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1 Group representations – the first encounter

These notes are about classical (ordinary) representation theory of finite groups.
They accompanied a lecture course with the same name, which I held at POSTECH
during the first semester 2011, although they lack many of the examples dis-
cussed in lectures. The theory presented here lays a foundation for a deeper
study of representation theory, e.g. modular and integral representation theory,
representation theory of more general groups, like Lie groups, or, even more
generally, of algebras, and also more advanced topics.

1.1 Historical introduction

We begin with a little historical introduction. Up until the 19th century, math-
ematicians did not have the concept of an abstract group, but they had worked
with groups in various guises. Some abelian groups had featured in Gauss’s
work, but more prominently, people had worked with and wondered about sym-
metry groups of geometric objects for a long time, e.g. the symmetry group of
a regular n-gon or of the cube. In the first half of the 19th century, the then
19 year old Évariste Galois had the groundbreaking insight, that solutions of
polynomials could be thought of as ”vertices” that exhibited certain symme-
tries. He thereby hugely expanded the meaning of the word ”symmetry” and
along the way to founding what is now known as Galois theory, he introduced
the abstract notion of a group. Later, in 1872, the German mathematician Felix
Klein connected groups and geometry in a totally new way in announcing his
so-called Erlanger Programm, where he proposed a way of using abstract group
theory to unify the various geometries that had emerged in the course of the
century.

By the end of the 19th century, the stage was set for standing the relationship
between groups and symmetries on its head: a group had originally been just
a set of symmetries of some geometric object, together with a rule of how to
compose symmetries. It then acquired a life of its own as an abstract algebraic
gadget. Of course, it could still act through symmetries on the same geometric
object. But the same group can act on many different objects and it is a natural
question whether one can describe all sensible actions of a given group. When
we restrict attention to linear actions on vector spaces, we arrive at the subject
of representation theory.

In these notes, we will be mainly concerned with actions of finite groups
on complex vector spaces. The main achievement of this subject is the so-
called character theory. The development of character theory actually started
from a rather unexpected direction. In 1896, the German algebraist and num-
ber theorist Richard Dedekind posed the following problem to Ferdinand Georg
Frobenius, an eminent German group theorist.

LetG = {g1, . . . , gn} be a finite group. Consider n indeterminates xg1 , . . . , xgn
indexed by the elements of this group. The determinant of the n × n matrix
(xgig−1

j
) is a homogeneous degree n polynomial in these indeterminates. How

does it factor into irreducible components? Dedekind himself had answered this
question very elegantly in the case when G is an abelian group. The polynomial
then decomposes into linear factors of the form χ(g1)xg1 + . . .+ χ(gn)xgn , one
such factor for each homomorphism χ : G → C× (it is easy to see that there
are exactly n such homomorphisms – see first exercise sheet). He told Frobe-
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nius in successive letters, that he had also looked at non-abelian groups and
that there, irreducible factors of degree higher than 1 appeared. Frobenius was
intrigued by the question and immediately set out to work on it. Within one
year, he produced three papers on the subject, in which he invented charac-
ter theory of finite groups and completely answered Dedekind’s question! It is
worth remembering that at that time, Frobenius wasn’t so much interested in
group representations. It just so happens that the question posed by Dedekind
is one of the many surprising applications of representation theory to the study
of groups.

1.2 First definitions and examples

Throughout these notes, G denotes a group and K denotes a field.

Definition 1.1. An n-dimensional representation of G over K (n ≥ 1) is a
group homomorphism φ : G → GL(V ), where V is an n-dimensional vector
space over K and GL(V ) denotes the group of invertible linear maps V → V .

In other words, a representation is a rule, how to assign a linear transfor-
mation of V to each group element in a way that is compatible with the group
operation. Via this rule, G acts on the vector space V . For g ∈ G and v ∈ V ,
one often writes g ·v, or gv, or g(v), or vg instead of φ(g)(v). We also often refer
to V itself as the representation, but remember that the important information
is how G acts on V .

Example 1.2. 1. For any group G and any field K, the map

φ : G −→ GL1(K) = K×, g 7→ 1 ∀g ∈ G

is a representation. This is called the trivial representation of G (over K).

2. Let G = C2 = {1, g} be the cyclic group of order 2. For any field K,

φ : G −→ GL1(K) = K×, g 7→ −1

is a representation.

3. The dihedral group D2n = 〈σ, τ |σn = τ2 = 1, τστ = σ−1〉 naturally acts
on the regular n-gon and this induces an action on R2 or C2 via

σ 7→
(

cos 2π/n sin 2π/n
− sin 2π/n cos 2π/n

)
, τ 7→

(
0 1
1 0

)
,

which defines a two-dimensional representation of D2n.

4. Let Q8 = 〈x, y | x4 = 1, y2 = x2, yxy−1 = x−1〉 be the quaternion group.
You can verify that

x 7→
(
i 0
0 −i

)
, y 7→

(
0 1
−1 0

)
is a representation of Q8 (you have to check that the two matrices satisfy
the same relations as x and y).
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5. Let G be a finite group and let X = {x1, . . . , xn} be a finite set on which
G acts. Over any field K, consider an n-dimensional vector space V with
a basis indexed by elements of X: vx1

, . . . , vxn
. We can let G act on V

by g(vx) = vg(x) for all x ∈ X and g ∈ G. Thus, G permutes the basis
elements. This is called the permutation representation over K attached
to X and is denoted by K[X]. A special (although not very special, as it
turns out) case of this is if X is the set of cosets G/H for some subgroup H
of G, with the usual left regular action g(kH) = (gk)H. Then we get the
permutation representation attached to H ≤ G. Note that for H = G, this
recovers the trivial representation. An extremely important special case is
H = 1, i.e. X = G on which G acts by left multiplication. The resulting
permutation representation K[G] is called the regular representation. It
turns out that the regular representation contains an enormous amount of
information about the representation theory of G.

Definition 1.3. A homomorphism between representations φ : G → GL(V )
and ψ : G → GL(W ) is a linear map f : V → W that respects the G-action,
i.e. such that for all g ∈ G and all v ∈ V one has f(φ(g)(v)) = ψ(g)(f(v)). An
isomorphism of representations is a homomorphism that is an isomorphism of
vector spaces. If there exists an isomorphism between V and W , then we say
that V and W are isomorphic and write V ∼= W .

Let φ : G → GL(V ) be a representation. Once we choose a basis on V , we
can express each linear map V → V as an n × n matrix with coefficients in
K, so that we get a map G → GLn(K), where GLn(K) is the group of n × n
invertible matrices with coefficients in K. A homomorphism from

G −→ GLn(K), g 7→ Xg to

G −→ GLm(K), g 7→ Yg

is then given by an n×m matrix A with the property that AXg = YgA for all
g ∈ G. An isomorphism is given by such an A that is square and invertible. If
we choose a different basis on V , then the matrices Xg all change by conjugation
by an invertible matrix. So, as long as we are only interested in representations
up to isomorphism, we could define a representation to be a conjugacy class
of group homomorphisms φ : G → GLn(K). Thus, φ : G → GLn(K) and
ψ : G → GLn(K) are considered to be the same representation if there exists
A ∈ GLn(K) such that φ(g) = Aψ(g)A−1 for all g ∈ G. This takes care of
different choices of basis, as well as of isomorphisms in the sense of Definition
1.3.

1.3 Semi-simplicity and Maschke’s theorem

Definition 1.4. A subrepresentation of a representation φ : G → GL(V ) is a
linear subspace U of V that is stable under the G-action, i.e. with the property
that φ(g)(U) ≤ U for all g ∈ G.

Exercise 1.5. It is easy to see that if f : V → W is a homomorphism of
representations, then ker f = {v ∈ V |f(v) = 0} and Im f = f(V ) are subrepre-
sentations of V and of W , respectively.

Definition 1.6. A representation is irreducible if it has no proper subrepresen-
tations.

4



Definition 1.7. Given a representation V and a subrepresentation U , the quo-
tient space V/U is naturally a representation via g(v + U) = gv + U . This is
the quotient representation.

Example 1.8. Let G be a finite group and let K[G] be the regular represen-
tation over a field K (see Example 1.2 (5)). Recall that a basis of the vector
space K[G] is given by vg : g ∈ G. For example, v =

∑
g∈G vg is a vector in

K[G]. In fact, this vector is invariant under the G-action: for any h ∈ G,

h

∑
g∈G

vg

 =
∑
g∈G

h(vg) =
∑
g∈G

(vhg)
g′=hg

=
∑
g′∈G

vg′ = v.

Thus, the linear span of v is a one-dimensional subrepresentation of K[G], which
is isomorphic to the trivial representation. In particular, the regular represen-
tation is never irreducible, unless |G| = 1.

Definition 1.9. Let V and W be two representations of G. The direct sum of V
and W is the representation given by the vector space V ⊕W with component-
wise G-action, i.e. g(v, w) = (gv, gw).

Exercise 1.10. If V is a representation and U and W are subrepresentations,
then it is easy to see, that V is isomorphic to U ⊕W as a representation if and
only if it is isomorphic to U⊕W as a vector space, i.e. if and only if U+W = V
and U ∩W = {0}.

Definition 1.11. A representation is indecomposable if it is not a direct sum
of proper subrepresentations.

An irreducible representation is certainly indecomposable, but the converse
does not always hold (see first exercise sheet). Clearly, to understand all (finite-
dimensional) representations of a group over K, it suffices to understand all
indecomposable ones, since all representations are direct sums of indecompos-
able ones. This may be no easy task, however. Irreducibility on the other hand
is an extremely restrictive condition and it is often much easier to classify all
irreducible representations. But that is not enough to understand all represen-
tations. This was the bad news. The good news is that in many situations (and
pretty much in all that we will consider here), the two properties – irreducibil-
ity and indecomposability – coincide. In other words, every finite dimensional
representation is a direct sum of irreducible ones. This is the first big result of
the course (do not be deceived by the simplicity of the proof)!

Theorem 1.12 (Maschke’s Theorem). Let G be a finite group and let K be
a field of characteristic coprime to |G|. Let V be a finite-dimensional repre-
sentation of G over K and let U be a subrepresentation. Then, there exists a
subrepresentation W ≤ V such that V ∼= U ⊕W . We call such a W a comple-
ment to U in V .

Proof. Let W ′ be any complement to U in V as a vector space. Of course,
W ′ need not be a subrepresentation (as an example, think of C2 acting by
reflection on a two-dimensional vector space. The axis of reflection is a subrep-
resentation and any other line will be a complement of vector spaces. But only
the orthogonal line is also a subrepresentation). Out of W ′, we will construct a
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complementary subrepresentation W to U in V as follows: let π′ : V → U be
the projection along W ′. Explicitly, since V = U ⊕W ′ as vector spaces, we can
write each v ∈ V uniquely as v = u+w′, u ∈ U , w ∈W ′, and define π′(v) = u.
Note that π′ is not a homomorphism of representations, only of vector spaces.
Note also that π′|U is the identity map. Define

π(v) =
1

G

∑
g∈G

g−1π(gv).

I claim that W = kerπ is the complement we want. Since U is a subrepresen-
tation, π(gu) = gu for all u ∈ U , g ∈ G, so that π|U is also the identity map.
Thus W ∩ U = {0}. This also shows that π is onto U , so by the rank-nullity
formula, V ∼= U ⊕ W as vector spaces. Finally, it remains to prove that W
is a subrepresentation. We do this by showing that π is a homomorphism of
representations: given any v ∈ V and h ∈ G, we have

π(hv) =
1

G

∑
g∈G

g−1π(ghv)

g′=gh
=

1

G

∑
g′∈G

hg′−1π(g′v)

= hπ(v).

So, π is a homomorphism of representations and thus W is a subrepresentation
by Exercise 1.5, as required.

Corollary 1.13. If G is a finite group and K is a field of characteristic coprime
to |G|, then any finite-dimensional representation of G over K is a direct sum
of irreducible representations.

Proof. Apply Maschke’s theorem inductively.

This result will have vast consequences, as we shall see soon. But to make
proper use of it, we need some more algebraic machinery.

