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Periodic arrays of gyrotactic plumes in bioconvection
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Using the continuum model of Pedley al. [J. fluid Mech.195, 223(1988] for bioconvection in

a suspension of swimming, gyrotactic micro-organisms, the existence and stability of periodic
arrays of two-dimensional plumes in deep chambers are investigated. The system is governed by the
Navier—Stokes equations for an incompressible fluid coupled with a micro-organism conservation
equation. These equations are solved numerically using a conservative finite-difference scheme. In
sufficiently deep chambers, the plumes are sometimes unstable to varicose or meandering modes. A
linear stability analysis for an infinitely deep plume predicts the growth rates of these instabilities
and agrees well with the numerical results. 2000 American Institute of Physics.
[S1070-663(100)01401-X]

I. INTRODUCTION comes denser than the layer below. When the governing pa-
rameters are above critical values, this leads to convective

Bioconvection is the term used to describe the phenomi- stability and formation of convection patterns. This phe-
enon of spontaneous pattern formation in suspensions JF y P ' P

micro-organisms such as bacteria and algRedley and °Menon is known as “bioconvection”; it has some similar-
KessleP). In all cases, the micro-organisms are 30/0_50/0itywith Rayleigh—Beaard convection, but is driven solely by

denser than water and on average they swim upweats the SW|mkm|ng| of mgo—orginlsmsl; as the fqllowmg observa}—
though the reasons for up-swimming may be different forfions make clear. Direct thermal convection can occur in

different specigs Micro-organisms respond to certain micro-organism suspensions if the containing chamber is
stimuli by swimming, on average, in particular directions heated from below or from the sides, or if sufficient heat is

These responses are calkeses examples beingravitaxis, absqrbed _from the illumination. However, bioconvectior_1
phototaxis, chemotaxisand gyrotaxis Gravitaxis indicates ~ continues in a layer that is strongly cooled from below, so it
swimming opposite to gravitypphototaxisdenotes swimming 'S Not & thermal effec(l?latt”). The r§d|us,a, of a typical
towards or away from light, andnemotaxiscorresponds to  dyrotactic cell is approximately 810" cm and the specific
swimming up chemical gradient&yrotaxisis swimming di- QV%VIW IS appFOXIﬁjiltely (195 The Stokes veloc|ty, wh_|ch is
rected by the balance of torques due to gravity acting on & Ap/9u~3x10"" cms " is 1% of the cells’ swimming
bottom-heavy cell and shear flow. We consider gyrotaxis irSPeed and the patterns disappear when the cells stop swim-
this paper. ming.

Gravitaxis in small micro-organisms is a passive orien-  Plesset and Winétmade some measurements of the
tation mechanism unlike active responses to external stimulvavelengths of the bioconvection patterns at the onset of
such as chemotaxis or phototaxis. In large cells or in multiinstability in a suspension of the ciliat€etrahymena pyri-
cellular organisms, the force of gravity can be “sensed”formis which is negatively gravitacti¢cbut not apparently
dynamically by cilia or statically by movable organelles suchgyrotactio (Kesslef) and showed agreement with the linear
as statoliths and otoliths. However, such mechanisms are nétability theory for a layer of dense fluid overlying a layer of
usually found in the smaller single cells, which are oftenlight fluid. Kesslef demonstrated that many swimming
simply orientated by their own asymmetry. Cells swim ran-micro-organisms are gyrotactic and made observations
domly but, for example, if a neutrally-buoyant cell is bottom- (Kessler) of both the almost regular patterns that occur in
heavy (i.e. its center of gravity is posterior to its center of concentrated algal suspensions in shallow layers a few mil-
buoyancy, the cell will tend to swim vertically upwards in limeters deep, and of gyrotactic plume formation in a tall
the absence of any other stimuli resultingiiegative gravi-  narrow cylindrical tube. Childresst al® analyzed the bio-
taxis (Kesslef). Such cells are also gyrotactic in that a local convective instability of a suspension of gravitactic cells, and
velocity gradient will produce viscous torques on the cell'sPedleyet al.” extended the theory of Childress al® to de-
body tending to tip it away from the vertical. If the cells do velop a continuum model for a suspension gyfrotactic
tend to swim upwards, the top layer of the suspension bemicro-organisms. Figure(@) in the review by Pedley and
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, This balance is known as gyrotaxi€essler). For a sphere
W, of radiusa, the viscous torque is

<>

T,=4mpa’(Vxu—2Q),

) where( is the cell’'s angular velocity and is the viscosity
of the fluid. The rate-of-strain tensor gives rise to an addi-

¢ h tional torque on aspherical bodies or{Batchelot®). Also,
0 the gravitational torque can be written as
Ty

\J
x>

Ty=—hmpXg,

b
wherem is the mass of the cell arglis the acceleration due
to gravity. For algal cellsh is a few percent of the cell
radius. Simplifying Eq(1), we get

FIG. 1. An idealized algal cell® increases in the anticlockwise sense and
h denotes the displacement of the center of gravity from the center of the

. . d® B¢-sin®
cell, so thath=h(x sin®—y cos®) relative to Cartesian coordinatesxy, - = g—,
with the origin at the center of the celC, and the horizontaly, and the dt 2B
vertical,y, directions fixed relative to the laboratoi. is the center of mass

andWc=WCE is the average swimming velocity of the cell relative to the \where { is the horizontal component of the VOI’tiCitﬁ

water. Herep is a unit vector in the swimming direction. =4xua®/mghis the time scale for the reorientation of the
micro-organisms by the gravitational torque against viscous
resistance, and it is called the “gyrotactic orientation param-
eter” by Pedley and Kessléf.

