When the governing
rameters are above critical values, this leads to convec
instability and formation of convection patterns. This ph
nomenon is known as ‘‘bioconvection’’; it has some simila
ity with Rayleigh–Bénard convection, but is driven solely b
the swimming of micro-organisms as the following observ
tions make clear. Direct thermal convection can occur
micro-organism suspensions if the containing chambe
heated from below or from the sides, or if sufficient heat
absorbed from the illumination. However, bioconvecti
continues in a layer that is strongly cooled from below, so
is not a thermal effect~Platt3!. The radius,a, of a typical
gyrotactic cell is approximately 531024 cm and the specific
gravity is approximately 0.05. The Stokes velocity, which
2a2Dr/9m'331024 cm s21 is 1% of the cells’ swimming
speed and the patterns disappear when the cells stop s
ming.

Plesset and Winet4 made some measurements of t
wavelengths of the bioconvection patterns at the onse
instability in a suspension of the ciliate,Tetrahymena pyri-
formis, which is negatively gravitactic~but not apparently
gyrotactic! ~Kessler2! and showed agreement with the line
stability theory for a layer of dense fluid overlying a layer
light fluid. Kessler2 demonstrated that many swimmin
micro-organisms are gyrotactic and made observati
~Kessler5! of both the almost regular patterns that occur
concentrated algal suspensions in shallow layers a few
limeters deep, and of gyrotactic plume formation in a t
narrow cylindrical tube. Childresset al.6 analyzed the bio-
convective instability of a suspension of gravitactic cells, a
Pedleyet al.7 extended the theory of Childresset al.6 to de-
velop a continuum model for a suspension ofgyrotactic
micro-organisms. Figure 2~d! in the review by Pedley and
© 2000 American Institute of Physics
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6 Phys. Fluids, Vol. 12, No. 1, January 2000 S. Ghorai and N. A. Hill
Kessler1 shows bioconvection plumes in a tall vessel but
quantitative measurements of such plumes in deep cham
have yet been made. The fluid speed generated within
convection is typically of the order of 1 mm s21.

Observations of pattern formation have been record
previously by such authors as Wager,8 Loeffer and Mefferd,9

Wille and Ehret,10 and Kessler11 but the results have tende
to be of a qualitative nature. A recent quantitative study
bioconvection in algal suspensions was conducted by B
and Hill,12 who measured the wavelengths of the planfor
of shallow bioconvection patterns as a function of the de
and concentration of the suspension. Hill and Ha¨der13 mea-
sured the trajectories of individual swimming algal cells a
showed that their motion is well-characterized by the limit
a correlated, biased, random walk in which the time s
tends to zero. They were able to calculate the statistical
ments required for the coefficients of the Fokker–Plan
equation for the cells’ orientational probability density fun
tion. These coefficients are needed in Pedley and Kessle14

new continuum model.
For simplicity, algal cells such asChlamydomonas

~whose shapes closely approximate a spheroid! are idealized
here as spheres of radiusa. Figure 1 shows such a cell place
in a shear flow. Since algal cells are small with typical bo
diameters of 10–20mm, and swim at speeds of 100mm s21,
the Reynolds number associated with swimming is ve
small and inertia can be neglected. Thus a typical cell sw
in a directionp at an angleQ to the vertical determined by a
balance between the gravitational torque,Tg , due to its being
bottom heavy, and a viscous torque,Tm , due to fluid-
velocity gradients,“u, across its body and rotation of th
cell, i.e.,

Tg1Tm50. ~1!

FIG. 1. An idealized algal cell.Q increases in the anticlockwise sense a
h denotes the displacement of the center of gravity from the center of

cell, so thath5h( x̂ sinQ2ŷ cosQ) relative to Cartesian coordinates,Cxy,
with the origin at the center of the cell,C, and the horizontal,x, and the
vertical,y, directions fixed relative to the laboratory.M is the center of mass

andWc5Wc p̄ is the average swimming velocity of the cell relative to th
water. Herep is a unit vector in the swimming direction.
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This balance is known as gyrotaxis~Kessler5!. For a sphere
of radiusa, the viscous torque is

Tm54pma3~“3u22V!,

whereV is the cell’s angular velocity andm is the viscosity
of the fluid. The rate-of-strain tensor gives rise to an ad
tional torque on aspherical bodies only~Batchelor15!. Also,
the gravitational torque can be written as

Tg52hmp3g,

wherem is the mass of the cell andg is the acceleration due
to gravity. For algal cells,h is a few percent of the cel
radius. Simplifying Eq.~1!, we get

dQ

dt
5

Bz2sinQ

2B
, ~2!

where z is the horizontal component of the vorticity.B
54pma3/mgh is the time scale for the reorientation of th
micro-organisms by the gravitational torque against visc
resistance, and it is called the ‘‘gyrotactic orientation para
eter’’ by Pedley and Kessler.16

Thus the gravity and the vorticity can orient individu
cells and guide their trajectories. Gyrotaxis can be dem
strated in an experiment in a slow Poiseuille flow down
vertical tube of circular cross section. The balance betw
gravitational and viscous torques gives one stable equ
rium orientation with individual cells tipped away from th
upward vertical towards the axis of the pipe. The cells sw
towards the axis as they are carried along in the pipe fl
and focus into a narrow beam. Conversely, if the direction
the flow is reversed, the cells are oriented away from the a
toward the walls, confirming the role of gyrotaxis in ce
orientation. Gravity also enters in another, entirely differe
manner in producing cooperative phenomena~Kessler5!. The
local average fluid density in a suspension is modified by
presence of cells. If there is a small region with a grea
than average concentration of cells, the excess density is
ficient to produce a substantial sinking velocity. The sinki
region produces a fluid velocity field which guides furth
gyrotactic accumulation perpendicular to it. This positi
feedback generates and maintains the sharply focused
scending plumes of cells that are frequently observed
dense algal cultures. The focused beam of algae is o
observed to develop an instability in the form of regular
spaced axisymmetric ‘‘blobs’’~Kessler5!. The blobs are re-
gions of increased cell concentration, which are wider th
the beam. They fall faster than the centerline velocity a
therefore have an internal vortex-ring structure. Bioconv
tion patterns are generated both by purely gravitactic c
and by gyrotactic cells. However purely gravitactic cells a
cumulate at the top layer and are then swept down plume
advection, whereas gyrotactic cells converge to the plum
from both the top layer and from the sides of the plume.