2 Algebras and modules

2.1 Definitions of algebras and modules

A representation is an object with two structures that respect each other: it is
a vector space, together with a G-action. The G-action is linear, i.e. it respects
the vector space structure. It will be convenient to construct an object that
”contains” both G and K and that summarises the two actions on V : the scalar
multiplication and the G-action.

Definition 2.1. An algebra over a field K, or just a K-algebra, is a ring that is
also a K-vector space, such that the ring multiplication commutes with scalar
multiplication. We will always assume that our algebras contain 1. A homo-
morphism of K-algebras is a K-linear ring homomorphism. A subalgebra is a
subring that is also a sub-K-vector space.
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Example 2.2. 1. The complex numbers form an algebra over R. So do the
quaternions (also called Hamiltonians) H. In both cases, R itself forms
a subalgebra. Complex conjugation is an example of a homomorphism
C→ C of R-algebras.

2. Given any field K and any natural number n, the ring Mn(K) of n ×
n matrices with coefficients in K is a K-algebra. The subset of upper
triangular matrices forms a subalgebra.

3. The polynomial ring over any field is an algebra.

4. Any K-algebra has a subalgebra isomorphic to K, generated by the iden-
tity element. As an exercise, identify this copy of K in all of the above
examples.

5. The following example will be the most important for our pur-
poses: let G be a finite group. Recall that K[G] is a K-vector space
with a canonical basis vg indexed by the elements of G. To turn it into
an algebra, we only need to specify a multiplication operation. Define
vg · vh = vgh and extend linearly. The resulting algebra is called the group
algebra of G over K and is also denoted by K[G] (or sometimes KG). We
will now stop writing the vectors vg and will simply write g for the basis
elements of the group algebra. Thus, a general element of KG looks like∑
g∈G agg, ag ∈ K. To avoid confusion between addition in the vector

space and the group operation, we will always denote the group opera-
tion of G multiplicatively, even if the group is abelian, unless explicitly
otherwise stated.

Definition 2.3. Let M be an abelian group, written additively. The endomor-
phism ring of M , denoted by End(M), is the ring of homomorphisms from M to
itself. Addition is defined using the group operation on M : for φ, ψ ∈ End(M),
(φ + ψ)(m) = φ(m) + ψ(m) ∈ M ; whereas multiplication of endomorphisms is
composition of maps M →M : (φ · ψ)(m) = φ(ψ(m)).

Definition 2.4. Let A be an algebra. A (left) module over A, or simply A-
module, is an abelian group M together with a ring homomorphism φ : A →
End(M). Again, we often write a(m) or a ·m or am instead of φ(a)(m).

Definition 2.5. A submodule of an A-module is a subgroup that is stable under
the A-action. An A-module is simple if it is non-zero and has no proper non-zero
submodules. Given an A-module M and a submodule N , the quotient module
M/N is the quotient group together with the A-action given by a(mN) =
(am)N .

Definition 2.6. A homomorphism f : M → N between two A-modules is
a group homomorphism that commutes with the A-action, i.e. that satisfies
f(a ·m) = a · f(m).

Definition 2.7. We say that an A-module M is generated by mi ∈ M, i ∈ I –
an indexing set, and write M = 〈mi | i ∈ I〉A if{∑

i∈J
aimi | J ⊆ I finite, ai ∈ A

}
= M.

We say that M is finitely generated if I can be taken to be finite.
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Exercise 2.8. The image Im f and the kernel ker f of a homomorphism of
modules are submodules of the domain and of the co-domain, respectively.

We have the concept of direct sums, parallel to that of representations:

Definition 2.9. Given A-modules N and N ′, the direct sum of abelian groups
N ⊕ N ′ is an A-module via a · (n, n′) = (a · n, a · n′). If M is an A-module
and N ,N ′ are submodules, then M ∼= N ⊕N ′ if and only if N + N ′ = M and
N ∩N ′ = {0}, or equivalently if and only if M ∼= N ⊕N ′ as abelian groups. An
A-module is indecomposable if it cannot be written as a direct sum of proper
submodules.

As for representations, we should think of the irreducible A-modules as those
that are usually easier to understand, but not sufficient for understanding all
A-modules, while understanding the indecomposable modules is what we really
want, but it may be much more difficult.

Proposition 2.10 (First Isomorphism Theorem for modules). Let A be a K-
algebra and let f : M → N be a homomorphism of A-modules. Then there is
an isomorphism M/ ker(f) ∼= Im f .

Proof. The proof is essentially the same as for groups (in fact, we could just
refer to the statement for groups and check that everything is compatible with
the A-action). Define the map f̄ : M/ ker(f)→ Im f by f̄(m+ ker(f)) = f(m).
Check that this is well-defined, i.e. independent of the coset representative m. It
is clearly onto the image of f and injective, and it respects the group operations.
Since ker(f) is a submodule, one also checks that f̄ is a homomorphism of A-
modules, which proves the result.

Example 2.11. 1. A module over a field is just a vector space. In particular,
a module over a K-algebra is automatically a K-vector space. When we
talk about the dimension of a module, we will always mean dimension over
K. A submodule of a K-module is just as sub–vector space. But for a
general K-algebra A, a sub–vector space of an A-module will not usually
be an A-submodule.

2. An n-dimensional K-vector space is naturally an Mn(K)-module.

3. Any algebra acts on itself by left multiplication: M=A and for a ∈ A,
m ∈ M , a(m) = am. This is called the left regular A-module. A very
important special case of this is A = M = Mn(K). Note that this module
is not indecomposable, unless n = 1. Indeed, for any 1 ≤ i ≤ n, the
matrices that are zero outside the i-th column form a submodule.

4. Let V be a K-vector space and α : V → V any linear map. Let K[x] be
the polynomial ring in one indeterminate over K. Then, V can be made
into a K[x]-module by defining x · v = α(v). A submodule is a vector
subspace that is preserved under α.

5. As for modules of group algebras...

Proposition 2.12. There is a canonical bijection between finite dimensional
representations of a finite group G over K and finitely generated non-zero KG-
modules. Irreducible representations correspond to simple modules under this
bijection.
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Proof. The proof is a straightforward check of the definitions - exercise!

It may not be clear at this stage what we have gained by reformulating the
problem in this way, but it will become clear very soon. The point is that there
is a powerful algebraic machinery available to us that investigates the structure
of modules over algebras.

2.2 Simple and semi-simple modules, Wedderburn’s the-
orem

Lemma 2.13 (Schur’s Lemma). Let A be a K-algebra and let M and N be
two simple A-modules. Then, any A-module homomorphism M → N is either
the 0-map or an isomorphism. If moreover K is algebraically closed, then any
isomorphism of simple modules is multiplication by some scalar λ ∈ K.

Proof. Let f : M → N be a homomorphism of A-modules. Since ker f is a
submodule of M , and since M is simple, ker f is either 0 or M . If ker f = M ,
then f = 0. Suppose that f 6= 0, so f is injective. Since Im f is a submodule of
N , it is either 0 or N by the same argument. Since f 6= 0, we have Im f 6= 0, so
Im f = N and thus f is an isomorphism.

Now, let f be an isomorphism. If K is algebraically closed, then f has an
eigenvalue, λ, say. But f−λ · id is then also a homomorphism of simple modules
and by assumption, it has a kernel. Thus, by the same argument, it is identically
0, so f = λ · id.

Definition 2.14. We say that a module is semi-simple if it is a direct sum of
simple modules.

In this language, Maschke’s theorem says that if G is a finite group and
K is a field of characteristic coprime to |G|, then every finitely generated non-
zero KG-module is semi-simple. In this section, we will explore some of the
consequences of this remarkable result.

Note that, among other things, Maschke’s theorem says that the left regular
module of the group algebra KG itself is semi-simple. Why is this so great?
Here is why:

Proposition 2.15. Let G be a finite group and K a field of characteristic
coprime to |G|. Then, any simple KG-module is a direct summand of the left
regular KG-module.

Proof. Let M be a simple KG-module. We first define a module homomorphism
f : KG→M : let 0 6= m ∈M and define

f

∑
g∈G

αgg

 =
∑
g∈G

αgg(m).

This is clearly a module homomorphism. Since M is simple and Im f 6= 0
(e.g. f(1) = m 6= 0), f must be onto. By the first isomorphism theorem,
M ∼= KG/ ker f . So we have already shown that M occurs as a quotient of
the left regular module. But by Maschke’s theorem, there exists a submodule
N of KG such that KG = N ⊕ ker f . Since KG/ ker f ∼= N , we deduce that
M ∼= N ≤ KG.
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To recapitulate: any finitely generated module over an algebra is a direct
sum of indecomposable modules. Any semi-simple module is a direct sum of
simple modules. Usually, there are less of the latter than the former, but in the
favourable situation that K has characteristic coprime to |G|, all KG-modules
are in fact semi-simple. In other words, the notions “indecomposable” and
“simple” are the same. Since a general module will be a direct sum of simple
summands, we have reduced the problem of understanding all KG-modules to
that of understanding the simple ones. But each of those is a direct summand
of the left regular module. So all we need to do is decompose the left regular
module KG into a direct sum of simple ones and we get the list of all simple
KG-modules. That latter task is made considerably easier but Wedderburn’s
theorem, a really big classification result, which we shall not prove here.

Definition 2.16. An algebra is called left (resp. right) semi-simple if its left
(resp. right) regular module is semi-simple.

Definition 2.17. A division algebra over a field K is a K-algebra in which every
element has a multiplicative left and right inverse (the two may be distinct).

Theorem 2.18 (Wedderburn’s Theorem). A K-algebra A is semi-simple if
and only if it is isomorphic to a direct sum of matrix algebras over division
K-algebras, i.e. if and only if

A ∼=
⊕
i

Mni
(Di),

where ni ∈ N and Di are division algebras over K.

The proof is slightly technical and beyond the scope of this course. It can
be found in many textbooks on algebra, e.g. [1, Theorem 9.5.1].

Remark 2.19. � Emil Artin has generalised this to semi-simple Artinian
rings. The more general result is known as the Artin-Wedderburn theorem.

� The “if” direction of this theorem is actually easy! But the “only if”
direction would require two more lectures.

� It is easy to check that each Wedderburn component, treated as a mod-
ule, decomposes into a direct sum of n mutually isomorphic n-dimensional
simple modules. See the first exercise sheet. The simple modules corre-
sponding to different Wedderburn components are certainly not isomor-
phic, since they have different annihilators.

2.3 Idempotents, more on the group algebra

We now know that given a finite group G and a field K of characteristic coprime
to |G|, we have an abstract isomorphism of algebras KG ∼=

⊕
iMni

(Di), where
Di are division algebras over K. Moreover, you have shown in the exercises that
the left regular module of eachMni

(Di) is a direct sum of ni mutually isomorphic
simple modules, each of dimension ni over Di. An immediate consequence is:

Corollary 2.20. Let ni be the dimensions of all the irreducible complex repre-
sentations of a finite group G. Then |G| =

∑
i n

2
i .
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Proof. The only division algebra over C is C itself. So CG ∼=
⊕

iMni
(C) and

the result follows by comparing dimensions.

Assumptions 2.21. From now on, we specialise for some time to the case
K = C (or any other algebraically closed field of characteristic 0). We will also
always assume that G is finite without explicitly repeating it all the time.

It remains to find a way of explicitly getting a handle on the Wedderburn
components Mni

(C), and then we will be able to classify all simple left modules
of CG, equivalently all irreducible representations of G over C. Some of the
questions that we want to answer are: How many components are there in a
given group? How do we explicitly find generators for each of the Wedderburn
components in terms of the standard basis on CG? In other words, how do we
exhibit each Mni

(C) as a two-sided ideal of CG? The answer will be given in
the next section. Here, we prepare the ground.

As a ring, each Mn(C) has a multiplicative identity. Let ej be the element
of CG ∼=

⊕
iMni

(Di) that has the identity matrix in the j-th entry and zeros
elsewhere. Then, ej is in the centre of CG and left or right multiplication by ej
is projection onto Mnj

(C). We also see that e2
j = ej and that the multiplicative

identity of CG can be written as 1 =
∑
i ei.