Kesslel shows bioconvection plumes in a tall vessel but no ~ Thus the gravity and the vorticity can orient individual
quantitative measurements of such plumes in deep chambef§!ls and guide their trajectories. Gyrotaxis can be demon-
have yet been made. The fluid speed generated within bigtrated in an experiment in a slow Poiseuille flow down a
convection is typically of the order of 1 mm% vertical tube of circular cross section. The balance between
Observations of pattern formation have been recorde@ravitational and viscous torques gives one stable equilib-
previously by such authors as Wadéroeffer and Mefferd, ~ rium orientation with individual cells tipped away from the
Wille and Ehrett® and Kesslért but the results have tended uUpward vertical towards the axis of the pipe. The cells swim
to be of a qualitative nature. A recent quantitative study oftowards the axis as they are carried along in the pipe flow,
bioconvection in algal suspensions was conducted by Beend focus into a narrow beam. Conversely, if the direction of
and Hill,*> who measured the wavelengths of the planformghe flow is reversed, the cells are oriented away from the axis
of shallow bioconvection patterns as a function of the deptdoward the walls, confirming the role of gyrotaxis in cell
and concentration of the suspension. Hill ancdei® mea- ~ Orientation. Gravity also enters in another, entirely different
sured the trajectories of individual swimming algal cells andmanner in producing cooperative phenoméfessler). The
showed that their motion is well-characterized by the limit oflocal average fluid density in a suspension is modified by the
a correlated, biased, random walk in which the time stegPresence of cells. If there is a small region with a greater
tends to zero. They were able to calculate the statistical mghan average concentration of cells, the excess density is suf-
ments required for the coefficients of the Fokker—PlancKicient to produce a substantial sinking velocity. The sinking
equation for the cells’ orientational probability density func- region produces a fluid velocity field which guides further
tion. These coefficients are needed in Pedley and Kes¥ler'sgyrotactic accumulation perpendicular to it. This positive
new continuum model. feedback generates and maintains the sharply focused de-
For simplicity, algal cells such ashlamydomonas scending plumes of cells that are frequently observed in
(whose shapes closely approximate a spheraid idealized dense algal cultures. The focused beam of algae is often
here as spheres of radiasFigure 1 shows such a cell placed observed to develop an instability in the form of regularly-
in a shear flow. Since algal cells are small with typical bodySpaced axisymmetric “blobs'(Kessle?). The blobs are re-
diameters of 10—2@m, and swim at speeds of 1gdns %, gions of increased cell concentration, which are wider than
the Reynolds number associated with swimming is verythe beam. They fall faster than the centerline velocity and
small and inertia can be neglected. Thus a typical cell swiméherefore have an internal vortex-ring structure. Bioconvec-
in a directionp at an angle® to the vertical determined by a tion patterns are generated both by purely gravitactic cells
balance between the gravitational torglig, due to its being and by gyrotactic cells. However purely gravitactic cells ac-
bottom heavy, and a viscous torqu€,, due to fluid- cumulate at the top layer and are then swept down plumes by

velocity gradientsVu, across its body and rotation of the advection, whereas gyrotactic cells converge to the plumes
cell, i.e., from both the top layer and from the sides of the plume.

Harashimaet all” solved the equations of bioconvection
numerically for purely up-swimming cell§.e. ®=0) in a
Ty+T,=0. (1) two-dimensional layer of finite depth and width, and studied
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the evolution of bioconvection from an initially uniform TABLE I. Estimates of typical parameters for a suspensiof ofiivalis
state. They proposethinimum potential energgs a prin-

Mean concentration 10° cells cm®

. - . . n

ciple for determlmng the steady-s_tate roll size for a givVeng . e gravity Aplp 0.05
value_ of Raylelgh number z_ind a given bpx size. Their cOMyerage radius a 5%10-% em
putational domain had a width/height ratio of 8. In contrast,center of gravity offset h 10 %cm
we consider numerical solutions of the equations of biocon¥Volume per cell o 5x10 1 cm®

. . . . ; ; -2 1
vection forgyrotacticcells in deepchambers using the con- Swimming speed We 10 _fmmsz )
tinuum model of Pedlept al” Ghorai and Hilt® investigated ~ Diffusivity of cells b 5x10° ent's
the stability of gyrotactic plumes in a chamber with stress- o uc VIScosty ; 10 cnP's

: y ay p . Gyrotactic reorientation parameter B 34s

free side walls. The plumes are stable only in a shallowrypical plume spacing L 0.5 cm

chamber. As the depth of the chamber is increased, both a
varicose and a meandering instability develop and, ulti-Scaled swimming speed W, L 10

mately, the meandering instability rapidly destabilizes the VoD
plume. The growth rate of the meandering mode was higheschmidt number v 20
than that of the varicose mode at moderate wavelengths. S=p

We shall study two-dimensional bioconvection in a layer gyyotaxis number BD 10-2
confined by rigid bottom, stress-free top, and periodic lateral G= =
boundaries in the nonlinear regime. The structure and stabil- _
ity of a single plume is examined by varying the gyrotaxis X2Y'eigh number o MOApgL? 500

parameter, cell swimming speed, cell concentration, and the pvD

depth of the chamber. The plume is steady in a shallow

chamber, but becomes unstable as the depth of the chamber

is increased. The instability sets in via a varicose mode,

where “blobs” convect along the plume periodically. Also, Conservation of cells requires that the number of cells per
a meandering mode sometimes appears, depending on theit volume,n, satisfies the equation

parameter values. We shall show that the growth rate of the
varicose mode is usually higher than that of the meandering
mode when the side wall boundary conditions are periodic ‘9_”
unlike the case of stress-free side wdlBhorai and Hilt®). ot
These two modes and their dependence on the parameters are
examined by performing a linear stability analysis for an i
infinitely long plume. The agreement between the numericalhere the flux of cells is
experiments in a finite depth chamber and the linear stability
analysis is discussed. We demonstrate that the results of the
linear stability analysis do not always agree with the numeri-
cal solutions due to the finite depth of the chamber.

——V.J, (4

J=nu+nW,p-DVn. (5)

The third term on the right-hand side of E¢) represents
the random component of cell locomotion. We assume that
II. MATHEMATICAL EORMULATION the diffusion coefficientD is homogeneous, isotropic and

independent of the other parameters of the problem. The sec-

The geometry considered consists of a two-dimensionaynd term in Eq.(5) arises due to the swimming of the cells:
rectangular box of widtlh. and height referred to Cartesian W, p is the average swimming velocity relative to the fluid

coordinates with thg-axis pointing upwards. The top wall is . —
stress-free, the bottom wall is rigid and the side walls areandWc 'S assgmed to be constap’(x,t). represents the av-
periodic. There is no flux of cells through the top and thelrage orientation of the cells and_ls estimated from_ the torque
bottom walls. balance equation. The assumptions of constant isotriopic
and deterministi@ in Eqg. (5) are ad hoc and modifications

A. Governing equations have been considered by Pedley and Kessland Bees
) ; ) et al1® We retain the simpler form foi in Eq. (5) because it

As in Pedleyetal,” we assume a monodisperse cell contains the essential features that we wish to model and
population which can be modelled by a continuous distribupecayse improvements lead to quantitative adjustments
tion. The suspension is dilute so that the volume fraction ofaiher than qualitative changé8horaf?). Typical values for
the cells is small and cell—cell interactions are negligiblethese parameters are given in Table | based on estimates