Harashimaet al.17 solved the equations of bioconvectio
numerically for purely up-swimming cells~i.e. Q50) in a
two-dimensional layer of finite depth and width, and studi
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7Phys. Fluids, Vol. 12, No. 1, January 2000 Periodic arrays of gyrotactic plumes in bioconvection
the evolution of bioconvection from an initially uniform
state. They proposedminimum potential energyas a prin-
ciple for determining the steady-state roll size for a giv
value of Rayleigh number and a given box size. Their co
putational domain had a width/height ratio of 8. In contra
we consider numerical solutions of the equations of bioc
vection forgyrotacticcells in deepchambers using the con
tinuum model of Pedleyet al.7 Ghorai and Hill18 investigated
the stability of gyrotactic plumes in a chamber with stre
free side walls. The plumes are stable only in a shall
chamber. As the depth of the chamber is increased, bo
varicose and a meandering instability develop and, u
mately, the meandering instability rapidly destabilizes
plume. The growth rate of the meandering mode was hig
than that of the varicose mode at moderate wavelengths

We shall study two-dimensional bioconvection in a lay
confined by rigid bottom, stress-free top, and periodic late
boundaries in the nonlinear regime. The structure and sta
ity of a single plume is examined by varying the gyrotax
parameter, cell swimming speed, cell concentration, and
depth of the chamber. The plume is steady in a shal
chamber, but becomes unstable as the depth of the cha
is increased. The instability sets in via a varicose mo
where ‘‘blobs’’ convect along the plume periodically. Als
a meandering mode sometimes appears, depending on
parameter values. We shall show that the growth rate of
varicose mode is usually higher than that of the meande
mode when the side wall boundary conditions are perio
unlike the case of stress-free side walls~Ghorai and Hill18!.
These two modes and their dependence on the paramete
examined by performing a linear stability analysis for
infinitely long plume. The agreement between the numer
experiments in a finite depth chamber and the linear stab
analysis is discussed. We demonstrate that the results o
linear stability analysis do not always agree with the num
cal solutions due to the finite depth of the chamber.

II. MATHEMATICAL FORMULATION

The geometry considered consists of a two-dimensio
rectangular box of widthL and heightH referred to Cartesian
coordinates with they-axis pointing upwards. The top wall i
stress-free, the bottom wall is rigid and the side walls
periodic. There is no flux of cells through the top and t
bottom walls.

A. Governing equations

As in Pedleyet al.,7 we assume a monodisperse c
population which can be modelled by a continuous distri
tion. The suspension is dilute so that the volume fraction
the cells is small and cell–cell interactions are negligib
Each cell has a volumeq and densityr1Dr, wherer is the
density of the water in which the cells swim andDr/r!1.
The velocity u is solenoidal and the vorticity,v5curlu
5(0,0,z); thus we introduce a stream functionc such that

u5~u,v,0!5S ]c

]y
,2

]c

]x
,0D , z52¹2c. ~3!
-
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Conservation of cells requires that the number of cells
unit volume,n, satisfies the equation

]n

]t
52“–J, ~4!

where the flux of cells is

J5nu1nWc p̄2D“n. ~5!

The third term on the right-hand side of Eq.~5! represents
the random component of cell locomotion. We assume t
the diffusion coefficientD is homogeneous, isotropic an
independent of the other parameters of the problem. The
ond term in Eq.~5! arises due to the swimming of the cell
Wc p̄ is the average swimming velocity relative to the flu
andWc is assumed to be constant.p̄(x,t) represents the av
erage orientation of the cells and is estimated from the tor
balance equation. The assumptions of constant isotropiD

and deterministicp̄ in Eq. ~5! are ad hoc and modification
have been considered by Pedley and Kessler14 and Bees
et al.19 We retain the simpler form forJ in Eq. ~5! because it
contains the essential features that we wish to model
because improvements lead to quantitative adjustm
rather than qualitative changes~Ghorai20!. Typical values for
these parameters are given in Table I based on estim
given by Kessler21 for a suspension ofChlamydomonas ni-
valis.

The vorticity evolves according to the equation

]z

]t
1“–~zu!5n¹2z2

Drgq

r

]n

]x
. ~6!

TABLE I. Estimates of typical parameters for a suspension ofC. nivalis.

Mean concentration n̄ 106 cells cm23

Specific gravity Dr/r 0.05
Average radius a 531024 cm
Center of gravity offset h 1025 cm
Volume per cell q 5310210 cm3

Swimming speed Wc 1022 cm s21

Diffusivity of cells D 531024 cm2 s21

Kinematic viscosity n 1022 cm2 s21

Gyrotactic reorientation parameter B 3.4 s
Typical plume spacing L 0.5 cm

Scaled swimming speed
Vc5

Wc L

D
10

Schmidt number
Sc5

n

D
20

Gyrotaxis number
G5

BD

L2

1022

Rayleigh number
R5

n̄qDrgL3

rnD

500
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8 Phys. Fluids, Vol. 12, No. 1, January 2000 S. Ghorai and N. A. Hill
Heren is the kinematic viscosity and Eq.~6! is derived under
the Boussinesq approximation, neglecting all effects of
cells on the fluid except their negative buoyancy, because
suspension is dilute.

B. Calculation of the mean direction

From Fig. 1, we have

p[~px ,py!5~2sinQ,cosQ!,

whereQ is the solution of Eq.~2!. If the shear is sufficiently
small so thatuBzu<1, then the steady-state orientation
obtained by setting the left hand side of Eq.~2! equal to zero.
When uBzu<1, we find that

p̄5~2k,~12k2!1/2!, uku<1, ~7!

where k5Bz. If the vorticity is large (uBzu.1), the cell
tumbles but swims on average in a fixed direction at an an
to the vertical~Kessler5!. When the vorticity is large, the
average swimming directionp̄ is approximated by integrat
ing the swimming direction over the tumbling period~Ghorai
and Hill18!.

If k5Bz.1, then

p̄5~2k1~k221!1/2,0! ~8!

and similarly, ifk5Bz,21, then

p̄5~2k2~k221!1/2,0!. ~9!

Equations~7!, ~8!, and~9! determine the average swimmin
direction of the cells for any value ofz.

The equations are scaled using the widthL, the time
scale L2/D, and the mean concentrationn̄. The resulting
system of coupled equations is

u5~u,v,0!5S ]c

]y
,2

]c

]x
,0D , z52¹2c, ~10!

]z

]t
1“–~zu!5Sc¹

2z2ScR
]n

]x
, ~11!

and

]n

]t
52“–J, ~12!

where the flux of cells is

J5nu1nVc p̄2“n. ~13!