Definition 2.22. Let R be any ring (e.g. an algebra). An idempotent in R
is a non-zero element e ∈ R satisfying e2 = e. A central idempotent is an
idempotent that is in the centre of the ring. A primitive central idempotent is a
central idempotent that cannot be written as a sum of two central idempotents.
A complete system of primitive central idempotents is a set of primitive central
idempotents that sum to the identity.

The above discussion shows that the decomposition CG ∼=
⊕

iMni
(C) cor-

responds to a complete system of primitive central idempotents (the fact that
they are primitive is implied by the fact that Mn(C) has no two-sided proper
ideals). This is true in complete generality: direct sum decompositions of a ring
into proper non-zero two-sided ideals correspond bijectively to decompositions
of 1 as a sum of central idempotents. Irreducible ideals (i.e. those without
proper two-sided ideals) correspond to primitive idempotents.

Now, each such idempotent can be written as e =
∑
g∈G agg, ag ∈ C, and

we want to determine ag, g ∈ G for all these primitive idempotents.

Example 2.23. Recall that any group has the trivial representation 1 : g 7→
1 ∀g ∈ G. In Example 1.8, we have explicitly exhibited the trivial representation
as a submodule of the regular module: it is generated by the vector

∑
g∈G g.

However, this element is not idempotent:∑
g∈G

g

2

=
∑
g∈G

∑
h∈G

gh = |G|
∑
g∈G

g.

Thus, e1 = 1
|G|
∑
g∈G g is the primitive central idempotent corresponding to the

trivial representation 1 of G.

Let e =
∑
g∈G agg ∈ CG be a primitive central idempotent. We begin by

determining the coefficient a1 in terms of the representation ρ that corresponds
to e.

11



Proposition 2.24. The coefficient a1 in a primitive central idempotent of CG
corresponding to the Wedderburn block Mn(C) is equal to n2

|G| .

Proof. Multiplication by e is a linear map on CG. On the Wedderburn com-
ponent Mn(C) = eCG this map acts as the identity, while on the component
(1 − e)CG it acts as the zero map. In other words, CG = Im e ⊕ ker e, and
choosing appropriate bases, we see that multiplication by e is given by the ma-

trix

(
I 0
0 0

)
, where dim Im e = Tr e = dimMn(C) = n2. Here, Tr e denotes the

trace of the map on CG given by multiplication by e (recall from linear algebra,
that the trace of a matrix is invariant under conjugation, so we can define the
trace of a linear map and it is independent of the choice of basis on CG). But
also,

Tr e =
∑
g∈G

ag · Tr g.

Now, multiplication by g 6= 1 correspons to a permutation of the standard basis
of CG without any fixed points, so Tr g = 0 for g 6= 1. On the other hand,
multiplication by 1 is the identity map on CG, so Tr e = a1 ·Tr 1 = a1 · |G|.

3 Characters

3.1 The first sightings in nature

In the last proposition, it turned out, somewhat unexpectedly, that the traces
of matrices might help us to get hold of the primitive central idempotents of
a group algebra. This entire section will be about the rôle of traces in our
theory. The main outcome of this section will be an explicit description of the
idempotents we are after and an amazing almost purely combinatorial procedure
that will make calculations of all complex irreducible representations of a given
group much easier than the ad hoc methods that you have tried out on the first
exercise sheet.

Proposition 3.1. Let G be a finite group and ρ : G → V any complex repre-
sentation. Denote by V G = {v ∈ V |g(v) = v ∀g ∈ G} the fixed subspace under
the action of G. In other words, it is the biggest subrepresentation of V that is
a direct sum of trivial representations. Then, V G = 1

|G|
∑
g∈G Tr ρ(g).

Proof. Since V is a direct sum of irreducible representations and since every
irreducible representation is a direct summand of the regular representation,
we deduce that V is a direct summand of (CG)⊕n for some n. We already
know that on CG, multiplication by e1 = 1

|G|
∑
g∈G g is the projection onto

the trivial summand of CG. It follows that V G = e1V . Moreover, choosing a
complementary subrepresentation U ≤ V such that V = V G⊕U , as we may by
Maschke’s theorem, we immediately see that e1 is the identity map on V G and
the zero map on U , and therefore

dimV G = Tr ρ(e1) =
1

|G|
∑
g∈G

Tr ρ(g),

as claimed.

12



We are thus led to the following definition:

Definition 3.2. Let ρ : G → GL(V ) be a complex representation. We define
its character χρ by χρ(g) = Tr ρ(g). This is independent of the choice of basis
on V , since TrMAM−1 = TrA for all square matrices A and all invertible M .
We call a character irreducible if the associated representation is irreducible.
The dimension of the representation, which is also the character value at 1, is
referred to as the degree of the character.

The quantity dimV G for a representation of G can be interpreted as the
dimension of HomG(1, V ), the space of all homomorphisms of representations
between the trivial representation and V . That these two are indeed the same
follows from Schur’s Lemma. We would now like to find a similar formula for
dim HomG(V,W ) for arbitrary representations V and W .

Theorem 3.3. Given two complex representations V and W of G, the space of
G-homomorphisms from V to W is a complex vector space of dimension

1

|G|
∑
g∈G

χV (g)χW (g) =
1

|G|
∑
g∈G

χV (g)χW (g).

Remark 3.4. Notice how the previous proposition is a special case of this
theorem, using the fact that the character of the trivial representation is just
χ1(g) = 1 ∀g ∈ G.

Proof. The space of vector space homomorphisms from V to W , Hom(V,W )
is a CG-module as follows: for g ∈ G and f : V → W a linear map, define
g(f)(v) = g(f(g−1v)). By definition,

HomG(V,W ) = Hom(V,W )G.

So, by Proposition 3.1,

dim HomG(V,W ) =
1

|G|
∑
g∈G

χ(g), (3.1)

where χ is the character associated with the G-representation Hom(V,W ). So
it just remains to compute this character. Let v1, . . . , vn be a basis of V and
w1, . . . , wm be a basis of W . Then, fi,j defined by fi,j(vk) = δi,kwj is a basis
of Hom(V,W ), where δi,k is the usual Kronecker delta. Now, the trace of g ∈
G acting on Hom(V,W ) is the sum over all i and j of the coefficient of fi,j
in g(fi,j). Also, for any f ∈ Hom(V,W ), the coefficient of fi,j in f is the
coefficient of wj in f(vi). So, we need to compute the coefficient of wj in
g(fi,j)(vi) = g(fi,j(g

−1vi)). Let g be represented by the matrix (Xi,j) on W
with respect to w1, . . . , wm and let g−1 be represented by (Yk,l) on V with
respect to v1, . . . , vn. Recall, that fi,j sends vi to wj and all other basis vectors
to 0, so fi,j(g

−1vi) = Yi,iwj . The coefficient of wj in g(fi,j)(vi) is therefore
Xj,jYi,i, and so we see that

χ(g) =
∑
i,j

Xj,jYi,i =

(∑
i

Yi,i

)∑
j

Xj,j

 = χV (g)χW (g−1). (3.2)

It remains to relate χV (g−1) to χV (g).

13



Lemma 3.5. Let ρ : G→ GL(V ) be a complex representation of a finite group
G. Then ρ(g) is diagonalisable for any g ∈ G.

Proof. It suffices to show that the minimal polynomial of ρ(g) splits into linear
factors. Now, g has finite order, n, say, so ρ(g) satisfies the polynomial xn−1 =∏n−1
i=0 x − ζin, where ζn is a fixed primitive n-th root of unity. The minimal

polynomial must divide xn − 1, so we are done.

Corollary 3.6. Let V be any d-dimensional representation of a finite group
and let χ be the associated character. If g ∈ G has order n, then χ(g) is a sum
of d n-th roots of unity and χ(g−1) = (χ(g)).

Together with equations (3.1) and (3.2), this finishes the proof of the theo-
rem.

3.2 The character table, orthogonality relations

In light of Theorem 3.3, another definition naturally suggests itself:

Definition 3.7. Let χ and ϕ be two characters of a finite group G. The inner
product of χ and ϕ is defined as

〈χ, ϕ〉G =
1

|G|
∑
g∈G

χ(g)ϕ(g)

It is immediately seen that this is indeed a Hermitian inner product on the
vector space of complex functions of G spanned by the irreducible characters,
i.e. it is linear in the first variable and satisfies 〈χ, ϕ〉 = 〈ϕ, χ〉. Moreover, it is
non-degenerate, as the next result demonstrates:

Proposition 3.8. Let χ and ϕ be two irreducible characters. Then

〈χ, ϕ〉G =
{

1, χ=ϕ
0, otherwise

}
.

Proof. This is an immediate consequence of Theorem 3.3 together with Schur’s
lemma.

This proposition is truly remarkable, because it says that a complex repre-
sentation is uniquely determined by its character. How so? Let ρ be a complex
representation. By Maschke’s theorem, we know that it is semi-simple, so let
ρ =

⊕
i ρ
ni
i be a decomposition of ρ into irreducible summands, where ρi 6= ρj

for i 6= j. To determine ρ, it suffices to determine the multiplicities ni of all the
irreducible constituents. The character of ρ can be written as χρ =

∑
i niχρi .

By computing the inner product of χρ with all irreducible characters, we find
all ni, and thus we find ρ. Since it is so amazing, let us say it again: an n-
dimensional representation assigns to each group element an n× n matrix, i.e.
n2 numbers. We replace these n2 numbers by just one, and this one is enough to
determine the representation! A large part of the remaining course will consist
of exploring the properties of characters.

Note that since trace is invariant under conjugation of matrices, the character
is a function G → C that is constant on conjugacy classes of the group, i.e.
χ(hgh−1) = χ(g) for any character χ of G.

14



Definition 3.9. A function f : G→ C that is constant on conjugacy classes is
called a class function.

The set of class functions on G naturally forms a C-vector space whose
dimension is equal to the number of conjugacy classes in G. Any character of
G is a class function. Moreover, the inner product of characters can be defined
similarly on the entire vector space of class functions. The above proposition
says that irreducible characters of G form an orthonormal set with respect to
this inner product. In particular, they must be linearly independent. In fact, we
will now show that the irreducible characters form an orthonormal basis of the
space of all class functions. Along the way, we will finally answer the question:
how many isomorphism classes of irreducible complex representations does a
finite group have?

Theorem 3.10. The number of distinct irreducible characters of G is equal to
the number of conjugacy classes in G. In particular, the irreducible characters
form an orthonormal basis of the space of class functions on G with respect to
the inner product of Definition 3.7

Proof. The idea of the proof is to count the dimension of the centre of the group
algebra CG is two different ways. On the one hand, if we write it in terms of
the Wedderburn decomposition

CG ∼=
⊕
i

MniC,

then it is immediate from general linear algebra that the centre consists of ele-
ments that are scalar multiplies of the identity in each Wedderburn component:

Z(CG) =

{⊕
i

λiIni

∣∣ λi ∈ C

}
,

and so has dimension equal to the number of Wedderburn components, which is
also the number of isomorphism classes of irreducible complex representations
of G. On the other hand,∑
g∈G

agg ∈ Z(CG)⇔
∑
g∈G

aghgh
−1 =

∑
g∈G

agg ∀h ∈ G⇔ ahgh−1 = ag ∀h, g ∈ G.

So, an element
∑
g agg of the group algebra is central if and only if the coef-

ficients ag are constant on conjugacy classes. So, writing C(G) for the set of
conjugacy classes,

Z(CG) =

 ∑
c∈C(G)

(
ac
∑
g∈c

g

)∣∣ ac ∈ C

 ,

which has dimension |C(G)|, and the theorem is proven.

We see that the inner product of characters is in fact defined for any class
functions. The orthogonality of the irreducible characters allows one to easily
obtain the decomposition of an arbitrary class function into a linear combination
of irreducible characters: if c =

∑
χ aχχ, then aχ = 〈c, χ〉. Moreover, the inner

product gives a convenient way to check whether a given character is irreducible:
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Corollary 3.11. Let χ be a character. Then, χ is irreducible if and only if
〈χ, χ〉 = 1.

The above theorem suggests organising information about the irreducible
complex representations of a finite group in a table.