Each cell has a volumé and density+Ap, wherep isthe  given by Kesslét for a suspension ofhlamydomonas ni-
density of the water in which the cells swim ad@/p<1. | gjis

The velocity u is solenoidal and the vorticitygo=curlu The vorticity evolves according to the equation
=(0,0¢); thus we introduce a stream functignsuch that

AR
ay’ox

J Apg¥ d
(=Y @  Tivu=wy 0T ©

0 S

u=(u,v,0)=<




8 Phys. Fluids, Vol. 12, No. 1, January 2000 S. Ghorai and N. A. Hill

Herev is the kinematic viscosity and E¢f) is derived under The definition ofR is nonstandard in that it is based on the
the Boussinesq approximation, neglecting all effects of thevidth of the chamber and on the mean cell concentration,
cells on the fluid except their negative buoyancy, because thather than the height and cell concentration at the top of the
suspension is dilute. layer. The conventional Rayleigh numb&? say, used by
Hill et al?is related to our definition by
B. Calculation of the mean direction
From Fig. 1, we have R* =RVA/(1-exp(—Vel)),
p=(px,Py)=(—sin®,cosO), for a given aspect ratia =H/L, and it increases with an
increase in the height of the chamber, whereas ours remains
constant. Our choice for the length and the time scales en-
sures that the height of the chamber can be varied indepen-
dently of the other parameters. Note also that the bioconvec-
tion equations reduce to those of the thermal convection

p=(—x,(1-kH)¥?), |k|<1, (7)  whenV,.=0. pis defined by Eqs(7)—(9), wherex=G¢ and
— 2 i i i ;
where k=B¢. If the vorticity is large (BZ|>1), the cell G=BD/L* is the dimensionless gyrotaxis number. The di-

tumbles but swims on average in a fixed direction at an angl§'€nsionless gyrotaxis number represents the ratio of the re-
to the vertical (Kessle). When the vorticity is large, the orientation time due to gyrotaxis to the diffusion time. The

Lo = . . boundary conditions are applied at
average swimming directiop is approximated by integrat-
ing the swimming direction over the tumbling peri@@horai x==*3andy=0,\.
and Hill'9).

If k=B¢>1, then

where® is the solution of Eq(2). If the shear is sufficiently
small so that/|B{|<1, then the steady-state orientation is
obtained by setting the left hand side of E2). equal to zero.
When|B¢|<1, we find that

C. Initial and boundary conditions

We impose rigid, no-slip boundary conditions at the bot-
p=(—k+(k2—1)120) (8)  tom wall, stress-free boundary conditions at the top wall and
no flux of cells through them, so that
and similarly, if k=B{<—1, then

_ Y 35=0 aty=0x
_&_ .y_ aty_ A,

¥

p=(—k—(k2—1)Y20). 9
(14
Equations(7), (8), and(9) determine the average swimming (9_‘#:0 aty=0 c72_¢:0 aty=»\
direction of the cells for any value df. ay " ay? '

The equations are scaled using the widththe time
scaleL?/D, and the mean concentration The resulting The vertical side walls are periodic and thus
system of coupled equations is

Y(—2)=¢(2), {(—2)=¢(3) andn(—2)=n(3). (19

i 5
u=(uv.0= (W - K'O>’ £=-V, (10 The initial conditions are that of a uniform state together
with a small perturbation to the uniform concentration of
a an cells,
—r TV (LW =S V2~ SR, (1D
=0, (=0, andn=1+ e cogmmx), (16)
and
where e=10"° and m=2. The perturbation is applied for
on computational convenience to ensure that the plume forms in
e -V.J, (12)  the middle of the chamber.
where the flux of cells is Ill. NUMERICAL PROCEDURE
— The governing Eqs(10)—(12) are discretized using a
J=nu+nV,p-Vn. (13 conservative finite-difference scheni@hora?® on a stag-

gered mesh with the stream function and vorticity stored on
one set of nodes and the concentration stored on another set
of nodes. The grid is chosen so that the concentration nodes
lie in the interior only, whereas those of the stream function
_ 5 and vorticity lie in the interior and also on the boundary of
R— ndApgl the domain. The advantage of the staggered mesh is that the
pvD no-cell flux boundary condition can be satisfied immediately

Here S;=v»/D is the Schmidt numbety.=W_.L/D is the
scaled cell swimming speed, amlis a Rayleigh number,
defined as
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when discretized, without further approximation. We knowdirection is 36 and the number of grid points along the
that a plume is concentrated along a narrow column and thafirection is increased with an increase in aspect ratio. For
there are boundary layers at the top and bottom walls due @xample 36 points are taken for=1 and 56 points are taken
the large cell concentration and the presence of the rigigy, )\ =4 along the vertical direction. Some of the results
wall, respectively. In order to resolve these gradients acCUyere run with different numbers of grid points to check the
rately, a nonuniform coordinate mesh is used. We transforr@rid independence of the solutions. If the swimming speed is
the nonuniform spatial incrementsx; andAy; in the finite a1 then the equations of bioconvection are similar to those
difference equations to a uniform grid using an orthogonaly the heat convection problem. To validate the code, written
transformation, = £,(x) which also maps the problem 1o i, terms of stretched coordinates, the code has been run for
the computational domaif 1= ¢,<1, wherex,=(x,y) and  the heat convection problem and the agreement with the
€= (&,m). An accurate transformed finite difference equa-penchmark solution of de Vahl DaviégGhora??) is good.

tion for the first order derivative is given by The code has also been used to compute the critical Rayleigh

numbers against wavelengtti€horai and Hilt®) and the
fivi—fio1 sl 1+(A§)2 dx dx
2AE(dX/dE); 6 |de3) d¢
I

agreement with the linear stability results of Hilt al?? is
(de Rivag®). Heref; is the value of the functiof(x) at the

17 excellent.
ith node andf! is the first order derivative at thi¢h node. V. RESULTS
The second term inside the bracket on the right-hand side o}/'
Eq. (17) is important only when there is a large grid varia- Equations(10)—(12) possess a static solution witt
tion. The second-order difference operator is obtained by re= /=0 and an equilibrium exponential concentration profile,
cursion of Eq(17). The above difference approximation has
a truncation error oD(A £?) for an arbitrary mesh transfor- VA expVey)
mation in problems of boundary layer character. Here we Np(y)= expVoA)—1°
have taken the transformations proposed by RoBérts. ¢