Here Sc5n/D is the Schmidt number,Vc5WcL/D is the
scaled cell swimming speed, andR is a Rayleigh number
defined as

R5
n̄qDrgL3

rnD
.

e
he

le

The definition ofR is nonstandard in that it is based on th
width of the chamber and on the mean cell concentrati
rather than the height and cell concentration at the top of
layer. The conventional Rayleigh number,R* say, used by
Hill et al.22 is related to our definition by

R* 5RVcl
4/~12exp~2Vcl!!,

for a given aspect ratiol5H/L, and it increases with an
increase in the height of the chamber, whereas ours rem
constant. Our choice for the length and the time scales
sures that the height of the chamber can be varied inde
dently of the other parameters. Note also that the bioconv
tion equations reduce to those of the thermal convec
whenVc50. p̄ is defined by Eqs.~7!–~9!, wherek5Gz and
G5BD/L2 is the dimensionless gyrotaxis number. The
mensionless gyrotaxis number represents the ratio of the
orientation time due to gyrotaxis to the diffusion time. Th
boundary conditions are applied at

x56 1
2 and y50,l.

C. Initial and boundary conditions

We impose rigid, no-slip boundary conditions at the b
tom wall, stress-free boundary conditions at the top wall a
no flux of cells through them, so that

c5
]c

]x
5J–ŷ50 at y50,l,

~14!
]c

]y
50 at y50,

]2c

]y2
50 at y5l.

The vertical side walls are periodic and thus

c~2 1
2!5c~ 1

2!, z~2 1
2!5z~ 1

2! andn~2 1
2!5n~ 1

2!. ~15!

The initial conditions are that of a uniform state togeth
with a small perturbation to the uniform concentration
cells,

c50, z50, andn511e cos~mpx!, ~16!

where e51025 and m52. The perturbation is applied fo
computational convenience to ensure that the plume form
the middle of the chamber.

III. NUMERICAL PROCEDURE

The governing Eqs.~10!–~12! are discretized using a
conservative finite-difference scheme~Ghorai20! on a stag-
gered mesh with the stream function and vorticity stored
one set of nodes and the concentration stored on anothe
of nodes. The grid is chosen so that the concentration no
lie in the interior only, whereas those of the stream funct
and vorticity lie in the interior and also on the boundary
the domain. The advantage of the staggered mesh is tha
no-cell flux boundary condition can be satisfied immediat
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9Phys. Fluids, Vol. 12, No. 1, January 2000 Periodic arrays of gyrotactic plumes in bioconvection
when discretized, without further approximation. We kno
that a plume is concentrated along a narrow column and
there are boundary layers at the top and bottom walls du
the large cell concentration and the presence of the r
wall, respectively. In order to resolve these gradients ac
rately, a nonuniform coordinate mesh is used. We transf
the nonuniform spatial incrementsDxi andDyj in the finite
difference equations to a uniform grid using an orthogo
transformationjk5jk(xk) which also maps the problem t
the computational domain21<jk<1, wherexk5(x,y) and
jk5(j,h). An accurate transformed finite difference equ
tion for the first order derivative is given by

f i 112 f i 21

2Dj~dx/dj! i
5 f i

IF11
~Dj!2

6 S d3x

dj3D
i

Y S dx

dj D
i
G ~17!

~de Rivas23!. Here f i is the value of the functionf (x) at the
i th node andf i

I is the first order derivative at thei th node.
The second term inside the bracket on the right-hand sid
Eq. ~17! is important only when there is a large grid vari
tion. The second-order difference operator is obtained by
cursion of Eq.~17!. The above difference approximation h
a truncation error ofO(Dj2) for an arbitrary mesh transfor
mation in problems of boundary layer character. Here
have taken the transformations proposed by Roberts.24

An expression for the vorticity boundary condition ca
be obtained by expanding the stream function near the r
surface using a three-term Taylor series expansion and
making use of no-slip condition,

zw52
znw

2
23.0

cnw

~Dn!2
, ~18!

whereznw , cnw are the values ofc,z at the near-wall node
~adjacent to the wall! andDn is the nondimensional distanc
of the near-wall node from the wall.

An implicit scheme with Euler backward differencing
time and central differencing in space is used to obtain
transient solutions. A line-by-line cyclic tridiagonal matr
algorithm with relaxation is used to solve the nonlinear d
cretized equations. The number of grid points along thx
at
to
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of

e-

e

id
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e
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direction is 36 and the number of grid points along they
direction is increased with an increase in aspect ratio.
example 36 points are taken forl51 and 56 points are take
for l54 along the vertical direction. Some of the resu
were run with different numbers of grid points to check t
grid independence of the solutions. If the swimming spee
zero then the equations of bioconvection are similar to th
of the heat convection problem. To validate the code, writ
in terms of stretched coordinates, the code has been run
the heat convection problem and the agreement with
benchmark solution of de Vahl Davies25 ~Ghorai20! is good.
The code has also been used to compute the critical Rayl
numbers against wavelengths~Ghorai and Hill18! and the
agreement with the linear stability results of Hillet al.22 is
excellent.

IV. RESULTS

Equations~10!–~12! possess a static solution withc
5z50 and an equilibrium exponential concentration profi

np~y!5
Vcl exp~Vcy!

exp~Vcl!21
. ~19!

If the governing parameters are above the critical values,
concentration profile develops from the initially uniform
state towards Eq.~19!, but bioconvection begins before th
profile develops fully. In the following discussions, we co
sider physically relevant parameter values based on a ch
ber width~or periodic spacing! of approximately 0.5 cm us-
ing data from Table I.

A. Effect of the aspect ratio

To study the effect of the depth on plume formation, t
governing parametersR,Sc ,G,Vc are kept constant at phys
cally relevant values~see Table I!,

R5500, Sc520, G50.01 andVc510, ~20!

and the aspect ratio is varied from small to large values.
FIG. 2. Steady-state plume for aspect ratiol51 with periodic side walls;~a! concentration,~b! cell fluxes,~c! streamlines~with equally spaced contour
levels!.
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FIG. 3. Variation ofnmid5n(0,2) against time for aspect ratiol54. The decreasing amplitude of the fluctuations suggests that the plume solution
approaching the steady-state slowly.
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For aspect ratiol51, the evolution of the plume is simi
lar to the stress-free side walls case~Ghorai and Hill18!. Ini-
tially the cells accumulate at the top and form a plume in
middle of the two-dimensional box due to the perturbation
the initial uniform concentration of cells. The plume b
comes steady after a short period of time. The final stea
state of the plume is shown in Fig. 2. In this figure are pl
ted ~a! the concentration profile as a surface,~b! the total cell
flux vectorJ, and ~c! the streamlines. The final state of th
plume is also steady forl52, but it takes longer to reach th
final state and the solutions in the mid-region of the plu
are almost independent of the vertical coordinate. A sm
e
o

y-
-

e
ll

blob appears at an early stage and starts convecting dow
plume periodically but it gradually disappears as the fi
steady-state is reached. Forl54, the variation of the centra
concentration,nmid5n(0,2), at the midpoint of the chambe
is plotted in Fig. 3. It shows that the amplitude of the flu
tuation decreases much more slowly.