Definition 3.12. The character table of a finite group is a square table, whose
columns are labelled by the conjugacy classes of elements and where each row
corresponds to an irreducible character of the group, listing its values at the
representatives of the conjugacy classes.

The magic of characters is that it is often possible to find all irreducible
characters without writing knowing the representations themselves.

Example 3.13. Let G = S3. Recall that in symmetric groups, conjugacy
classes are the same as the cycle type classes, so the character table will be a
3 × 3 matrix. We know that all 1-dimensional characters are lifted from G/G′

(see first exercise sheet), which in this case is C2, so that gives us two out of
three rows of the character table:

S3 1 (1, 2) (1, 2, 3)
1 1 1 1
ε 1 −1 1
ρ ? ? ?

From Wedderburn’s theorem, we know that |G| is equal to the squares of the
dimensions of the irreducible characters, so the remaining character has dimen-
sion 2. Since the last row must be orthogonal to both the first and the second
and since they only differ in the value at (1, 2), the last character must be 0 in
this column. Finally row orthogonality also gives the last value, and the whole
character table is

S3 1 (1, 2) (1, 2, 3)
1 1 1 1
ε 1 −1 1
ρ 2 0 −1

Example 3.14. Let G = G20 = 〈a, b| a5 = b4 = 1, bab−1 = a2〉. This is a
semi-direct product of the cyclic group of order 5 and the cyclic group of order
4, the latter acting faithfully on the former. First, we need to determine the
conjugacy classes in G. It is immediately seen that all non-trivial powers of
a are conjugate, which gives a conjugacy class of size 4, and that no distinct
powers of b are conjugate to each other. This quickly yields 5 conjugacy classes,
represented by 1, and by abi, 0 ≤ i ≤ 3, the last three having size 5. The
subgroup generated by a is normal and the quotient is cyclic of order 4. Since
〈a〉 has no proper subgroups, we deduce that G′ = 〈a〉 and that G has therefore
4 one-dimensional characters. This immediately gives all but one row of the
character table:

G20 1 a ab ab2 ab3

1 1 1 1 1 1
χ1 1 1 i −1 −i
χ2 1 1 −1 1 −1
χ3 1 1 −i −1 i
ψ ? x y z w
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Just like in the previous example, we deduce that the degree of the remaining
character is 4. By comparing the inner products of ψ with 1 and with χ2,
we deduce that y = −w. By making the same comparison with χ1 and χ3 and
taking y = −w into account, we deduce that in fact y = w = 0. Again comparing
the inner products with 1 and with any non-trivial degree one character also
yields z = 0 and then finally x = −1. The complete character table then is

G20 1 a ab ab2 ab3

1 1 1 1 1 1
χ1 1 1 i −1 −i
χ2 1 1 −1 1 −1
χ3 1 1 −i −1 i
ψ 4 −1 0 0 0

Often, the character table is all one needs to know in practice. But if we want
to know the actual matrices, we need to be able to determine the Wedderburn
components explicitly. Luckily, this is also made possible by the characters:

Theorem 3.15. Let τ : G → GL(V ) be an irreducible complex representation
with character χ. Let MnC = U ≤ CG be the corresponding Wedderburn sum-
mand of CG (recall that this means that the CG-module U is isomorphic to a
direct sum of dim(V ) copies of V ) and let eχ be the corresponding primitive
central idempotent, i.e. eχCG = U . Then, we have

eχ =
dim τ

|G|
∑
g∈G

Tr τ(g−1)g =
1

|G|
∑
g∈G

χ(1)χ(g−1)g.

Proof. Write eχ =
∑
g∈G agg. Let ρ be the character of the regular representa-

tion. Recall that ρ(1) = |G| and ρ(g) = 0 for all g 6= 1, since multiplication by
g 6= 1 has no fixed points on the standard basis of CG. Therefore,

ρ(g−1eχ) = |G|ag (3.3)

for any g ∈ G. On the other hand, we know from Wedderburn’s theorem that
ρ =

∑
χi
χi(1)χi with the sum running over all irreducible characters of G. If

i 6= j, then eχi acts as zero on eχjCG (and therefore so does geχi for any g ∈ G).
Otherwise, eχi

acts as the identity, and so geχi
acts as g. In summary, we have

ρ(g−1eχ) =
∑
χi

χi(1)χi(g
−1eχ) = χ(1)χ(g−1). (3.4)

Equating (3.3) and (3.4), we get the result.

The example of G20 was a little bit more cumbersome than that of S3. Fortu-
nately, the character table bears a lot more symmetry than we have exploited so
far. Another orthogonality relation is extremely useful and would have reduced
our work in the case of G20 considerably:

Proposition 3.16. Let g, h ∈ G. Then
∑
χ χ(g)χ(h) = 0 if g is not conjugate

to h, and is equal to |CG(g)|, the order of the centraliser of g in G otherwise.
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Proof. Let g1, . . . , gk denote representatives of all the conjugacy classes in G,
write cc(g) for the conjugacy class of an element. The orthogonality relation
between the irreducible characters can be written as

|G|δχ,ϕ =
∑
g∈G

χ(g)ϕ(g) =

k∑
i=1

|cc(gi)|χ(gi)ϕ(gi).

The orthogonality relations can be written all at once in matrix notation as
follows: let X be the k × k matrix given be the entries of the character table
and let D = diag{|cc(g1), . . . , |cc(gk)|}. Then, we have

|G|Ik = XDX
Tr
,

where Ik is the k × k identity matrix. In other words, 1
|G|DX

Tr
is the right

inverse of the matrix X. But the right inverse of a square matrix is also its left
inverse, so we have

|G|Ik = DX
Tr
X,

which, when spelled out row by row, reads

|G|δi,j =
∑

χ∈IrrG

|cc(gi)|χ(gi)χ(gj).

The result now follows from the orbit-stabiliser theorem.

In particular, one can read off the sizes of the conjugacy classes of G from
the character table.

The character table encodes a lot more group theoretic information. For ex-
ample, we can extract complete information about the sizes of normal subgroups
of G just by looking at the character table:

Proposition 3.17. Any normal subgroup of G is of the form

N = {g ∈ G|χi(g) = χi(1) ∀χi ∈ I ⊂ Irr(G)}

for some subset I of the set of irreducible characters of G. Moreover, any such
set is indeed a normal subgroup of G.

Proof. On the second exercise sheet, you show that if ρ is a representation of
G with character χ, then ker ρ = χ−1(χ(1)). Since kernels of group homomor-
phisms are normal subgroups and since the intersection of two normal subgroups
is a normal subgroup, we immediately see that sets of the above form are indeed
always normal subgroups of G. Moreover, if N is any normal subgroup, then let
I be the set of all irreducible characters of G that are lifted from the quotient
G/N (see first exercise sheet). Then, by your results from the first exercise
sheet, N = ∩χ∈I kerχ as claimed.

Example 3.18. Let G be as in Example 3.14. By taking I = {χ1, χ2, χ3}, we
see that 〈a〉 is a normal subgroup. By taking I = {χ2}, we also see that 〈a, b2〉
is normal, and these are all the proper non-trivial normal subgroups.

Corollary 3.19. A group G is simple if and only if kerχ = {1} for all irre-
ducible characters χ of G.
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It also follows that the character table tells us whether a group is soluble.
Indeed, G is soluble if and only if there is a chain of normal subgroups {1} /
N2 / . . . / Nt = G such that each has index a prime power in the next. Since
the normal subgroups of a group together with their orders can be read off from
the character table, and since the character table of G/N can be read off from
that of G, such a chain is detectable through the character table.

We can also recover the centre of the group from the character table.

Definition 3.20. Given a representation ρ of G with character χ, define the
centre of ρ by

Z(ρ) = Z(χ) = {g ∈ G| ρ(g) = λI}.
From the second exercise sheet, we have Z(χ) = {g ∈ G| |χ(g)| = χ(1)}.

It is easy to see that Z(ρ) is a subgroup of G and the restriction of ρ to Z
is isomorphic to ψ⊕χ(1) for some 1-dimensional character ψ of Z(ρ).

Lemma 3.21. Let ρ, χ and Z(χ) be as above. Then Z(χ)/ kerχ is cyclic
and is contained in the centre of G/ kerχ. Moreover, if χ is irreducible, then
Z(χ)/ kerχ is equal to the centre of G/ kerχ.

Proof. Suppose that ResG/Z(ρ) χ = χ(1)ψ for a linear (i.e. one-dimensional)
character ψ of Z(χ). Clearly, kerχ = kerψ. By the first isomorphism theorem,
Z(χ)/ kerχ is therefore isomorphic to the image of ψ, which is a finite subgroup
of C×, hence cyclic. Similarly, Z(χ)/ kerχ ∼= χ(Z(χ)) is clearly central in
G/ kerχ ∼= Im ρ. Conversely, if χ is irreducible and g kerχ is central in G/ kerχ,
then multiplication by g is an automorphism of ρ, hence it is a scalar multiple
of the identity by Schur’s lemma.

Corollary 3.22. The centre of G is equal to
⋂
χ∈Irr(G) Z(χ).

Proof. You have already shown on the first exercise sheet that Z(G) ⊆ Z(χ) for
any irreducible character χ. For the reverse inclusion, suppose that g ∈ Z(χ)
for every irreducible χ. By the previous lemma, we have that g kerχ is central
in G/ kerχ for all irreducible χ, so that for any x ∈ G, gx kerχ = xg kerχ, i.e.
gxg−1x−1 ∈ kerχ for all irreducible χ. But

⋂
χ∈Irr(G) kerχ = 1, so gxg−1x−1 =

1 for all x, and so g is central.

Definition 3.23. A character χ is called faithful if kerχ = 1.

4 Integrality of characters, central characters

We have now seen some examples of characters that take non-integer, and even
non-rational values. However, the values they take are still very special. To
explore this, we need some notions from algebraic number theory.

Definition 4.1. A complex number α is an algebraic integer if there exists a
monic polynomial f(x) (i.e. with highest power entering with coefficient 1) with
integer coefficients such that f(α) = 0.

We will list without proof some of the most important properties of algebraic
integers.

It might appear as though it can be very hard to prove that something is
not an algebraic integer. After all, how can we be sure that there is no suitable
polynomial? It turns out that this is very easy:
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Lemma 4.2. Let f(x) be an irreducible monic polynomial over Q. Then its
roots are algebraic integers if and only if f(x) ∈ Z.

Example 4.3. The following lists algebraic integers, together with polynomials
that witness their integrality:

� α = 5, F (x) = x− 5;

� α =
√

2, f(x) = x2 − 2;

� α = e2πi/n n ∈ N, f(x) = xn − 1;

� α = 1+
√

5
2 , f(x) = x2 − x− 1.

And here some examples of complex numbers that are not algebraic integers:

1/2, 1
2e

2πi/n for any n ∈ N, 1+
√

3
2 , π, log(2). The last two do not satisfy any

polynomial equation with rational coefficients – they are transcendental.

Lemma 4.4. The only algebraic integers that are in Q are the usual integers
Z.

Proof. Let α ∈ Q be an algebraic integer. Clearly, α satisfies the monic rational
polynomial f(x) = x−α, and this is clearly irreducible. Hence, the result follows
from Lemma 4.2.

The following is completely non-obvious at first glance:

Theorem 4.5. The subset of C consisting of algebraic integers is a ring. In
other words, if α and β are algebraic integers, then so are α+ β and αβ.

It is not at all obvious how, given polynomials for α and β, to explicitly
construct a polynomial that will have α + β, say, as a root. Instead of such a
frontal approach, we will surround the problem from the flanks. The proof will
proceed in several intermediate results.