An expression for the vorticity boundary condition can |f the governing parameters are above the critical values, the
be obtained by expanding the stream function near the rigidoncentration profile develops from the initially uniform
surface using a three-term Taylor series expansion and bytate towards Eq19), but bioconvection begins before the

(19

making use of no-slip condition, profile develops fully. In the following discussions, we con-
sider physically relevant parameter values based on a cham-
Lnw Yow ber width (or periodic spacingof approximately 0.5 cm us-
w=——% 3 (An)?’ (18 ing data from Table I.

where ., i, are the values off,¢ at the near-wall node A Effect of the aspect ratio

(adjacent to the wallandAn is the nondimensional distance To study the effect of the depth on plume formation, the

of the near-wall node from the wall. governing parameteiR,S;,G,V, are kept constant at physi-
An implicit scheme with Euler backward differencing in cally relevant valuegsee Table)),

time and central differencing in space is used to obtain the

transient solutions. A line-by-line cyclic tridiagonal matrix R=500, S,=20, G=0.01 andV.= 10, (20

algorithm with relaxation is used to solve the nonlinear dis-

cretized equations. The number of grid points along xhe and the aspect ratio is varied from small to large values.

(@) 10 6) 1.077 © 1.0 .
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FIG. 2. Steady-state plume for aspect ratie 1 with periodic side walls{a) concentration(b) cell fluxes,(c) streamlinegwith equally spaced contour
levels.
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0 2 4 6 8 10
t

FIG. 3. Variation ofn.,q=n(0,2) against time for aspect ratio=4. The decreasing amplitude of the fluctuations suggests that the plume solutions are
approaching the steady-state slowly.

For aspect ratia. = 1, the evolution of the plume is simi- blob appears at an early stage and starts convecting down the
lar to the stress-free side walls ca&horai and Hilt®). Ini-  plume periodically but it gradually disappears as the final
tially the cells accumulate at the top and form a plume in thesteady-state is reached. Ro& 4, the variation of the central
middle of the two-dimensional box due to the perturbation toconcentrationn,,q=n(0,2), at the midpoint of the chamber
the initial uniform concentration of cells. The plume be- is plotted in Fig. 3. It shows that the amplitude of the fluc-
comes steady after a short period of time. The final steadytuation decreases much more slowly.
state of the plume is shown in Fig. 2. In this figure are plot-  The case wheh =5 is different from the previous cases.
ted(a) the concentration profile as a surfad®), the total cell We have shown the evolution of the concentratiea con-
flux vectorJ, and(c) the streamlines. The final state of the tourg from the initial uniform state in Fig. 4. When the head
plume is also steady for= 2, but it takes longer to reach the of the plume hits the bottom of the chamiéiig. 4(d)], a
final state and the solutions in the mid-region of the plumesmall blob develops just above it. This blob disappears rap-
are almost independent of the vertical coordinate. A smalldly for small aspect ratios, e.gh=1,2, and much more

(a) t=0.239 (b)t=0.397 (¢) t=0.500 (d) t=0.667

i
I|

FIG. 4. Evolution of the plume at successive times plotted as concentration contours for aspect@twith periodic side walls.
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FIG. 5. Snapshot ofa) concentration(b) cell fluxes, andc) streamlines for periodic blob convection at an aspect raticc with periodic side walls.

slowly for aspect ratio.=4, but in this caseN=5), it con-  convection is periodic with a period of approximately 0.15
vects along the plume periodically. Figure 5 shows a snapunits. Figure 7 shows four snapshots of concentrations dur-
shot of the periodic blob convection where the blob is ap-ng one cycle of the oscillation. FigurgaJ shows the blob
proximately at the mid-height of the chamber. Figuf®)5 about to hit the bottom of the chamber. Figui®)7shows it
shows that some of the cells are recirculating at the bottonjust after hitting the bottom of the chamber with another
of the plumes and the rest are advecting upwards. Some amall blob having developed from the top of the plume. Fig-
these upwards swimming cells are attracted to the blob duare 7c) shows the new blob as it crosses the mid-height of
to the circulation and the others swim to the top of the chamthe chamber and Fig.(@) completes the full cycle. Thus the
ber. When this blob hits the bottom of chamber, then itfinal state of the plume is periodic and the final state under-
forces a fraction of the cellgcirculating at the bottomto  goes a Hopf bifurcation as the aspect rag,is increased
advect upwards and during this time another blob starts térom 4 to 5.

develop near the top of the plume. The variation of the cen- When the aspect ratio is increased to 8, the number of
tral concentrationn,,q=n(0, 2.5), at the midpoint of cham- blobs convecting along the plume at any instant is two, and
ber against time is plotted in Fig. 6. It shows that this blobthe concentration contours during one cycle of the oscillation

8 T T
Nonid FIG. 6. Variation of n;4=n(0,2.5)
against time for aspect ratin=>5. It
o I shows that the plume becomes peri-
odic after t=5 approximately. The
fluctuations correspond to blobs cross-
. ing the mid-height of the chamber.
0 : L
0 3 6 9
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@, —C (d)
Yy
2.5
-0.5

FIG. 7. One cycle of the oscillation in concentratigtotted as equally spaced contour leydts aspect ratioo=5. The intervals between plota)—(d) are
equal and the period is approximately 0.15 units.

are shown in Fig. 8. Figure(8 shows one blob descending this time a new blob has formed at the top of the plume.
near the middle of the chamber and the other one thred-igure &c) shows two blobs descending along the plume and
quarters of the way down the chamber. The next figurerig. 8d) completes the full cycle. Thus, as the aspect ratio of
shows the first blob after it has crossed the mid-height anthe chamber increases, the number of blobs increases, so the
the second blob has hit the bottom of the chamber. Duringvavelength of the varicose mode is finite. The distance be-

(a) ' W @@

FIG. 8. One cycle of the oscillation in concentratigriotted as equally spaced contour leydts aspect ratio.=8. The intervals between plota)—(d) are
equal and the period is approximately 0.15 units.
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(a) t=2.0 (b) t=10.0 (c) t=10.67

2 vQ ]
{

y h ) FIG. 9. Dependence of plume on gy-
rotaxis number in a deep chamber of
aspect ration=8 for G=2.5x10"3;
41 ] snapshots of streamlines f¢a) initial
apparently-steady state &t2.0, (b)
movement of the plume to the right at
t=10.0, and(c) movement of the
plume to the left at=10.7.
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tween the blobs is approximately 2 cm in dimensional units1.7x 10 2 to cover a range of physically relevant values.
Only the varicose instability appears for the set of parameteThe initial conditions are given by E¢L6). At an early stage
values given by Eq(20). On the other hand, this varicose of plume formation, blobs appear in all the cases considered
mode and a meandering mode appear for the same parameigthis section. Ultimately these blobs disappear for a certain
values in simulations with stress-free side walBhorai and  range of values ofG, but remain in the final state for a
Hill*®) and the meandering mode dominates the varicoselifferent range of values dB. Details of the computations

mode for aspect ratia > 2. are presented below.
_ For G=2.5x10 3, the plume extends to less than half
B. Effects of the gyrotaxis number of the depth of the chamber. The blobs, which appear at an