The case whenl55 is different from the previous case
We have shown the evolution of the concentration~as con-
tours! from the initial uniform state in Fig. 4. When the hea
of the plume hits the bottom of the chamber@Fig. 4~d!#, a
small blob develops just above it. This blob disappears r
idly for small aspect ratios, e.g.,l51,2, and much more
FIG. 4. Evolution of the plume at successive times plotted as concentration contours for aspect ratiol55 with periodic side walls.
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FIG. 5. Snapshot of~a! concentration,~b! cell fluxes, and~c! streamlines for periodic blob convection at an aspect ratiol55 with periodic side walls.
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slowly for aspect ratiol54, but in this case (l55), it con-
vects along the plume periodically. Figure 5 shows a sn
shot of the periodic blob convection where the blob is a
proximately at the mid-height of the chamber. Figure 5~b!
shows that some of the cells are recirculating at the bot
of the plumes and the rest are advecting upwards. Som
these upwards swimming cells are attracted to the blob
to the circulation and the others swim to the top of the cha
ber. When this blob hits the bottom of chamber, then
forces a fraction of the cells~circulating at the bottom! to
advect upwards and during this time another blob start
develop near the top of the plume. The variation of the c
tral concentration,nmid5n(0, 2.5), at the midpoint of cham
ber against time is plotted in Fig. 6. It shows that this bl
p-
-

m
of
e
-
t

to
-

convection is periodic with a period of approximately 0.1
units. Figure 7 shows four snapshots of concentrations d
ing one cycle of the oscillation. Figure 7~a! shows the blob
about to hit the bottom of the chamber. Figure 7~b! shows it
just after hitting the bottom of the chamber with anoth
small blob having developed from the top of the plume. F
ure 7~c! shows the new blob as it crosses the mid-height
the chamber and Fig. 7~d! completes the full cycle. Thus th
final state of the plume is periodic and the final state und
goes a Hopf bifurcation as the aspect ratio,l, is increased
from 4 to 5.

When the aspect ratio is increased to 8, the numbe
blobs convecting along the plume at any instant is two, a
the concentration contours during one cycle of the oscillat
i-

s-
FIG. 6. Variation of nmid5n(0,2.5)
against time for aspect ratiol55. It
shows that the plume becomes per
odic after t55 approximately. The
fluctuations correspond to blobs cros
ing the mid-height of the chamber.
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FIG. 7. One cycle of the oscillation in concentration~plotted as equally spaced contour levels! for aspect ratiol55. The intervals between plots~a!–~d! are
equal and the period is approximately 0.15 units.
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are shown in Fig. 8. Figure 8~a! shows one blob descendin
near the middle of the chamber and the other one th
quarters of the way down the chamber. The next fig
shows the first blob after it has crossed the mid-height
the second blob has hit the bottom of the chamber. Dur
e-
e
d
g

this time a new blob has formed at the top of the plum
Figure 8~c! shows two blobs descending along the plume a
Fig. 8~d! completes the full cycle. Thus, as the aspect ratio
the chamber increases, the number of blobs increases, s
wavelength of the varicose mode is finite. The distance
FIG. 8. One cycle of the oscillation in concentration~plotted as equally spaced contour levels! for aspect ratiol58. The intervals between plots~a!–~d! are
equal and the period is approximately 0.15 units.
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FIG. 9. Dependence of plume on gy
rotaxis number in a deep chamber o
aspect ratiol58 for G52.531023;
snapshots of streamlines for~a! initial
apparently-steady state att52.0, ~b!
movement of the plume to the right a
t510.0, and ~c! movement of the
plume to the left att510.7.
its
et
e

os

n

-

l

s.

red
ain

lf
t an
o be

ode
e

e

r is
ge
n
tate

me
tween the blobs is approximately 2 cm in dimensional un
Only the varicose instability appears for the set of param
values given by Eq.~20!. On the other hand, this varicos
mode and a meandering mode appear for the same param
values in simulations with stress-free side walls~Ghorai and
Hill 18! and the meandering mode dominates the varic
mode for aspect ratiol.2.

B. Effects of the gyrotaxis number

In this section we investigate the dependence of the fi
state of the plume on the gyrotaxis number,G, for a large
aspect ratiol58 of the chamber. We fix the following pa
rameter values,

R553102, Sc520, Vc510 andl58. ~21!

The parameter values given by~21! are derived from a cel
swimming diffusion coefficientD5531024 cm2 s21 and a
chamber widthL50.5 cm ~see Table I!. The value ofG
5BD/L2 based onB53.4 s ~Pedley and Kessler1! is ap-
proximately 731023. Thus we varyG from 2.531023 to
.
er

eter

e

al

1.731022 to cover a range of physically relevant value
The initial conditions are given by Eq.~16!. At an early stage
of plume formation, blobs appear in all the cases conside
in this section. Ultimately these blobs disappear for a cert
range of values ofG, but remain in the final state for a
different range of values ofG. Details of the computations
are presented below.

For G52.531023, the plume extends to less than ha
of the depth of the chamber. The blobs, which appear a
early stage, soon disappear and the plume appears t
steady as shown in streamlines in Fig. 9~a!. However, ulti-
mately, this plume becomes unstable to a meandering m
at aroundt58.5 and moves towards the right side of th
chamber@Fig. 9~b!# and then towards the left side of th
chamber@Fig. 9~c!#. The concentration at the point (x,y)
5(0,7) near to the top of the central axis of the chambe
plotted against time in Fig. 10. The solution at an early sta
(t,4) is of periodic blob convection. This blob convectio
dies down and the plume remains apparently in a steady-s
for 4,t,8.5. The meandering mode destabilizes the plu
-
FIG. 10. Variation of the concentra
tion at the point (x,y)5(0,7) with G
52.531023 for aspect ratiol58 for
the plume shown in Fig. 9.
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FIG. 11. Dependence of the plume on gyrotaxis number in a deep chamber of aspect ratiol58; snapshots of streamlines for~a! G5631023, ~b! G
50.015, ~c! G50.017. In ~a! and ~c! the final state is steady but in~b! there is periodic blob convection along the plume.~See also Fig. 8, whereG
50.01.!
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at aboutt59.0. The final state of the plume appears to
almost doubly periodic, where the plume oscillates from l
to right and then from right to left with a periodically modu
lated amplitude.