Lemma 4.6. Let X = {α1, . . . , αk} be a finite set of algebraic integers. Then,
there exists a ring S with the properties

1. Z ⊆ S ⊂ C;

2. X ⊆ S;

3. S is finitely generated as a Z-module.

Proof. The numbers αi satisfy monic polynomials fi ∈ Z[X] of degrees ni.
Consider the finite set

Y = {αn1
1 · · ·α

nk

k |0 ≤ αi ≤ ni − 1 for 1 ≤ i ≤ k},

and let S be the set of all Z-linear combinations of elements of Y . Then, all the
assertions are clear, except for the claim that S is a ring. By definition, it is
closed under addition, we just need to prove that S is closed under multiplica-
tion. But that follows immediately from the fact that αni

i can be expressed as
a Z-linear combination of strictly smaller powers of αi, using fi, so any power
of αi can be expressed as a Z-linear combination of 1, . . . , αni−1

i .
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The following is a rather surprising converse to this Lemma 4.6:

Theorem 4.7. Let S be a ring with Z ≤ S ≤ C, and such that S is finitely
generated as a Z-module. Then every element of S is an algebraic integer.

Proof. Let Y = {y1, . . . , yk} ⊆ S be a generating set for Y as a Z-module.
Then, for any s ∈ S, we have

syi =

k∑
j=1

ai,jyj , ai,j ∈ Z.

This can be expressed for all i simultaneously by matrix notation: if A = (ai,j)
and v is the column vector with entries yi, 1 ≤ i ≤ k, then the above equation
says

sv = Av,

so that s is a root of the polynomial f(X) = det(XI − A). This is a monic
polynomial in Z[X], which proves that s is an algebraic integer.

Proof of Theorem 4.5. Let α and β be two algebraic integers. By Lemma 4.6,
there exists a ring S with Z ⊆ S ⊆ C containigα and β that is finitely generated
as a Z-module. Since S is a ring, α + β and αβ ∈ S. By Theorem 4.7, α + β
and αβ are algebraic integers, as required.

Corollary 4.8. Character values are always algebraic integers.

Proof. We already know that character values are sums of roots of unity. The
latter are algebraic (see Example 4.3) and the algebraic integers are closed under
sums, hence the result.

This result will be very useful for group theoretic applications.
Recall from the first exercise sheet that if ρ is an irreducible representation

of G and z is an element of the centre of G, then ρ(g) is a scalar matrix, λzI
for some λz ∈ C×. More generally, if z is any element of the centre of the group
algebra CG, then we also have ρ(z) = λzI for some λz ∈ C. Recall that this
follows from Schur’s Lemma, since the action of a central element of the algebra
on any CG-module gives a module homomorphism. Thus, the character χ of ρ
satisfies χ(z) = χ(1)λz.

Definition 4.9. Define the central character ωχ attached to χ by

ωχ : Z(CG)→ C, z 7→ λz = χ(z)/χ(1).

This is easily seen to be an algebra homomorphism.

Recall from the proof of Theorem 3.10 that a basis for Z(CG) is given by
sums

∑
g∈cc g over conjugacy classes cc in G. Since ωχ is an algebra homomor-

phism, and in particular C-linear, it is determined by its values on a basis of
Z(CG). Let cc be a conjugacy class in G and let CC =

∑
g∈cc g. We compute

ωχ(CC)χ(1) = χ(CC) =
∑
g∈cc

χ(g) = |cc|χ(g) for any g ∈ cc,
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and so

ωχ(CC) =
|cc|χ(g)

χ(1)
for any g ∈ cc. (4.5)

Since conjugacy class sizes are determined by the character table through col-
umn orthogonality, we deduce in particular that central characters are deter-
mined by the character table.

Theorem 4.10. Let χ be an irreducible character of G with associated central
character ωχ. Let CC be a class sum, as before. Then, ωχ(CC) is an algebraic
integer.

Proof. Let CC1, . . . , CCr be the class sums in G. Recall that they constitute a
basis for Z(CG). Thus, we can write

CCiCCj =

r∑
k=1

ai,j,kCCk.

I claim that the coefficients are non-negative integers. Indeed, to find the coef-
ficient of one CCk =

∑
g∈cck g, we only need to look at the coefficient of some

gk ∈ cck in CCiCCj = (
∑
g∈cci g)(

∑
h∈ccj h). But that is just the number of

ways of writing gk as gh, g ∈ cci, h ∈ ccj , and thus a non-negative integer. It fol-
lows that the set S of all Z-linear combinations of ωχ(CCk), 1 ≤ k ≤ r, is closed
under multiplication and therefore constitutes a ring. Moreover, ωχ(1) = 1,
so Z ⊆ S ⊆ C and Theorem 4.7 applies, showing that all elements of S are
algebraic integers, which completes the proof.

We can now deduce another property of irreducible characters that is very
useful for finding character tables:

Theorem 4.11. Let χ be an irreducible character of the group G. Then χ(1)
∣∣|G|.

Proof. By orthonormality of characters, we have

|G| =
∑
g

χ(g)χ(g).

We will rewrite this equation in terms of the central character ωχ. Let cc1, . . . , ccr
be the conjugacy classes in G with sums CCi and representatives gi. Then,
grouping the above sum over the conjugacy classes, we get

|G| =
r∑
i=1

|cci|χ(g)χ(g) =

r∑
i=1

χ(1)ωχ(g)χ(g).

So G/χ(1) =
∑r
i=1 ωχ(g)χ(g) is an algebraic integer. But also, G/χ(1) ∈ Q, so

is in fact an integer by Lemma 4.4.

Using a similar idea, we can prove an even stronger divisibility result:

Theorem 4.12. Let χ ∈ Irr(G). Then χ(1)
∣∣[G : Z(χ)].
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Proof. We can regard χ as an irreducible character ofG/ kerχ and the statement
of the theorem does not change upon passage to that quotient. So, we may
without loss of generality assume that kerχ is trivial, and therefore Z(G) =
Z(χ). Also, it follows that the associated central character ωχ is injective on
Z(G).

Define an equivalence relation on the elements of G by

x ∼ y if for some z ∈ Z(G), x is conjugate to yz.

Denote the equivalence classes by K1, . . . ,Ks. I claim that |χ(g)| is constant
on each of these equivalence classes. Indeed, if x ∼ y, then x is conjugate to yz
for some z ∈ Z(G), so χ(x) = χ(yz). But the matrix corresponding to z is a
scalar matrix, ωχ(z)I, so χ(yz) = χ(y)ωχ(z). Moreover, since z has finite order,
|ωχ(z)| = 1, which proves the claim.

Next, I claim that either χ is 0 on Ki, or else |Ki| = |cc(gi)||Z(G)|, where gi
is any representative of the equivalence class Ki. By definition, every element
of Ki is of the form yz for y ∈ cc(gi) and z ∈ Z(G). So we only need to show
that y1z1 = y2z2 for y1, y2 ∈ cc(g), zi ∈ Z(G)⇔ y1 = y2 and z1 = z2. But

y1z1 = y2z2 ⇒ χ(y1)ωχ(z1) = χ(y1z1) = χ(y2z2) = χ(y2)ωχ(z2).

Moreover, since y1 is conjugate to y2, we see that χ(y1) = χ(y2), and so either
χ(yi) = 0 or ωχ(z1) = ωχ(z2). In the latter case, we have z1 = z2, since ωχ
is injective, whence y1 = y2, as required. If we pick representatives gi for the
equivalence classes Ki, we now have

|G| =

s∑
i=1

|Ki|χ(gi)χ(gi)

=

s∑
i=1

|Z(G)||cc(gi)|χ(gi)χ(gi)

(4.5)
=

s∑
i=1

|Z(G)|χ(1)ωχ(CC(gi))χ(gi),

where, as before, CC(gi) =
∑
g∈cc(gi) g. As in the previous proof, we deduce

that |G|/|Z|χ(1) is an algebraic integer, but also a rational number, hence an
integer.

Example 4.13. At this point, we discussed in detail the character tables of
C2 o C3

∼= (C2 × C2 × C2) o C3 and SL2(F3) ∼= Q8 o C3.

5 Induced characters

In this section, we will construct representations of a group out of represen-
tations of its subgroups. These will in general become reducible, even if the
original representation was irreducible, but the construction is still immensely
useful for constructing irreducible representations of a group.

Definition 5.1. Let H be a subgroup of a group G and let ρ : H → GL(V ) be
a representation of H. Consider the vector space W of all functions from G to
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V satisfying the rule f(hg) = ρ(h)f(g) for all h ∈ H and g ∈ G. Let G act on
W by

(g · f)(x) = f(xg).

The vector space W with this G-action is the induction of ρ to G, written
IndG/H ρ.

Let us begin by finding the dimension of the induced representation. Note
that each function f satisfying the above transformation property is uniquely
determined by its values on a set of right coset representatives of H in G. It
immediately follows that dim IndG/H ρ = [G : H] dim ρ.

Using the above observation that the functions we are interested in are deter-
mined by their values on a set of coset representatives, we can give an alternative
description of the induced representation. Fix a set x1, . . . , xr of right coset rep-
resentatives of H in G. This is called a right transversal of H in G. Consider
the vector space U =

⊕r
i=1 xiV – a direct sum of r = [G : H] copies of V ,

indexed by the chosen right transversal. The space W of functions in Definition
5.1 can be identified with U by identifying the function that sends xi to vi for
i = 1, . . . , r with the vector (v1, . . . , vr) ∈ U =

⊕r
i=1 xiV . If we then translate

the action of G from the W -language into U -language, then we get the following
alternative definition:

Definition 5.2. Let H ≤ G and let ρ : H → GL(V ) be a representation.
Choose a right transversal x1, . . . , xr for H in G and define a new vector
space U =

⊕r
i=1 xiV as above. Let G act on U as follows: for g ∈ G,

write xig uniquely as hixni for some ni ∈ {1, . . . , r} and some hi ∈ H. For
v = (v1, . . . , vr) ∈ U , define g(v) = (ρ(h1)vn1

, . . . , ρ(hr)vnr
). Then, U together

with this action of G is the induction of ρ to G.

Exercise 5.3. Check that Definition 5.2 of the induced representation is inde-
pendent of the choice of transversal up to isomorphism, and that it is equivalent
to Definition 5.1.

Notice that if we restrict IndG/H ρ to H, then we can find a copy of the
original representation ρ in the restriction: namely we may, without loss of
generality, choose the trivial coset of H in G to be represented by 1, so set
x1 = 1 in Definition 5.2. Then, the subspace x1V ⊕0 is an H-subrepresentation
of ResG/H IndG/H ρ and it is patently isomorphic to ρ itself. In the language of
Definition 5.1, this corresponds to the subspace of functions that are 0 outside
the trivial coset. Let us record:

Lemma 5.4. Let H ≤ G and let ρ be a representation of H. Then, ResG/H IndG/H ρ
contains ρ as a direct summand.

Later, we will greatly generalise this observation.

Example 5.5. 1. Let 1H be the trivial representation of a subgroup H of G.
Then IndG/H 1H is isomorphic to the permutation representation C[G/H]
(see 3rd exercise sheet). In the special case that H = {1}, this recovers
the regular representation of G.

2. Consider H = C2 ≤ S3 = G, let τ : H → GL(V ) = C× be the non-
trivial 1-dimensional representation of C2. Recall the three irreducible
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representations of S3: 1, the sign representation ε and a two-dimensional
representation ρ. Let us decompose IndG/H τ into irreducibles. First,
observe that the restriction of 1 to H is the trivial representation, the
restriction of ε is τ , and the restriction of ρ is a direct sum of the trivial
representation and of τ . Since we know that ResG/H IndG/H τ contains τ
as a direct summand, we deduce that IndG/H τ must have at least one of
ε, ρ in its decomposition into irreducibles. In fact, we can easily show that
there must be a summand isomorphic to ρ: the representation IndG/H τ
acts on the space 1V ⊕ (1, 2, 3)V ⊕ (1, 3, 2)V , as described in Definition
5.2. Clearly, 3-cycles act non-trivially on this space, since they permute the
summands. But both 1 and ε are trivial on the 3-cycles, so there must be
a copy of ρ in IndG/H τ . Since the whole representation is 3-dimensional,
the remaining piece is either 1 or ε. But clearly, the subspace

S = {(v, v, v)|v ∈ V } ≤ 1V ⊕ (1, 2, 3)V ⊕ (1, 3, 2)V

is a subrepresentation that is isomorphic to ε (the 3-cycles certainly act
trivially, while a 2-cycle contained in H acts through its action on V ,
which is non-trivial). We deduce that IndG/H τ ∼= ε⊕ ρ.