In this section we investigate the dependence of the fingfarly stage, soon disappear and the plume appears to be

aspect ration=8 of the chamber. We fix the following pa- mately, this plume becomes unstable to a meandering mode
rameter values, at aroundt=8.5 and moves towards the right side of the

chamber[Fig. 9b)] and then towards the left side of the
R=5X10%, §=20,V,=10 and\=8. (22) chamber[Fig. 9c)]. The concentration at the poink,f)

The parameter values given 681) are derived from a cell =(0,7) near to the top of the central axis of the chamber is

swimming diffusion coefficienD=5x10"* cn?s ! and a  plotted against time in Fig. 10. The solution at an early stage

chamber widthL=0.5 cm (see Table )l The value ofG (t<4) is of periodic blob convection. This blob convection

=BD/L? based onB=3.4 s (Pedley and Kessléris ap- dies down and the plume remains apparently in a steady-state

proximately 7x 10 3. Thus we varyG from 2.5x10 3 to  for 4<t<8.5. The meandering mode destabilizes the plume

n(0,7) ”
5 | FIG. 10. Variation of the concentra-
i tion at the point &,y)=(0,7) with G
=2.5x10"2 for aspect ratio.=8 for
v the plume shown in Fig. 9.

0.0 12.5 25.0 37.5 50.0
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FIG. 11. Dependence of the plume on gyrotaxis number in a deep chamber of aspeat=r&ticsnapshots of streamlines f@ G=6x10"%, (b) G
=0.015, (c) G=0.017. In(a) and (c) the final state is steady but ifb) there is periodic blob convection along the pluni®ee also Fig. 8, wher&
=0.01)

at aboutt=9.0. The final state of the plume appears to belength of the plume fo.=8 is greater than that 6f,=5
almost doubly periodic, where the plume oscillates from leftand the time to reach the steady state is longerVipr 8
to right and then from right to left with a periodically modu- thanV.=5. This solution becomes periodic with two blobs
lated amplitude. convecting along the plume whaf. is increased to 10see

For G=6x10"3, the plume extends to almost three- Sec. IVA and Fig. & This varicose convection persists at
quarters of the depth of the chamber and the final state i¥.=12[Fig. 12c)], but the size of the blobs does not dimin-
steady[Fig. 11(a@)]. The solution in the mid-region of the ish unlike the larges cases, in which the blobs almost dis-
plume is almost independent of the vertical coordinate. Thisppear at higher values &. As the value ofV, increases,
solution becomes periodic with two blobs convecting alongthe concentration of cells at the bottom of the chamber also
the plume wherG is increased to 0.01see Sec. IVA and increases.
Fig. 8. This blob convection persists &=0.015, but the
size of the blobs becomes smaller andGat0.017, these D. Effects of the Rayleigh number
blobs disappedrsee Figs. 1(b) and 11c)]. As the value of
G increases, the concentration of cells at the bottom of th%er
chamber also increases.

We investigate the effect of varying the Rayleigh num-

on the stability of a single plume in a chamber of aspect
ratio 8. The values oY, G, S; and\ are kept fixed andR

is varied from small to large values. The following values are
taken for the fixed parameters,

S.=20,G=10"2, V,=10 and\=8 (23

C. Effects of the cell swimming speed

Here the values aR, G, S;, and\ are kept fixed an®/.

is varied from 5.0 to 12.0. The following values are taken for
the fixed parameters: (see Table). For R=125, the plume extends over less than

_ half of the depth of the chamber. The blob which appears at
S;=20,G=10* R=500, andr=38 @2 a5 early stage soon disappears and the final solution becomes
(see Table)l In all the runs described here, blobs appear asteady as shown in Fig. {&. When the gyrotaxis number is
an early stage. Fo¥.=5 andV.=8, the plumes do not varied(see Sec. IVB we have seen that when the plume is
extend down to the bottom of the chamber and the finakhort andG is small andR=500, it becomes unstable via a
states of the plume are stegdge Fig. 123) and 12Zb)]. The = meandering instability. However at this small valueRythe
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FIG. 12. Dependence of the plume on
cell swimming speed in a deep cham-
ber of aspect ratia. = 8; snapshots of
streamlines for(a) V.=5, (b) V.=8,
(¢) Vc=12. In (8 and (b) the final
state is steady but ifc) there is peri-
odic blob convection along the plume.
(See also Fig. 8, wheré.=10.)
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FIG. 13. Dependence of the plume on Rayleigh number in a deep chamber of aspectratisnapshots of streamlines f@ R= 125, (b) R=250 and(c)
R=750. In(a) the final state is steady but {fy) and(c) there is periodic blob convection along the plurftéee also Fig. 8, wherg@=500)
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) o FIG. 15. Basic velocity@) and concentratioitb) profiles for an infinitely
FIG. 14. Geometry of plume located in1/2<x=<1/2. Schematic diagram |ong plume for different values o® in a flow between periodic side walls.
of concentration profilev, is the central downward speed of the plume.  Here R=500, V=10, Q;=0 andQ,=0.

final state of the plume is steady. Thus the meandering insta-

bility is not only related to the length of the plume, but d_”:0 atx=0 1/2 (25
depends on the other parameter values. WRei250, the dx T

plume extends down to aimost half of the chamber depth angxlso the total nondimensional fluid fluxQ;, and the total

a blob convects along the plume periodicdlig. 13b)]. . . .
Again this differs from the gyrotaxis case. We have seen th nondimensional cell fluxQ;, are prescribed. The values of

the final state of the plume is stea@see Sec. IV B for a at/)v%tithQifmzlri]ngtﬁa?re zero for the numerical experiments,
plume extending to almost three-quarter of the depth of the

chamber, but here the plume extends only down to half the 12

depth and still the final state is periodic. Thus the bidri- 2 fo v(x)dx=Qr =0 (26)
cose instability also depends on the other parameter values

as well as the length of the plume. It was shown in Sec. Iv aand

that atR=500, the plume almost extends down to the bot- 1/2

tom of the chamber and the final state is periodic with two 2 |  [V(X) +V(1-G*A)Yn(x)dx=Q,=0. (27
blobs convecting along the plume. This blob convection per- 0

sists atR= 750, but the cell concentration at the bottom of From Eqgs.(10)—(12) for bioconvection and the boundary
the chamber increases. Figurgd3shows a snapshot of this conditions given by Eqg24) and(25), we obtain

periodic blob convection.