For G5631023, the plume extends to almost thre
quarters of the depth of the chamber and the final stat
steady@Fig. 11~a!#. The solution in the mid-region of the
plume is almost independent of the vertical coordinate. T
solution becomes periodic with two blobs convecting alo
the plume whenG is increased to 0.01~see Sec. IV A and
Fig. 8!. This blob convection persists atG50.015, but the
size of the blobs becomes smaller and atG50.017, these
blobs disappear@see Figs. 11~b! and 11~c!#. As the value of
G increases, the concentration of cells at the bottom of
chamber also increases.

C. Effects of the cell swimming speed

Here the values ofR, G, Sc , andl are kept fixed andVc

is varied from 5.0 to 12.0. The following values are taken
the fixed parameters:

Sc520, G51022, R5500, andl58 ~22!

~see Table I!. In all the runs described here, blobs appea
an early stage. ForVc55 and Vc58, the plumes do no
extend down to the bottom of the chamber and the fi
states of the plume are steady@see Fig. 12~a! and 12~b!#. The
e
t

is

is
g

e

r

t

l

length of the plume forVc58 is greater than that ofVc55
and the time to reach the steady state is longer forVc58
than Vc55. This solution becomes periodic with two blob
convecting along the plume whenVc is increased to 10~see
Sec. IV A and Fig. 8!. This varicose convection persists
Vc512 @Fig. 12~c!#, but the size of the blobs does not dimin
ish unlike the largeG cases, in which the blobs almost di
appear at higher values ofG. As the value ofVc increases,
the concentration of cells at the bottom of the chamber a
increases.

D. Effects of the Rayleigh number

We investigate the effect of varying the Rayleigh num
ber on the stability of a single plume in a chamber of asp
ratio 8. The values ofVc , G, Sc andl are kept fixed andR
is varied from small to large values. The following values a
taken for the fixed parameters,

Sc520, G51022, Vc510 andl58 ~23!

~see Table I!. For R5125, the plume extends over less th
half of the depth of the chamber. The blob which appear
an early stage soon disappears and the final solution beco
steady as shown in Fig. 13~a!. When the gyrotaxis number i
varied~see Sec. IV B!, we have seen that when the plume
short andG is small andR5500, it becomes unstable via
meandering instability. However at this small value ofR, the
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FIG. 12. Dependence of the plume o
cell swimming speed in a deep cham
ber of aspect ratiol58; snapshots of
streamlines for~a! Vc55, ~b! Vc58,
~c! Vc512. In ~a! and ~b! the final
state is steady but in~c! there is peri-
odic blob convection along the plume
~See also Fig. 8, whereVc510.!

FIG. 13. Dependence of the plume on Rayleigh number in a deep chamber of aspect ratiol58; snapshots of streamlines for~a! R5125,~b! R5250 and~c!
R5750. In ~a! the final state is steady but in~b! and ~c! there is periodic blob convection along the plume.~See also Fig. 8, whereR5500.!
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final state of the plume is steady. Thus the meandering in
bility is not only related to the length of the plume, b
depends on the other parameter values. WhenR5250, the
plume extends down to almost half of the chamber depth
a blob convects along the plume periodically@Fig. 13~b!#.
Again this differs from the gyrotaxis case. We have seen
the final state of the plume is steady~see Sec. IV B! for a
plume extending to almost three-quarter of the depth of
chamber, but here the plume extends only down to half
depth and still the final state is periodic. Thus the blob~vari-
cose! instability also depends on the other parameter val
as well as the length of the plume. It was shown in Sec. IV
that atR5500, the plume almost extends down to the b
tom of the chamber and the final state is periodic with t
blobs convecting along the plume. This blob convection p
sists atR5750, but the cell concentration at the bottom
the chamber increases. Figure 13~c! shows a snapshot of thi
periodic blob convection.

V. LINEAR STABILITY ANALYSIS

We have seen two kinds of instabilities in a large asp
ratio chamber. In order to understand these instabilities
ter, a model for an infinitely long plume is derived and
linear stability is tested. The linear stability analysis is va
only when the cells do not tumble so thatG cannot be too
large. The governing equations are Eqs.~10!–~12! with the
swimming direction given by

p̄5~2Gz,~12G2z2!1/2!.

A. The primary flow

The basic flow configuration is sketched in Fig. 14. B
cause of symmetry, the primary flow is solved only in t
region 0<x<1/2. The upwards velocityv(x) is greatest at
x51/2 and least atx50. Thus,

z~x!5
dv
dx

50 at x50, 1/2, ~24!

whereas the concentration is greatest atx50 and least atx
51/2 so that

FIG. 14. Geometry of plume located in21/2<x<1/2. Schematic diagram
of concentration profile.v0 is the central downward speed of the plume.
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50 at x50, 1/2. ~25!

Also the total nondimensional fluid flux,Qf , and the total
nondimensional cell flux,Qc , are prescribed. The values o
both Qf and Qc are zero for the numerical experiment
which implies that

2 E
0

1/2

v~x!dx5Qf 50 ~26!

and

2 E
0

1/2

@v~x!1Vc~12G2z2!1/2#n~x!dx5Qc 50. ~27!

From Eqs.~10!–~12! for bioconvection and the boundar
conditions given by Eqs.~24! and ~25!, we obtain

d3v

dx3
5R

dn

dx
~28!

and

dn

dx
52VcG

dv
dx

n. ~29!

Equation~28! represents a balance between viscous diffus
and buoyancy and Eq.~29! represents a balance between t
horizontal diffusive and the horizontal gyrotactic cell fluxe
Equations~26!–~29! have been solved for a given set
parameter values~Ghorai and Hill18!. Figure 15 shows the
basic flows for different values ofG, the gyrotaxis number
The peak cell concentration is relatively low for largeG and
vice versa.