To decompose inductions into irreducibles in general, we need to describe the
character of an induced representation in terms of the character of the original
representation.

Theorem 5.6. Let χ be the character of a representation ρ : H → GL(V ),
where H ≤ G. Define the function χ◦ of G by

χ◦(g) =

{
χ(g), g ∈ H
0, otherwise

.

Then, the character of the induced representation, written χG, is given by

χG(g) =
1

|H|
∑
x∈G

χ◦(xgx−1).

Proof. The computation will be very similar to the one in the proof of Theorem
3.3. Fix a basis v1, . . . , vn on V and a right transversal x1, . . . , xr of H in G.
Then, a basis on W , as defined in Definition 5.1, is given by fi,j : xk 7→ δi,kvj .
For a given g ∈ G, we need to compute the coefficient of fi,j in g(fi,j) for all
i, j. Now, if xig = hxj for some i 6= j, then this coefficient is 0. If, on the other
hand, xig = hxi for h ∈ H, i.e. if xigx

−1
i ∈ H, then the coefficient of fi,j in

g(fi,j) is equal to the coefficient of vj in ρ(h = xigx
−1
i )vj . So, we deduce that

χG(g) =

r∑
i=1

n∑
j=1

coefficient of fi,j in g(fi,j)

=

r∑
i=1

χ◦(xigx
−1
i )

=

r∑
i=1

1

|H|
∑
h∈H

χ◦(hxigx
−1
i h−1)

=
1

|H|
∑
x∈G

χ◦(xgx−1),
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as claimed.

Note that, in particular, if H is normal in G, then χG(g) = 0 for g /∈ H.

Example 5.7. Let G = S3, H = C2, χ the non-trivial one-dimensional charac-
ter of H, as in Example 5.5. Using the above formula, we see that χG(1) = 3,
χG((1, 2)) = −1, χ((1, 2, 3)) = 0. Taking inner products with the irreducible
characters of S3 confirms the decomposition into irreducibles that we worked
out in the previous example.

Note that the formula in Theorem 5.6 makes sense for an arbitrary class
function. So we can make the following

Definition 5.8. Let χ be a class function on H ≤ G. Define the induced class
function χG on G by

χG(g) =
1

|H|
∑
x∈G

χ◦(xgx−1),

where χ◦ is defined by

χ◦(g) =

{
χ(g), g ∈ H
0, otherwise

.

The definitions of induction of representations and of characters may look
slightly artificial, but turn out to be “the right ones” in the following sense:

Theorem 5.9 (Frobenius Reciprocity). Let H ≤ G, let χ be a class function
of H and φ a class function of G. Then

〈χG, φ〉G = 〈χ, φG〉H ,

where φG denotes the restriction of φ to H.

Proof. With the explicit formula for inductions at our disposal, the proof is just
a formal computation and I suggest you try it yourself before reading further.
So here goes:

〈χG, φ〉G =
1

|G|
∑
g∈G

χG(g)φ(g)

=
1

|G|
1

|H|
∑
g∈G

∑
x∈G

χ◦(xgx−1)φ(g)

y=xgx−1

=
1

|G|
1

|H|
∑
x∈G

∑
y∈G

χ◦(y)φ(x−1yx)

φ(x−1yx)=φ(y)
=

1

|H|
∑
y∈H

χ(y)φ(y)

= 〈χG, φ〉H .
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Example 5.10. With Frobenius reciprocity, decomposing τG of Example 5.5
into irreducibles becomes even easier: we remarked already in that example
that the restriction of the trivial representation of S3 to C2 is trivial, while the
restrictions of the other two irreducible S3-representations have one copy of τ
each as a direct summand. Frobenius reciprocity then says that the represen-
tations that enter into τG are precisely those that have at least one copy of τ
upon restriction to C2, which confirms our calculations.

Corollary 5.11. Let H be any subgroup of G. Any irreducible representation
of G is a constituent of some induced representation from H.

Proof. Let ρ be an irreducible representation of G, let τ be a direct summand
of ResG/H(ρ). By Frobenius reciprocity, 〈χGτ , χρ〉 > 0, as required.

Corollary 5.12. For H ≤ G, any irreducible representation of H is a summand
of some restriction from G.

Corollary 5.13. If G is abelian and H ≤ G, then any irreducible representation
of H is the restriction of some irreducible representation of H.

Proposition 5.14. Let χ be a character of H ≤ G. Choose a set of represen-
tatives x1, . . . , xm of conjugacy class representatives of H that are G-conjugate
to g. Then

χG(g) = |CG(g)|
m∑
i=1

χ(xi)

|CH(xi)|
.

Proof. We will begin with the formula of Theorem 5.6:

χG(g) =
1

|H|
∑
x∈G

χ◦(xgx−1),

where χ◦ is χ on H and 0 outside H. We can rewrite that as

χG(g) =
|CG(g)|
|H|

∑
x̃∈ccG(g)

χ◦(x̃) =
|CG(g)|
|H|

m∑
i=1

∑
h∈ccH(xi)

χ(h)

=
|CG(g)|
|H|

m∑
i=1

|ccH(xi)|χ(h) = |CG(g)|
m∑
i=1

χ(xi)

|CH(xi)|
,

where the third equality follows from the fact that χ is a class function on H,
and the last equality follows from the orbit–stabiliser theorem.

We will now begin explaining one of the ways in which induced characters
are useful for producing irreducible characters.

Lemma 5.15. Let Ω be a G-set, i.e. G acts on Ω by permuting the elements.
Suppose that G acts transitively on Ω. For ω ∈ Ω, let

Gω = {g ∈ G : g(ω) = ω}

be the point stabiliser. Then the G-set Ω is isomorphic to the G-set G/Gω – the
set of left cosets.
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Proof. The isomorphism is given by gGω 7→ g(ω). Check that this is well-
defined, bijective, and respects the G-action.

Let χ be the permutation character coming from the G-action on a set Ω.
Recall from the second exercise sheet that χ(g) = Ωg, and that 〈χ,1〉 is the
number of orbits of G on Ω.

Proposition 5.16. Let Ω be a transitive G-set and let Gω be a point stabiliser.
If χ is the permutation character of Ω, then 〈χ, χ〉 is the number of orbits of Gω
on Ω.

Proof. Let r be the number of orbits of Gω on Ω. Then we have

r = 〈χGω
,1Gω

〉 5.9
= 〈χ, (1Gω

)G〉 5.15
= 〈χ, χ〉.

Corollary 5.17. Let G act doubly-transitively on Ω, meaning that any point
stabiliser Gω acts transitively on Ω\{ω}. If χ is the corresponding permutation
character, then χ− 1 is an irreducible character of G.

Example 5.18. The natural action of Sn on {1, . . . , n} is doubly-transitive
when n ≥ 2, so the above result implies that Sn always has an (easy to compute!)
irreducible character of dimension n− 1. The same goes for An when n ≥ 4.

6 Some group theoretic applications

6.1 Frobenius groups

Definition 6.1. A non-trivial subgroupH ofG is called a Frobenius complement
if H∩gHg−1 = {1} for all g ∈ G\H. A group that has a Frobenius complement
is called a Frobenius group.

We will prove that if H ≤ G is a Frobenius complement, then there exists a
normal subgroup N /G such that G is a semidirect product of N and H. Recall
that G = N oH if and only if H is a subgroup of G, N is a normal subgroup
of G, G = NH, and N ∩H = {1}. Finding a subset N with this property is a
triviality:

Definition 6.2. Let H ≤ G be a Frobenius complement. Define the corre-
sponding Frobenius kernel by

N =

(
G\

⋃
x∈G

Hx

)
∪ {1}.

The difficult part is to show that this is indeed a normal subgroup. A priori,
it is not even obvious that this is a subgroup at all. The original proof of this
fact is due to Frobenius and, remarkably, uses character theory. Even more
remarkably, more than a 100 years later, there is still no proof available that
doesn’t use character theory! Before we prove the theorem, let us convince
ourselves that if N really is a normal subgroup, then G will be a semi-direct
product of N and H.
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Lemma 6.3. With N defined as above, we have |N | = |G|/|H|. Moreover, if
M is any normal subgroup of G that intersects H trivially, then M ⊆ N .

Proof. Since H ∩ gHg−1 = {1} for all g /∈ H, there are [G : H] conjugates of
H in G and their union contains [G : H](|H| − 1) = |G|(1 − 1

|H| ) non-trivial

elements, so |N | = |G|/|H|.
If M is a normal subgroup that intersects H trivially, then M ∩ gHg−1 =

g(g−1Mg∩H)g−1 = g(M∩H)g−1 is also trivial for any g ∈ G, so M is contained
in N as claimed.

Let us now marvel at the proof of Frobenius from 1901. We begin with an
easy auxiliary result:

Lemma 6.4. Let H ≤ G be a Frobenius complement and let θ be a class function
of H that satisfies θ(1) = 0. Then (θG)H = θ.

Proof. For any h ∈ H, we have by definition

θG(h) =
1

|H|
∑
x∈G

θ◦(xhx−1).

If h = 1, this is still 0. So let h ∈ H be non-trivial. Now, θ◦(xhx−1) ∈ xHx−1.
But also, this term is only non-zero if xhx−1 ∈ H. But since H is a Frobenius
complement, xhx−1 ∈ H ∩ xHx−1 implies that x ∈ H. Since θ is a class
function, we then have θ◦(xhx−1) = θ(h), so that

θG(h) =
1

|H|
∑
x∈H

θ(h) = θ(h),

as claimed.

Theorem 6.5. Let H ≤ G be a Frobenius complement. The corresponding
Frobenius kernel N is a normal subgroup of G and G = N oH.

Proof. Roughly, the strategy of the proof will be to show that we can extend
any character of H to a character of G. This is to be expected if H is supposed
to be isomorphic to a quotient of G.

Let φ be a non-trivial irreducible character of H, define the class function
θ = φ−φ(1)1H . So, θ(1) = 0 and satisfies the hypothesis of the previous lemma.
We therefore have, using Frobenius reciprocity

〈θG, θG〉G = 〈θ, (θG)H〉H = 〈θ, θ〉H = 1 + φ(1)2.

Also, using Frobenius reciprocity again, we have

〈θG,1G〉G = 〈θ,1H〉H = −φ(1),

so it is natural to consider the class function φ̃ = θG + φ(1)1G. We have
〈φ̃,1G〉G = 0 and

〈φ̃, φ̃〉 = 〈θG + φ(1)1, θG + φ(1)1〉 = 〈θG, θG〉+ 2φ(1)〈θG,1〉+ φ(1)2〈1,1〉 = 1.
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Since φ̃ is not just a class function, but a difference of characters, we deduce
that either φ̃ or −φ̃ is an irreducible character. We can easily determine which
is the case: if h ∈ H, then

φ̃(h) = θG(h) + φ(1) = θ(h) + φ(1) = φ(h).

In particular, φ̃(1) = φ(1) > 0, so φ̃ is an irreducible character. We have
therefore extended each non-trivial φ ∈ Irr(G) to the whole of G. Define

M =
⋂
φ

ker(φ̃).

We first show that M satisfies the hypothesis of Lemma 6.3. If h ∈ M ∩
H, then for any φ ∈ Irr(H), φ(h) = φ̃(h) = φ̃(1) = φ(1), i.e. M ∩ H =⋂
φ∈Irr(H) ker(φ) = {1}. It thus follows by Lemma 6.3 that M ⊂ N and it

remains to prove the opposite inclusion. Let g ∈ G be not contained in any
conjugate of H, equivalently suppose that no conjugate of g lies in H. Then,
for any φ ∈ Irr(H),

φ̃(g)− φ(1) = θG(g) = 0,

so g ∈ ker φ̃. Thus N = M is a normal subgroup, as claimed. Moreover,
N ∩ H = {1} and we already know that |N | = |G|/|H|, which implies that
NH = G.

6.2 Burnside’s pαqβ-theorem

Our next group theoretic application will be a result on finite simple groups. It
will give you a very small idea of how pivotal representation theory has been in
the classification of finite simple groups. As usual, we need some preparation.
All of the results in this subsection are due to William Burnside.