d® _dn
—=R— (28
V. LINEAR STABILITY ANALYSIS dx® dx
We have seen two kinds of instabilities in a large aspecénd
ratio chamber. In order to understand these instabilities bet- 4, dv
ter, a model for an infinitely long plume is derived and its =—-V.G——n. (29

linear stability is tested. The linear stability analysis is valid dx dx
only when the cells do not tumble so th@tcannot be too Equation(28) represents a balance between viscous diffusion
large. The governing equations are EGK))—(12) with the  and buoyancy and E@29) represents a balance between the

swimming direction given by horizontal diffusive and the horizontal gyrotactic cell fluxes.
— 5 21 Equations(26)—(29) have been solved for a given set of
p=(=G{(1-GH)™). parameter value§Ghorai and Hilt®). Figure 15 shows the
basic flows for different values d&, the gyrotaxis number.
A. The primary flow The peak cell concentration is relatively low for larGeand

The basic flow configuration is sketched in Fig. 14. Be-Vice versa.
cause of symmetry, the primary flow is solved only in the _ N
region 0<x=<1/2. The upwards velocity(x) is greatest at B- The linear stability problem

x=1/2 and least ax=0. Thus, We consider a small perturbation of amplituel€é0< e
dv <1) to the primary flow(see Sec. V A withQ;=0 andQ,
{(X)=45 =0 atx=0,1/2, (24  =0), so that

— * — *
whereas the concentration is greateskat0 and least ak Y=Y+ e (xy,1), n=n(x)+en®(x,y,1), (30
=1/2 so that and look for normal modes of the form
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¥* = p(x)explia(y—ct)) and
n* = g(x)exp(ia(y—ct)).

Substituting into the governing Eq&L0)—(12) and lineariz-
ing about the basic state gives@fe)

10.0

10.0

22— —+

D%g=—RDO+ iacC iaV(X)]DZ

Se Se
ia3c i« d¢ ia3v(x) FIG. 16. Growth rates of the varicoge-) and meandering- - -) modes for
_—— b (31 (@ G=6%x10"2 and (b) G=2x10"3. Here R=500, V,=10, Q;=0 and
S S dx Se Q.=0.
and
5 , ) d¢ rate as a function of for given parameters values. Initially,
D70=—-V.G{(X)D O+ a”—lactiav(x) =V .G values ofR, G, V,, S., anda are supplied and the values of
¢, ¢, andd, are estimated either from the asymptotic results,
. 2012 3 or from the previous numerical results, or by imposing a
FiaVe(1=-G(%)™ 6+ V.Gn(x)D ¢ sinusoidal variation ing(x) and 6(x). Once a solution is
_ obtained, this solution can be used as an initial guess for the
Ly G@ iV GZ(x)N(X) | _, neighboring parameter values. The dependence of the nu-
c~dx (1-G22)Y2 ¢ merical solutions on the number of grid points was tested for
different parameter values.
) o dn dn
—aVGn(x)Dé+|las —aV Gy C. Linear stability results
1. Effect of the gyrotaxis number
i ®V G?Z(x)n(x) -
_ c (32) The growth rate curves for two different values@fare
(1- G232 ' plotted in Fig. 16. For large values & [see Fig. 169)], the
_ . varicose instability dominates the meandering instability.
WhergD—d/dx. Th_e boundary conditions are However for small values o6 [see Fig. 160)], there is a
D'¢(—1/2=D'¢(1/2), i=0,...,3, (33)  crossover in growth rates between the varicose and the me-
0 o i o andering modes. Hence, for small values®fthe competi-
D'6(-1/2=D'0(1/2), i=0.1, (34) tion between the modes depends on the wavelength of the

whereD'= d'/dx. The boundary conditions are satisfied by instability, and the meandering mode is the most unstable
both the varicose and the meandering modes. To investigateverall. The plume is unconditionally stablém(c)<0] at
these modes separately, we specify the following boundargufficiently large wave numberfsmall wavelengths

conditions in the half-region € x=<1/2. The boundary con- Figure 17 shows the stability diagram in t-plane.

ditions corresponding to the varicose mode are The plane can be divided into five regions. In region I, the
plume is unstable to both the varicose and the meandering

¢=D?¢=D6=0 atx=0, 1/2 (39 modes, but the growth rate of the meandering madg) is
greater than that of the varicose modégj. On the other
9=1 atx=0 (36) hand, the plume is unstable only to the meandering mode in
' the region Ill. Thus for small values d&, the plume be-
These boundary conditions are the same as for the varicos®mes unstable via a meandering instability. The plume is

mode in the stress-free side walls cd&horai and Hilt®).
The boundary conditions corresponding to the meandering

and

mode are 12.0 TNV, 305 My
3 (x107%) . @ 1
D¢p=D>¢p=0=0 atx=0, 1/2 (37) 0 /
and G 3~5_. V, > M, >0 //l :/IZ << %_
D2¢=1 atx=0. (38) V@
. . Mg >V, >0 Y
Equationg31) and(32) together with the boundary con- 10 0] 7
ditions specify an eigenvalue problem foas a function of 0.1 10 10.0
the dimensionless parameté®sS., V., G, and«, and the ' & @ My >0>v, 7

instability grows whenever Int)>0. Solutions to the full

linear stability problem are calculated with a fourth-orderFIG. 17. Stability diagram in th&a-plane for periodic side walls. Here
R=500,V.=10, Q;=0, andQ.=0. The growth rate of the varicose mode

accurate, fmlte-dlffere?ge Sgheme proylded by Dr. D. R'(Vg) is zero on the long-dashed line and that of the meandering niddg (
Moore (Cash and Moore). This scheme is used to compute o the short-dashed line, atg=Mg on the solid line. Both axes are in

(i) neutral curves for which Int) =0, and(ii) the growth logarithmic units.
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10.0

FIG. 18. Growth rates of the varicoge-) and meandering - -) modes for ~ FIG. 20. Growth rates of the varicoge-) and meandering- - -) modes for
(@ V,=12 and(b) V,=5. HereR=500,G=0.01,Q;=0 andQ.=0. (@ V,=12 and(b) V,=5. HereR=500,G=3x 103, Q;=0 andQ,=0.