B. The linear stability problem

We consider a small perturbation of amplitudee (0,e
!1) to the primary flow~see Sec. V A withQf50 andQc

50), so that

c5c~x!1ec* ~x,y,t !, n5n~x!1en* ~x,y,t !, ~30!

and look for normal modes of the form

FIG. 15. Basic velocity~a! and concentration~b! profiles for an infinitely
long plume for different values ofG in a flow between periodic side walls
HereR5500,Vc510, Qf50 andQc50.
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c* 5f~x!exp~ ia~y2ct!! and

n* 5u~x!exp~ ia~y2ct!!.

Substituting into the governing Eqs.~10!–~12! and lineariz-
ing about the basic state gives atO(e)

D4f52RDu1H 2a22
iac

Sc
1

iav~x!

Sc
J D2f

1H ia3c

Sc
2

ia

Sc

dz

dx
2

ia3v~x!

Sc
2a4J f ~31!

and

D2u52VcGz~x!Du1H a22 iac1 iav~x!2VcG
dz

dx

1 iaVc~12G2z2!1/2J u1VcGn~x!D3f

1H VcG
dn

dx
1

iaVcG
2z~x!n~x!

~12G2z2!1/2 J D2f

2a2VcGn~x!Df1H ia
dn

dx
2a2VcG

dn

dx

2
ia3VcG

2z~x!n~x!

~12G2z2!1/2 J f, ~32!

whereD[d/dx. The boundary conditions are

Dif~21/2!5Dif~1/2!, i 50, . . . ,3, ~33!

Diu~21/2!5Diu~1/2!, i 50,1, ~34!

whereDi[ di /dxi . The boundary conditions are satisfied
both the varicose and the meandering modes. To investi
these modes separately, we specify the following bound
conditions in the half-region 0<x<1/2. The boundary con
ditions corresponding to the varicose mode are

f5D2f5Du50 at x50, 1/2 ~35!

and

u51 at x50. ~36!

These boundary conditions are the same as for the vari
mode in the stress-free side walls case~Ghorai and Hill18!.
The boundary conditions corresponding to the meande
mode are

Df5D3f5u50 at x50, 1/2 ~37!

and

D2f51 at x50. ~38!

Equations~31! and~32! together with the boundary con
ditions specify an eigenvalue problem forc as a function of
the dimensionless parametersR, Sc , Vc , G, anda, and the
instability grows whenever Im(c).0. Solutions to the full
linear stability problem are calculated with a fourth-ord
accurate, finite-difference scheme provided by Dr. D.
Moore ~Cash and Moore26!. This scheme is used to compu
~i! neutral curves for which Im(c)50, and ~ii ! the growth
te
ry

se

g

r
.

rate as a function ofa for given parameters values. Initially
values ofR, G, Vc , Sc , anda are supplied and the values o
c, f, andu, are estimated either from the asymptotic resu
or from the previous numerical results, or by imposing
sinusoidal variation inf(x) and u(x). Once a solution is
obtained, this solution can be used as an initial guess for
neighboring parameter values. The dependence of the
merical solutions on the number of grid points was tested
different parameter values.

C. Linear stability results

1. Effect of the gyrotaxis number

The growth rate curves for two different values ofG are
plotted in Fig. 16. For large values ofG @see Fig. 16~a!#, the
varicose instability dominates the meandering instabil
However for small values ofG @see Fig. 16~b!#, there is a
crossover in growth rates between the varicose and the
andering modes. Hence, for small values ofG, the competi-
tion between the modes depends on the wavelength of
instability, and the meandering mode is the most unsta
overall. The plume is unconditionally stable@ Im(c),0# at
sufficiently large wave numbers~small wavelengths!.

Figure 17 shows the stability diagram in theGa-plane.
The plane can be divided into five regions. In region I, t
plume is unstable to both the varicose and the meande
modes, but the growth rate of the meandering mode (Mg) is
greater than that of the varicose mode (Vg). On the other
hand, the plume is unstable only to the meandering mod
the region III. Thus for small values ofG, the plume be-
comes unstable via a meandering instability. The plume

FIG. 16. Growth rates of the varicose~—! and meandering~- - -! modes for
~a! G5631023 and ~b! G5231023. Here R5500, Vc510, Qf50 and
Qc50.

FIG. 17. Stability diagram in theGa-plane for periodic side walls. Here
R5500,Vc510, Qf50, andQc50. The growth rate of the varicose mod
(Vg) is zero on the long-dashed line and that of the meandering mode (Mg)
on the short-dashed line, andVg5Mg on the solid line. Both axes are in
logarithmic units.
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unstable to the varicose mode for large values ofG ~regions
II and IV! and is unconditionally stable at sufficiently sma
wavelengths~region V!. The varicose instability dominate
the meandering instability in most of the unstable region

2. Effect of the cell swimming speed

The growth rate curves associated with two different v
ues of Vc , the cell swimming speed, whenG50.01 are
shown in Fig. 18. The varicose mode is the most unsta
mode for the values of the parameters considered.
growth rate of the varicose~meandering! mode increases~de-
creases! with an increase in the value ofVc . The plume is
unconditionally stable at sufficiently small wavelengths.

The stability diagram in theVca-plane~see Fig. 19! is
divided only into three regions and the growth rate of t
varicose mode is always greater than that of the meande
mode. Thus the plume becomes unstable via a varicose
stability in the regions I and II and is unconditionally stab
at sufficiently small wavelengths~region III!.

The above stability diagram is also a function of oth
parameter values. The growth rate curves for the value
Vc corresponding to Fig. 18, but withG5331023 instead
of G50.01, are plotted in Fig. 20. Here we see that
meandering mode dominates the varicose mode for sm
values of Vc over a range of wavelengths. This figure
similar to Fig. 16 when the gyrotaxis number was varied a
so theVca-plane is divided into five regions forR5500,
G5331023, Qf50, andQc50. Thus the meandering mod
is dominant for small values ofG andVc .

FIG. 18. Growth rates of the varicose~—! and meandering~- - -! modes for
~a! Vc512 and~b! Vc55. HereR5500,G50.01,Qf50 andQc50.

FIG. 19. Stability diagram in theVca-plane for periodic side walls. Here
R5500,G50.01,Qf50 andQc50. The growth rate of the varicose mod
(Vg) is zero on the long-dashed line and that of the meandering mode (Mg)
on the short-dashed line.
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D. Instability mechanism

The instability associated with the varicose mode lea
to blob formation and that with the meandering mode lea
to sinuous movement of the plume. The wavelength of
most unstable mode whenR5500, Vc510, G5231023,
Qf50, andQc50 is approximately 5.7 for the varicose in
stability and approximately 4.8 for the meandering instab
ity. The contours of the perturbed concentration field at th
two wavelengths are plotted in Fig. 21.