Theorem 6.6. Let χ ∈ Irr(G) and let CC be a conjugacy class of G of size
coprime to χ(1). Then for any g ∈ CC, either g ∈ Z(χ) or χ(g) = 0.

Proof. Recall that χ(g)|CC|
χ(1) is an algebraic integer. Since (χ(1), |CC|) = 1, there

exist integers u, v such that

uχ(1) + v|CC| = 1.

We therefore have that

χ(g)

χ(1)
− uχ(g) =

χ(g)(1− uχ(1))

χ(1)
= v

χ(g)|CC|
χ(1)

is also an algebraic integer. Since uχ(g) is an algebraic integer, we deduce that
so is α = χ(g)/χ(1). Recall that if the order of g is n, then χ(g) is a sum of χ(1)
n-th roots of unity, so that |χ(g)| ≤ χ(1) with equality if and only if g ∈ Z(χ).
Now, α is an element of the field

Q(ζ) =

{
n−1∑
i=0

xiζ
i
∣∣ xi ∈ Q

}
,

where ζ = e2πi/n. It is a fact in algebraic number theory that the algebraic
integers in Q(ζ) are precisely those elements, for which the coefficients xi are in

Z. It follows that if α =
(∑χ(1)

i=1 ζ
ki
)
/χ(1) is an algebraic integer, then either

ki are equal for all i ∈ {1, . . . , χ(1)}, or α = 0. This proves the result.
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Theorem 6.7. If a non-trivial conjugacy class of a simple group G has prime
power size, then G is cyclic.

Proof. Suppose that G is simple and non-abelian and that g ∈ G has conjugacy
class CC of size pα > 1, where p is a prime number. Let χ be a non-trivial
irreducible character of G. By simplicity, kerχ = {1} and Z(χ) = Z(G) = {1}.
By the previous theorem, either p|χ(1) or χ(g) = 0. By column orthogonality,
we then have

0 =
∑

χ∈IrrG

χ(1)χ(g) = 1 +
∑

χ: p|χ(1)

χ(1)χ(g),

so −1/p =
∑ χ(1)

p χ(g). But the right hand side is an algebraic integer, while
the left hand side clearly isn’t, which gives a contradiction.

Theorem 6.8. A group of size pαqβ with p, q prime is soluble.

Proof. If either α or β is 0, then this is elementary group theory. So take
α, β > 0, p 6= q. Let G be a minimal counterexample to the assertion. If N
is any non-trivial proper normal subgroup, then both N and G/N are soluble
by minimality of G. So such a counterexample must be simple (and of course
non-abelian). Let P be a Sylow p-subgroup of G. It has non-trivial centre, so
choose 1 6= g ∈ Z(P ), so that CG(g) contains P . Then |CC(g)| = |G|/|CG(g)|
is a power of q, which contradicts the previous theorem.

7 Advanced topics on induction and restriction

7.1 Mackey decomposition and Mackey’s irreducibility cri-
terion

A natural question is: what happens to a representation ρ of H ≤ G after
we induce it to G and restrict it back to H. It’s dimension goes up, and we
already know that ρ is a direct summand of the resulting representations. Thus,
it cannot be irreducible, even if ρ is. We would like to be able to decompose
the resulting representation of H into (ideally irreducible) summands. We will
consider an even more general situation, where the group that we are inducing
from need not be the same as the one we are restricting to.

For preparation, we need to recall the concept of double cosets. Let H and
K be subgroups of a group G. Given g ∈ G, the double coset KgH is

KgH = {kgh : h ∈ H, k ∈ K}.

Clearly,

KgH = Kg′H ⇔ kgh = k′g′h′ for some h, h′ ∈ H, k, k′ ∈ K
⇔ g = k−1k′g′h′h−1

⇔ g ∈ Kg′H.

It easily follows that being in the same double coset is an equivalence relation,
and that double cosets partition the group. The set of double cosets is denoted
by K\G/H. We will often write g ∈ K\G/H instead of KgH ∈ K\G/H, i.e.
in that notation g will mean a double coset representative.
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Unfortunately, double cosets are not nearly as well-behaved as usual cosets.
E.g. they need not be of the same size, nor does their size always divide the
order of the group.

Example 7.1. Let G = S3, H = K = 〈(1, 2)〉. Clearly, the trivial coset K1H
consists only of H itself. Further,

H(1, 3)K = {(1, 3), (1, 2)(1, 3), (1, 3)(1, 2), (1, 2)(1, 3)(1, 2)}
= {(1, 3), (1, 2, 3), (1, 3, 2), (2, 3)}.

So we see that G = K1H ∪K(1, 2)H and the two double cosets have orders 2
and 4, respectively.

Theorem 7.2 (Mackey’s Decomposition Theorem). Let H,K be subgroups of
G and let ρ : K → GL(V ) be a representation of K. Then

ResG/H IndG/K(ρ) =
⊕

g∈K\G/H

IndH/H∩Kg ResKg/H∩Kg (ρg),

where Kg = gKg−1 and ρg is the representation of Kg defined by ρg(gkg−1) =
ρ(k).

Proof. Recall that the vector space of ρG is ⊕ixiV , where x1, . . . , xr is a set
of right coset representatives of K in G. If for some h ∈ H, xih = kxj , then
xi ∈ KxjH. Thus, for any j, the subspace⊕

xi∈KxjH

xiV

is an H-subrepresentation of IndG/K ρ, and it remains to prove that it is iso-
morphic to IndH/H∩Kxj ResKxj /H∩Kxj (ρxj ). Fix x = xj . One immediately sees
that x−1kx acts on xV through ResKx/H∩Kx(ρx). Also, for each xi ∈ KxH,

write x = kixihi, so that x−1
i k−1

i x = hi ∈ H. Then, the assignment xi 7→
x−1
i k−1

i x induces a bijection between the coset representatives of K\G that lie
in the double coset KxH and the coset representatives of (Kx ∩ H)\H. The
claim now follows.

We have already observed several times that the induction of a representation
is rarely irreducible, even if the original representation is. On the fourth exercise
sheet, you will see an important instance of induced representations that are
irreducible. The following result may sometimes help detect this favourable
situation:

Theorem 7.3 (Mackey’s irreducibility criterion). Let H ≤ G and let ρ : H →
GL(V ) be a representation. Then, IndG/H ρ is irreducible if and only if the
following two conditions are satisfied:

1. ρ is irreducible, and

2. for any g ∈ G\H, the two representations ResHg∩H ρ and ResHg∩H ρ
g

have no irreducible summand in common, i.e. if the inner product of the
associated characters is 0.
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Proof. Let χ be the character of ρ. The character χG is irreducible if and only if
〈χG, χG〉G = 1. Using Frobenius reciprocity twice and Mackey’s decomposition
theorem, we get

〈χG, χG〉G = 〈χ, (χG)H〉H = 〈χ,
∑

g∈H\G/H

ResHg∩H(χg)H〉H

=
∑

g∈H\G/H

〈ResHg∩H(χ),ResHg∩H(χg)〉Hg∩H .

In the last sum, the summand corresponding to g = 1 is at least equal to 1
and all other summands are non-negative. So χG is irreducible if and only if
〈χ, χ〉 = 1 and all other summands are equal to 0, as claimed.

7.2 Restriction to and induction from normal subgroups

Let N be a normal subgroup of G. Then, G acts on the space of class functions
of N via τg(n) = τ(g−1ng) where τ is any class function of N , g ∈ G, and n ∈ N .
Clearly, this action sends irreducible characters to irreducible characters. More
generally, 〈τ1, τ2〉 = 〈τg1 , τ

g
2 〉 for any class functions τ1, τ2 of N and any g ∈ G.

We call two class functions of N that lie in the same G-orbit G-conjugate.

Theorem 7.4 (Clifford’s Theorem). Let χ be an irreducible character of G
and let N / G. Then ResG/N χ = e(τ1 + . . . + τt) for some e ∈ N, where the
τi ∈ Irr(N) form one orbit under the action of G.

Proof. Let τ = τ1 be an irreducible constituent of χN = ResG/N χ with mul-
tiplicity e. Since χ is a class function of G, χg(h) = χ(ghg−1) = χ(h) and it
follows immediately that

〈τ, χN 〉N = 〈τG, χ〉G = 〈(τG)g, χg〉G = 〈(τg)G, χ〉G = 〈τg, χN 〉N ,

so that any G-conjugate of τ is also a constituent of G with multiplicity e. It
remains to show that any constituent of χN is G-conjugate to τ . Let ψ be an
irreducible consituent of χN . By Frobenius reciprocity, we then have 〈χ, ψG〉 >
0, so that ψG = χ + . . ., and so (ψG)N = χN + . . ., thus 〈(ψG)N , τ1〉 > 0. So,
applying the Mackey decomposition formula, we have 〈

∑
N\G/N (ψg)NN∩Ng , τ1〉 >

0. But N is normal, so this gives
∑
N\G/N 〈ψg, τ1〉 > 0. Since all the characters

involved are irreducible, this implies that ψg = τ1 for some g ∈ G.

This result has some strong and interesting consequences.

Corollary 7.5. Let N /G and let χ ∈ Irr(G) be such that 〈χN ,1〉N 6= 0. Then,
N ⊂ kerχ.

Proof. Clearly, 1H consitutes a single orbit in Irr(N) under the G-action, so the
result follows immediately from the previous theorem.

Corollary 7.6. Let N / G, let χ ∈ Irr(G) and φ ∈ Irr(N) be such that
〈χN , φ〉N 6= 0. Then, φ(1)|χ(1).

Proof. Clearly, φg(1) = φ(1) for any φ ∈ Irr(N) and any g ∈ G. So, the result
follows immediately from Theorem 7.4

Here, we have only scratched the surface of the interesting interplay between
characters of G and characters of a normal subgroup of G. For much more on
this topic, see e.g. [2, Ch. 6].
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7.3 Base fields other than C
We will briefly state without proof how the results of this section generalise to
representations over arbitrary fields.

Note that the definition of the induced representation makes perfect sense
over any field. So does the statement of Mackey’s formula. Moreover, since
the only thing we used in the proof of Mackey’s formula was the definition
of induced representations, that proof remains valid over any field. On the
other hand, Frobenius reciprocity is phrased in terms of characters, so does
not immediately say anything about irreducible representations over arbitrary
fields. However, it can be phrased purely in terms of representations and is then
valid over any field:

Theorem 7.7. Given a subgroup H of G, a K[H]-module V and a K[G]-module
W , we have

HomK[G](IndG/H V,W ) ∼= HomK[H](V,ResG/HW ).

Clifford’s theorem also makes sense and is true over any field.

8 Real representations, duals, tensor products,
Frobenius-Schur indicators

8.1 Dual representation

Let V be a vector space over an arbitrary field K. Recall that the dual vector
space is defined by

V ∗ = {f : V → K : f(v + αw) = f(v) + αf(w)}.

Definition 8.1. If ρ : G → GL(V ) is a representation over K, then the dual
representation ρ∗ : G→ GL(V ∗) is defined by

ρ∗(g)(f)(v) = f(ρ(g−1)v).

The inverse is necessary to get a left action, and you should check that this
really does give a left action.

Let fix a basis v1, . . . , vn be a basis of V . Recall that the dual basis f1, . . . , fn
is given by fi(vj) = δi,j . Suppose that ρ(g−1) is given by the matrix A = (ai,j)
with respect to v1, . . . , vn. Then

ρ∗(g)(fi)(vj) = fi(Avj) = fi(
∑
k

aj,kvk) = aj,i.

So the matrix of ρ∗(g) with respect to the dual basis is ATr.
In particular, we deduce that if K = C and χ is the character of ρ, then the

character χ∗ of ρ∗ is
χ∗(g) = χ(g).

Corollary 8.2. A complex representation is isomorphic to its own dual (we say
that it is self-dual) if and only if its character is real-valued.
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This raises a natural question: given a complex representation ρ : G →
GL(V ), when can we choose a basis on V , such that all group elements are
represented by real matrices? Clearly, the character being real-valued is a nec-
essary condition. To find necessary and sufficient conditions will be the main
theme of this section.