. . D. Instability mechanism
unstable to the varicose mode for large value§dfegions y

Il and IV) and is unconditionally stable at sufficiently small ~ The instability associated with the varicose mode leads
wavelengths(region V). The varicose instability dominates to blob formation and that with the meandering mode leads

the meandering instability in most of the unstable region. to sinuous movement of the plume. The wavelength of the
most unstable mode wheR=500, V,=10, G=2x10 3,

Q;=0, andQ.=0 is approximately 5.7 for the varicose in-
2. Effect of the cell swimming speed stability and approximately 4.8 for the meandering instabil-
ity. The contours of the perturbed concentration field at these
The growth rate curves associated with two different val-y,,o wavelengths are plotted in Fig. 21.
ues of V¢, the cell swimming speed, whe6=0.01 are The mechanism for the varicose instability is shown
shown in Fig. 18. The varicose mode is the mqst U”Stam%chematically in Fig. 22. The bulging region of the plume
mode for the values of the parameters considered. Thggrresponds to positively perturbed concentration and the
growth rate of the varicoseneanderingmode increase@le-  narrow region corresponds to negatively perturbed concen-
creasepwith an increase in the value . The plume is  ation. The region of higher cell concentration sinks down-
unconditionally stable at sufficiently small wavelengths.  \yards because it is more negatively buoyant, and causes cir-
~ The stability diagram in th&/ca-plane(see Fig. 19is  ¢yjations as shown at the top of Fig. 22. These circulations
divided only into three regions and the growth rate of thegtiract more cells due to gyrotaxis from nearby and reinforce
varicose mode is always greater than that of_ the megnderi_rme bulging region. The region of lower concentration in-
mode. Thus the plume becomes unstable via a varicose ify,ces circulations in the opposite sense and hence the con-
stability in the regions I and Il and is unconditionally stable centration in that region depletes further. The varicose modes
at sufficiently small wavelengthsegion IIl). _ of the solutions with periodic side walls and stress-free side
The above stability diagram is also a function of other\yais are same, since the varicose solution with stress-free
parameter valges. Thg growth rate curves for th.e values afije walls (see Ghorai and HilP) is symmetric about the
V. corresponding to Fig. 18, but witG=3Xx 107% instead  mid-vertical plane. Ghorai and Hifl have shown that gyro-
of G=0.01, are plotted in Fig. 20. Here we see that theyyis is necessary for this instability to occur.
meandering mode dominates the varicose mode for smaller The mechanism for the meandering instability is shown
values ofV. over a range of wavelengths. This figure is schematically in Fig. 23. The region where the plume bends
similar to Fig. 16 when the gyrotaxis number was varied antytwards sinks because it is more negatively buoyant and
so theVca-plane is divided into five regions fdR=500,  cayses circulation as shown in the figure. These circulations
.G=3><.1073’ Q¢=0, andQ.=0. Thus the meandering mode cayse accumulation of cells in the regions shown by down-
is dominant for small values d& and V.. ward pointing arrows and depletion of cells in the opposite
sides. Thus we see that gyrotaxis enhances ‘“snakelike”
wave formation. The two small circulations on both sides of
15 ' ' ' y the big circulation are due to the periodic boundary condi-
| tions, because the perturbed velocities must be same at the
Ve \ V> 0> M, O / side walls. In the case of stress-free side walls, the perturbed
10 S @ A vertical velocity fields at the side walls can be different from
® each other and the small circulations are not found. These
‘ small circulations resist the plume’s meandering movement
and are the cause of much lower growth rate of the mean-
5 ‘ . o : dering mode than that of the stress-free side w@Bhorai
1 2 3 4 5 and Hill*8).

FIG. 19. Stability diagram in th&.a-plane for periodic side walls. Here V1. CONCLUSIONS

R=500,G=0.01,Q;=0 andQ.=0. The growth rate of the varicose mode . L . .
(Vg) is zero on the long-dashed line and that of the meandering mddg ( The_fmal state of a peUOd'C array of two-dimensional
on the short-dashed line. gyrotactic plumes can be either steady or unsteady depend-
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(a) (b)
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FIG. 21. Contours of the perturbed
2.86¢F y 2.471 concentratiom’(x,y) for the (a) vari-
cose andb) meandering instabilities.
Here R=500, G=2x10"3, V=10,
Q;=0, andQ.=0. Note the different
vertical scales.
)
"
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ing on the parameter values for the suspension of swimminglume occurs, its wavelength is constrained by the top and
micro-organisms. When it is unsteady, two modes are seeibottom boundaries but it is otherwise consistent with predic-
There is a periodic varicose mode in which blobs convection from the theory for the infinite plume.
down each plume and a meandering mode which is quasi- In the linear stability analysis, varicose and meandering
periodic. The final state for a single plume in a chamber withperturbations are applied to the basic infinitely long plume
stress-free side walls can also be steady or exhibit varicodeut, for the finite-depth plume, the perturbations arise natu-
and meandering mode&horai and Hilt¥). However, the rally during the computation. Initially, the cells are uni-
meandering mode always dominates the varicose mode fdormly dispersed throughout the chamber and swim upwards
deep chambers with stress-free side walls for any set of pde form concentrated layer of cells at the top of the chamber.
rameter values whereas the varicose mode is dominant fdrhis becomes unstable and a plume starts to form and to
periodic side walls for certain ranges of parameter values. descend. This initial plume is not independentzobut is
The linear stability analysis for an infinitely long plume usually symmetric aboux=0. The z-variation can trigger
gives a useful guide for interpreting the stability of a finite the varicose or blob instability. The meandering mode is usu-
plume to gyrotactic instabilities, i.e. instabilities whose dy-ally triggered by rounding errors in the calculations which
namics depend on the local stability of the mid-section of thebreak the symmetry of the numerical solution.
plume away from the top and bottom of the finite depth  Notwithstanding the differences between the linear sta-
chamber. This is because the basic plume solution in thbility analysis and the finite depth computations, the linear
mid-section of the chamber is essentially independent of thetability analysis can predict the possible state of the numeri-
vertical coordinate, and the horizontal flux of the cells intocal solution in a sufficiently deep chamber. For example, if
the plume balances the horizontal component of the diffusion
flux out of the plume, just as in the basic state for the infinite
plume. As shown below, when an instability of the finite