The mechanism for the varicose instability is show
schematically in Fig. 22. The bulging region of the plum
corresponds to positively perturbed concentration and
narrow region corresponds to negatively perturbed conc
tration. The region of higher cell concentration sinks dow
wards because it is more negatively buoyant, and causes
culations as shown at the top of Fig. 22. These circulati
attract more cells due to gyrotaxis from nearby and reinfo
the bulging region. The region of lower concentration i
duces circulations in the opposite sense and hence the
centration in that region depletes further. The varicose mo
of the solutions with periodic side walls and stress-free s
walls are same, since the varicose solution with stress-
side walls ~see Ghorai and Hill18! is symmetric about the
mid-vertical plane. Ghorai and Hill18 have shown that gyro-
taxis is necessary for this instability to occur.

The mechanism for the meandering instability is sho
schematically in Fig. 23. The region where the plume be
outwards sinks because it is more negatively buoyant
causes circulation as shown in the figure. These circulati
cause accumulation of cells in the regions shown by dow
ward pointing arrows and depletion of cells in the oppos
sides. Thus we see that gyrotaxis enhances ‘‘snakeli
wave formation. The two small circulations on both sides
the big circulation are due to the periodic boundary con
tions, because the perturbed velocities must be same a
side walls. In the case of stress-free side walls, the pertur
vertical velocity fields at the side walls can be different fro
each other and the small circulations are not found. Th
small circulations resist the plume’s meandering movem
and are the cause of much lower growth rate of the me
dering mode than that of the stress-free side walls~Ghorai
and Hill18!.

VI. CONCLUSIONS

The final state of a periodic array of two-dimension
gyrotactic plumes can be either steady or unsteady dep

FIG. 20. Growth rates of the varicose~—! and meandering~- - -! modes for
~a! Vc512 and~b! Vc55. HereR5500,G5331023, Qf50 andQc50.
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FIG. 21. Contours of the perturbed
concentrationn8(x,y) for the ~a! vari-
cose and~b! meandering instabilities.
Here R5500, G5231023, Vc510,
Qf50, andQc50. Note the different
vertical scales.
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ing on the parameter values for the suspension of swimm
micro-organisms. When it is unsteady, two modes are s
There is a periodic varicose mode in which blobs conv
down each plume and a meandering mode which is qu
periodic. The final state for a single plume in a chamber w
stress-free side walls can also be steady or exhibit varic
and meandering modes~Ghorai and Hill18!. However, the
meandering mode always dominates the varicose mode
deep chambers with stress-free side walls for any set of
rameter values whereas the varicose mode is dominan
periodic side walls for certain ranges of parameter value

The linear stability analysis for an infinitely long plum
gives a useful guide for interpreting the stability of a fin
plume to gyrotactic instabilities, i.e. instabilities whose d
namics depend on the local stability of the mid-section of
plume away from the top and bottom of the finite dep
chamber. This is because the basic plume solution in
mid-section of the chamber is essentially independent of
vertical coordinate, and the horizontal flux of the cells in
the plume balances the horizontal component of the diffus
flux out of the plume, just as in the basic state for the infin
plume. As shown below, when an instability of the fini

FIG. 22. Mechanism for varicose instability. The regions marked w
downward~upward! pointing arrows are more~less! negatively buoyant and
causes circulation in the sense shown in the figure.
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plume occurs, its wavelength is constrained by the top
bottom boundaries but it is otherwise consistent with pred
tion from the theory for the infinite plume.

In the linear stability analysis, varicose and meander
perturbations are applied to the basic infinitely long plum
but, for the finite-depth plume, the perturbations arise na
rally during the computation. Initially, the cells are un
formly dispersed throughout the chamber and swim upwa
to form concentrated layer of cells at the top of the chamb
This becomes unstable and a plume starts to form an
descend. This initial plume is not independent ofz but is
usually symmetric aboutx50. The z-variation can trigger
the varicose or blob instability. The meandering mode is u
ally triggered by rounding errors in the calculations whi
break the symmetry of the numerical solution.

Notwithstanding the differences between the linear s
bility analysis and the finite depth computations, the line
stability analysis can predict the possible state of the num
cal solution in a sufficiently deep chamber. For example

FIG. 23. Mechanism of meandering instability for periodic side walls. T
regions marked by downward~upward! pointing arrows are more~less!
negatively buoyant.
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the growth rate of the varicose mode is higher than tha
the meandering mode, the final state of numerical solu
can be either periodic blob convection or steady-state but
meandering. On the other hand, if the growth rate of
meandering mode is higher than or comparable to that of
varicose mode, the final state is a quasiperiodic meande
plume.

We have plotted the linear stability growth rate curves
Fig. 24~a! for the parameter values shown in the caption
the figure, which were used in the numerical experiment
Sec. IV A to examine the effect of the aspect ratio on
plume’s structure and stability. For the varicose mode,
critical wavelength is approximately 1.5 and the most u
stable wavelength is approximately 4 or, in dimensio
terms, a wavelength of 2 cm when the chamber width is
cm. For the meandering mode, the critical wavelength is
proximately 4.5 and the most unstable wavelength is
proximately 10.5. In the numerical experiments in a cham
with finite depth, a varicose mode forl52 occurs during the
evolution of the plume, but this ultimately disappears. This
presumably due to the constraints imposed by the boun
conditions at the top and bottom of the chamber. The num
of blobs convecting along the plume is one for aspect rati
When the aspect ratio is increased to 8, the number of b
convecting along the plume is 2. The wavelength of the v
cose mode is the distance between two blobs which is a l
less than 4 for aspect ratios 5 and 8. This wavelength
consistent with the most unstable wavelength predicted
the linear stability analysis. No meandering mode is see
the numerical experiments since the growth rate of the v
cose mode is greater over the whole range of wavelen
@Fig. 24~a!#.