cells accumulate
in this region

contour

cells depleted in Q

this region

basic concentration contour
cells accumulate
in this region

perturbed concentration contour perturbed concentration

contour

cells depleted in
this region

FIG. 22. Mechanism for varicose instability. The regions marked with FIG. 23. Mechanism of meandering instability for periodic side walls. The
downward(upward pointing arrows are moréess negatively buoyant and regions marked by downwarfupward pointing arrows are moréles9
causes circulation in the sense shown in the figure. negatively buoyant.
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that the plume fo6=2.5x 10”2 develops into a meandering
mode are probably the following. First, the linear stability
growth rate of the meandering mode is comparable to that of
the varicose mode. Second, since the plume only extends
down to half of the chamber depth, the concentration at the
top of the plume is relatively high. This high concentration at
10.0 the top amplifies the growth rate of the meandering mode. To
support the argument that the blobs in the numerical experi-
) _ ments disappear due to the finite depth rather than some
FIG. 24. Growth rates of the varicoge-) and meandering - -) modes as . . .
functions of the wave numbez for (8) G=0.01 and(b) G=2.5x10"3. Othe,r non“ne‘?r bEhaVIOr’ we performed the fo-IIov.vm-g nu-
Here R=500, V=10, Q;=0 andQ,=0. merical experiments in chambers which are periodibath
the x andy-directions.

We consider two numerical experiments corresponding
the growth rate of the varicose mode is higher than that ofo G=6x10" 3 andG=2.5x10 2 with their basic flows as
the meandering mode, the final state of numerical solutionthe initial conditions. We superimpose small sinusoidal per-
can be either periodic blob convection or steady-state but ndtirbations in both th& andy-directions for both values d&.
meandering. On the other hand, if the growth rate of theThe streamlines fo6=6x 102 at three different times are
meandering mode is higher than or comparable to that of thehown in Fig. 25. We see that the instability sets int at
varicose mode, the final state is a quasiperiodic meandering 1.0, which is evident from the departure of the streamlines
plume. from the basic vertical state. The next two figures show that

We have plotted the linear stability growth rate curves inthe instability grows as a varicose mode and a blob begins to
Fig. 24(a) for the parameter values shown in the caption ofconvect along the plume periodically. The varicose instabil-
the figure, which were used in the numerical experiments irty, due to its much larger growth rate, suppresses the mean-
Sec. IVA to examine the effect of the aspect ratio on thedering instability. Figure 26 shows the streamlines corre-
plume’s structure and stability. For the varicose mode, thesponding toG=2.5x 102 at three different times. We see
critical wavelength is approximately 1.5 and the most un-that the instability sets in d& 1.2, which is longer than the
stable wavelength is approximately 4 or, in dimensionaltime for G=6x10"3, since the growth rates are smaller.
terms, a wavelength of 2 cm when the chamber width is 0.Figures 2€b) and 26c) show that this instability grows as a
cm. For the meandering mode, the critical wavelength is apeombined varicose and meandering mode, since their growth
proximately 4.5 and the most unstable wavelength is aprates are almost equal at a wavelength of 6. Thus the linear
proximately 10.5. In the numerical experiments in a chambestability theory is able to predict which modes are seen in
with finite depth, a varicose mode far=2 occurs during the these numerical experiments, suggesting that nonlinear ef-
evolution of the plume, but this ultimately disappears. This isfects are not important in the selection of the instability
presumably due to the constraints imposed by the boundamnodes.
conditions at the top and bottom of the chamber. The number The role of the gyrotaxis number can be interpreted as
of blobs convecting along the plume is one for aspect ratio 5follows. IncreasingG=BD/L?, keeping the widthL and
When the aspect ratio is increased to 8, the number of blobsther parameters fixed, implies an increase in the vallg of
convecting along the plume is 2. The wavelength of the vari{the gyrotactic reorientation parametezlone sinceD in-
cose mode is the distance between two blobs which is a littleolves other parameters in the problem. NoB
less than 4 for aspect ratios 5 and 8. This wavelength is=4mua®/mgh~3.4 s assuming~2% of the cell radius. If
consistent with the most unstable wavelength predicted bthe cell is the most bottom-heavy possible, i.e., the center of
the linear stability analysis. No meandering mode is seen imass is at the circumsphere, the valueBofvould be ap-
the numerical experiments since the growth rate of the variproximately 0.14 s. On the other hand, if the cell becomes
cose mode is greater over the whole range of wavelengthgsss bottom-heavy, the value &fincreases and ultimately
[Fig. 24@)]. becomes very large. For small values ®f(more bottom-

When G=2.5x10 3, the linear stability theonfFig.  heavy cell$, the cells swim upwards preferably and are less
24(b)] shows that the growth rates of the most unstablgorone to focus laterally into the plume. @ is large (less
wavelengths for the varicose and the meandering modes abmttom-heavy cells the viscous torque exceeds gravitational
equal and approximately 6. In contrast, wi8r-6x10 3,  torque and as a result the cells tend to tumble. Tumbling
Fig. 16@ shows that the varicose mode is the most unstableells are also less prone to focus laterally into the plume. As
and the wavelength of the most unstable mode is again afs is increased from small to intermediate values, the blob
proximately 6. In the numerical experiments when 8 and  instability increases as the cells attracted to the plume more.
G=2.5x10"3 or 6x10° 3 (see Sec. IVB the varicose If G is much higher the blob instability should decrease
mode appeared early on during the evolution of the plumewhich has been seen in the numerical experimdsisc.
When G=6x10"3, the final state was steady although thelV B). The linear stability theory is not valid for the tumbling
linear stability theory suggests that a varicose mode shouldells and cannot predict this effect.
be seen, and whe®=2.5x10"2 the final state meanders We have examinedSec. IV Q the effect of the cell
quasiperiodically without any blobs but the linear stability swimming speedv, on the plume’s stability keeping the
suggests that a mixed mode might be present. The reasomalues of R, G, S;, and A constant. The linear stability
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growth rate curves fov,=5, 10, and 12, with the same set the linear stability theory. The varicose mode disappeared at
of the other parameter values, are plotted in Figdbjl8 V.=5 due to the constraints imposed by the finite depth of
24(a), and 1&a), respectively. The numerical solution is the chamber.

steady foV,=5 and consists of periodic blob convection for The physical significance of increasing has the fol-
V.=10 and 12. There is no meandering mode in the numerilowing meaning. Increasing.=W_L/D, keeping the length

cal experiments since the growth rate of the varicose mode iscale and the other parameters fixed, results in increasing the
greater compared to the meandering mode as predicted kpells’ swimming speed alone, sind2 occurs in the other
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