When G52.531023, the linear stability theory@Fig.
24~b!# shows that the growth rates of the most unsta
wavelengths for the varicose and the meandering modes
equal and approximately 6. In contrast, whenG5631023,
Fig. 16~a! shows that the varicose mode is the most unsta
and the wavelength of the most unstable mode is again
proximately 6. In the numerical experiments whenl58 and
G52.531023 or 631023 ~see Sec. IV B!, the varicose
mode appeared early on during the evolution of the plum
When G5631023, the final state was steady although t
linear stability theory suggests that a varicose mode sho
be seen, and whenG52.531023 the final state meander
quasiperiodically without any blobs but the linear stabil
suggests that a mixed mode might be present. The rea

FIG. 24. Growth rates of the varicose~—! and meandering~- - -! modes as
functions of the wave numbera for ~a! G50.01 and~b! G52.531023.
HereR5500,Vc510, Qf50 andQc50.
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that the plume forG52.531023 develops into a meanderin
mode are probably the following. First, the linear stabil
growth rate of the meandering mode is comparable to tha
the varicose mode. Second, since the plume only exte
down to half of the chamber depth, the concentration at
top of the plume is relatively high. This high concentration
the top amplifies the growth rate of the meandering mode.
support the argument that the blobs in the numerical exp
ments disappear due to the finite depth rather than s
other nonlinear behavior, we performed the following n
merical experiments in chambers which are periodic inboth
the x andy-directions.

We consider two numerical experiments correspond
to G5631023 andG52.531023 with their basic flows as
the initial conditions. We superimpose small sinusoidal p
turbations in both thex andy-directions for both values ofG.
The streamlines forG5631023 at three different times are
shown in Fig. 25. We see that the instability sets in at
'1.0, which is evident from the departure of the streamlin
from the basic vertical state. The next two figures show t
the instability grows as a varicose mode and a blob begin
convect along the plume periodically. The varicose insta
ity, due to its much larger growth rate, suppresses the me
dering instability. Figure 26 shows the streamlines cor
sponding toG52.531023 at three different times. We se
that the instability sets in att'1.2, which is longer than the
time for G5631023, since the growth rates are smalle
Figures 26~b! and 26~c! show that this instability grows as
combined varicose and meandering mode, since their gro
rates are almost equal at a wavelength of 6. Thus the lin
stability theory is able to predict which modes are seen
these numerical experiments, suggesting that nonlinear
fects are not important in the selection of the instabil
modes.

The role of the gyrotaxis number can be interpreted
follows. IncreasingG5BD/L2, keeping the widthL and
other parameters fixed, implies an increase in the value oB
~the gyrotactic reorientation parameter! alone sinceD in-
volves other parameters in the problem. NowB
54pma3/mgh'3.4 s assumingh'2% of the cell radius. If
the cell is the most bottom-heavy possible, i.e., the cente
mass is at the circumsphere, the value ofB would be ap-
proximately 0.14 s. On the other hand, if the cell becom
less bottom-heavy, the value ofB increases and ultimately
becomes very large. For small values ofG ~more bottom-
heavy cells!, the cells swim upwards preferably and are le
prone to focus laterally into the plume. IfG is large ~less
bottom-heavy cells!, the viscous torque exceeds gravitation
torque and as a result the cells tend to tumble. Tumbl
cells are also less prone to focus laterally into the plume.
G is increased from small to intermediate values, the b
instability increases as the cells attracted to the plume m
If G is much higher the blob instability should decrea
which has been seen in the numerical experiments~Sec.
IV B !. The linear stability theory is not valid for the tumblin
cells and cannot predict this effect.

We have examined~Sec. IV C! the effect of the cell
swimming speedVc on the plume’s stability keeping th
values of R, G, Sc, and l constant. The linear stability
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FIG. 25. Streamlines patterns att
51.0, t51.4, andt51.8 in a periodic
box of aspect ratio 6 forG56
31023, R5500 andVc510.
et
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the
growth rate curves forVc55, 10, and 12, with the same s
of the other parameter values, are plotted in Figs. 18~b!,
24~a!, and 18~a!, respectively. The numerical solution
steady forVc55 and consists of periodic blob convection f
Vc510 and 12. There is no meandering mode in the num
cal experiments since the growth rate of the varicose mod
greater compared to the meandering mode as predicte
i-
is
by

the linear stability theory. The varicose mode disappeare
Vc55 due to the constraints imposed by the finite depth
the chamber.

The physical significance of increasingVc has the fol-
lowing meaning. IncreasingVc5WcL/D, keeping the length
scale and the other parameters fixed, results in increasing
cells’ swimming speed alone, sinceD occurs in the other
-
t

FIG. 26. Streamlines patterns at dif
ferent times in a periodic box of aspec
ratio 6 forG52.531023, R5500 and
Vc510.
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parameters of the problem. For higher cell swimming spee
the concentration at the top of the layer increases due to
top boundary. Consequently more cells are swept down
plume by advection at higher values ofVc . The focusing of
the cells into the plume increases too since the horizo
swimming is proportional to the swimming speed. Thus
Vc is varied from small to large values, the blob instabil
becomes more dominant. This has been observed both in
numerical experiments and in the linear stability analysis

In numerical experiments, we have also examined~Sec.
IV D ! the effect of varying the Rayleigh number,R, in a
fixed aspect ratio chamber. The increase in the value ofRcan
be considered as an increase in the concentration. FoR
5125, the plume extended to almost a quarter of the dept
the chamber and was steady. The solution consisted
single blob convecting along the plume and extended to
most half the depth of the chamber forR5250. For R
5500, the solution consisted of two-blob convection and
plume extended down to the bottom of the chamber.
have seen that the solution in the mid-region of the ste
plume is independent of the vertical coordinate and the
ance is between the horizontal component of the diffus
and gyrotactic fluxes. The effect of increasingR in the nu-
merical experiments is to extend the plume’s length unti
reaches the bottom of the chamber and to change the
centration at the top and bottom whilst keeping the conc
tration fixed in the mid-region of the chamber. The length
the plume~i.e. the distance between the top and bottom
the plume! when R5125 was less than the critical wave
length of the varicose mode which led to the steady-s
solution. As the length of the plume increased with an
crease in the value ofR, we saw one blob followed by two
blobs due to the selection of the most unstable wavelengt
the varicose mode.

Fully three-dimensional calculations have yet to be c
ried out. Studies of axisymmetric bioconvection in a cyli
drical chamber~Ghorai20! show only the varicose instability
due to the imposed symmetry but the physics of the insta
ity and the dependence of the solution on the parameters
much in common with the two-dimensional case. Meand
ing and varicose modes are seen in experiments~Pedley and
Kessler1! and this work does appear to explain successfu
the mechanisms and the competitions between the mode
instability. Detailed quantitative comparisons must await f
ther experimental data but the predicted wavelengths
time scales are consistent with casual estimates from ex
ments.
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