Definition 8.3. Let ρ : G→ GL(V ) be a representation over a field K and let
F be a subfield of K. We say that ρ is realisable over F if there exists a basis
of V with respect to which all elements of g are represented by matrices with
coefficients in F .

Example 8.4. LetG = S3
∼= D6, let ρ be the irreducible comple two-dimensional

representation of G. Recall that the 3-cycles in S3 act by rotation by 2π/3 un-
der ρ. The usual rotation matrix for counter-clockwise rotation by 2π/3 is(

cos 2π/3 sin 2π/3
− sin 2π/3 cos 2π/3

)
. However, choosing a judicious basis on our vector

space, as in the picture, we can make the matrix corresponding to such a rota-

tion look like

(
−1 0
1 −1

)
.

◦
◦
◦
◦
◦

◦
◦
◦
◦
◦

◦
◦
◦
◦
◦

◦
◦
◦

◦

◦
◦

◦
◦

◦
◦
◦
◦
◦

◦
◦
◦
◦
◦

•v1
//

•v2FF

Thus, ρ is realisable over Q.

Recall that an homomorphism of vector spaces ι : V → V ∗ gives rise to a
bilinear pairing

〈 , 〉 : V × V → K

〈v, w〉 = ι(v)(w).

Conversely, given a bilinear pairing as above, one gets a homomorphism V → V ∗

by v 7→ 〈v, 〉 = (w 7→ 〈v, w〉). The map ι is an isomorphism of vector spaces if
and only if the associated pairing is non-degenerate. Also, it is easy to see that
ι is an isomorphism of G-representations if and only if the associated pairing is
G-invariant, i.e. if and only if

〈gv, gw〉 = 〈v, w〉 ∀g ∈ G, v ∈ V,w ∈W.

Theorem 8.5. Let ρ : G→ GL(V ) be a complex self-dual representation of G.
Then, ρ is realisable over R if and only if V admits a non-degenerate G-invariant
symmetric bilinear form.

Proof. We will only prove one direction, namely the “only if” part. The other
direction uses slightly more linear algebra than we have assumed so far. You
can consult [3, Ch. II, Thm. 31] or [4, Theorem 73.3] for the “if” part.

Let ρ be realisable over R. That means that if V is regarded as a real vector
space (of twice its complex dimension), then there exists a subspace W that is
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G-stable and such that V = W ⊕ iW as real vector spaces. The trick will be to
construct a symmetric bilinear form on W and to extend it to V .

Let ( , ) be any positive-definite symmetric bilinear form on W and define
〈w1, w2〉 = 1

|G|
∑
g∈G(gw1, gw2). Clearly, 〈 , 〉 is G-invariant and still sym-

metric. It is also positive–definite (and in particular non-degenerate), since
〈w,w〉 = 1

|G|
∑
g∈G(gw, gw) ≥ 0 with equality iff gw = 0 for all g, using positive-

definiteness of ( , ).
Now, write an arbitrary element v of V uniquely as v = w1 + iw2 and extend

〈 , 〉 to a C-valued bilinear form on V by

〈w1 + iw2, w
′
1 + iw′2〉 = 〈w1, w

′
1〉 − 〈w2, w

′
2〉+ i(〈w1, w

′
2〉+ 〈w′1, w2〉).

It is immediate that this gives a non-degenerate symmetric G-invariant C-
bilinear form on V .

Let us summarise again. There are three mutually exclusive possibilities for
an irreducible complex representation ρ:

1. ρ is not self-dual. Equivalently, the character χ of ρ assumes at least one
non-real value.

2. ρis self-dual, so that χ is real, and moreover, ρ is realisable over R.

3. ρ is self-dual, so that χ is real, but ρ itself is not realisable over R.

Proposition 8.6. An irreducible complex representation ρ is of type 1 if and
only if it does not admit a non-degenerate G-invariant bilinear form. It is of
type 2 if and only if it admits a symmetric non-degenerate G-invariant bilinear
form. It is of type 3 if and only if it admits an alternating non-degenerate
G-invariant bilinear form.

Proof. We have already proven the first assertion. Now, let ρ be self-dual. Recall
that G-invariant bilinear forms 〈 , 〉 are in bijection with homomorphisms ρ→
ρ∗. By Schur’s lemma, such a form is therefore unique up to scalar multiples.
Recall also from linear algebra, that we can write any bilinear form as the sum
of a symmetric and an alternating one as follows:

〈v, w〉s =
1

2
(〈v, w〉+ 〈w, v〉)

〈v, w〉a =
1

2
(〈v, w〉 − 〈w, v〉)

〈v, w〉 = 〈v, w〉s + 〈v, w〉a.

Now, 〈 , 〉s and 〈 , 〉a are clearly also G-invariant, so exactly one of them is
0 by the uniqueness of 〈 , 〉. From the previous theorem, we know that 〈 , 〉a
being zero corresponds to type 2, so the other case must correspond to type 3,
and we are done.

8.2 Tensor products, symmetric and alternating powers

Definition 8.7. Let V and W be vector spaces over a field K. The tensor
product V ⊗W is the vector space linearly spanned over K by symbols v ⊗ w
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for v ∈ V , w ∈W , which satisfy the relations

k(v ⊗ w) = (kv)⊗ w = v ⊗ (kw) ∀k ∈ K, v ∈ V,w ∈W
(v + v′)⊗ w = (v ⊗ w) + (v′ ⊗ w) ∀v, v′ ∈ V,w ∈W
v ⊗ (w + w′) = (v ⊗ w) + (v ⊗ w′) ∀v ∈ V,w,w′ ∈W.

In other words, it is the quotient of the infinite-dimensional vector space with
basis {v ⊗ w : v ∈ V,w ∈ W} modulo the subspace generated by {k(v ⊗ w) −
(kv)⊗w, (kv)⊗w−v⊗(kw), (v+v′)⊗w−v⊗w−v′⊗w, v⊗(w+w′)−v⊗w−v⊗w′}.

If v1, . . . , vn is a basis of V and w1, . . . , wm is a basis of W , then vi ⊗ wj :
1 ≤ i ≤ n, 1 ≤ j ≤ m is easily seen to be a basis of V ⊗W . So, the dimension
on V ⊗W is dimV · dimW . Note that a general element of V ⊗W is of the
form

∑
k ṽk ⊗ w̃k for ṽk ∈ V , w̃k ∈W .

Proposition 8.8. For any vector spaces U, V,W , we have (U ⊗ V ) ⊗ W ∼=
U ⊗ (V ⊗W ), (U ⊕ V ) ⊗W ∼= (U ⊗W ) ⊕ (V ⊗W ). The isomorphisms are
natural, in the sense that they do not depend on choices of bases.

Proof. Check that the maps

(U ⊗ V )⊗W → U ⊗ (V ⊗W )

(u⊗ v)⊗ w 7→ u⊗ (v ⊗ w)

and

(U ⊕ V )⊗W → (U ⊗W )⊕ (V ⊗W )

(u, v)⊗ w 7→ (u⊗ w, v ⊗ w)

are isomorphisms of vector spaces.

Definition 8.9. Let ρ : G → GL(V ) and τ : G → GL(W ) be representations
of G over K. Then, ρ⊗ τ : G→ GL(V ⊗W ) is the G-representation defined by

ρ⊗ τ(g)(v ⊗ w) = ρ(g)v ⊗ τ(g)w.

The G-action respects the associativity and distributivity of Proposition 8.8,
so that we get the same result for representations, not just for vector spaces.

Let g be represented by the matrix A = (ai,j) with respect to a basis
v1, . . . , vn of V and by the matrix B = (bk,l) with respect to a basis w1, . . . , wm.
Let us work out the matrix of g on the basis

v1 ⊗ w1, . . . , v1 ⊗ wm, v2 ⊗ w1, . . . , v2 ⊗ wm, . . . , vn ⊗ wm.

We have

g(vi ⊗ wk) = gvi ⊗ gwk
= (ai,1v1 + . . .+ ai,nvn)⊗ (bk,1w1 + . . .+ bk,mwm)∑

j,l

ai,jbk,lvjwl.
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From here, it immediately follows that the matrix of g with respect to the above
basis on V ⊗W is the nm× nm block matrix

A⊗B =


a1,1B · · · a1,nB
a2,1B · · · b2,nB

...
. . .

...
an,1B · · · an,nB

 .

This calculation has some very useful consequences:

Corollary 8.10. Let ρ, τ be complex representations of G with characters χρ,
χτ , respectively. Then, the character of ρ⊗ τ is χρ · χτ .

There is another way of seeing this: recall that the matrix corresponding
to g under any representation is diagonalisable. Thus, the character of that
representation is just the sum of eigenvalues of the g–action and there exists a
basis of the corresponding vector space consisting of eigenvectors of g. Now, if
v ∈ V is an eigenvector of g with eigenvalue λ and w ∈ W is an eigenvector
with eigenvalue µ, then clearly v ⊗w is an eigenvector of g with eigenvalue λµ.

Recall (from the proof of Theorem 3.3) that given two G–representations
V ,W over K, the vector space HomK(V,W ) is a G-representation via fg(v) =
gf(g−1v). An extremely important consequence of our explicit calculation of
matrices is

Corollary 8.11. If V and W are two representations of G over a field K, then
V ⊗W ∼= HomK(V ∗,W ).

Proof. We have already essentially computed the matrix of the action of G on
HomK(V ∗,W ) in terms of the matrices of G on V and on W in the proof of
Theorem 3.3. You should convince yourself that they are the same as the above
matrices on the tensor product.

Note that using associativity of tensor products, we can unambiguously de-
fine V1 ⊗ . . .⊗ Vn for any representations V1, . . . , Vn.

Definition 8.12. Let V be a G-representation. For any n ∈ N, define the n-th
tensor power of V by V ⊗n = V ⊗ . . .⊗ V︸ ︷︷ ︸

n×

.

Apart from the action of G on V ⊗n, we also have an action of Sn by per-
muting the entries of each tensor: σ(v1 ⊗ . . . ⊗ vn) = vσ(1) ⊗ . . . ⊗ vσ(n). This
action is immediately seen to commute with the action of G. In particular, if
V ⊗n ∼=

⊕
iWi as a representation of Sn, where each Wi

∼= ρ⊕kii with ρi denoting
the distinct irreducible representations of Sn and with ki ∈ N, then each Wi is
a G-subrepresentation of V ⊗n.

Definition 8.13. Let K have characteristic 0 and let V be a G-representation of
K. The n-th symmetric power of V , SnV is defined as the G-subrepresentation
of V ⊗n on which Sn acts trivially. The n-th alternating power ΛnV is defined
as the subspace on which Sn acts through the sign-character.
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We can explicitly write down a basis for S2V and for Λ2V : let v1, . . . , vn be
a basis of V . Then, it is immediate that

S2V = 〈vi ⊗ vj + vj ⊗ vi : 1 ≤ i ≤ j ≤ n〉
Λ2V = 〈vi ⊗ vj − vj ⊗ vi : 1 ≤ i < j ≤ n〉.

This immediately also gives us formulae for the dimensions of the symmetric
square and the alternating square and for their characters:

dimS2V =
n2 + n

2
,dim Λ2V =

n2 − n
2

,

and, denoting the eigenvalues of g on V by α1, . . . , αn,

χS2V (g) =
∑

1≤i≤j≤n

αiαj

=
1

2

(
(
∑
i

αi)
2 +

∑
i

α2
i

)
=

1

2

(
χV (g)2 + χV (g2)

)
, (8.6)

χΛ2V (g) =
∑

1≤i<j≤n

αiαj

=
1

2

(
(
∑
i

αi)
2 −

∑
i

α2
i

)
=

1

2

(
χV (g)2 − χV (g2)

)
. (8.7)

We have a decomposition of V ⊗2 = S2V ⊕Λ2V as G–representations. Suppose
that V is an irreducible G–representation. Observe that Corollary 8.11 together
with Schur’s Lemma tells us that

〈χV⊗V ,1〉 =
{

1, V∼=V ∗
0, otherwise .

In particular, if V is not self-dual, then both 〈χS2V ,1〉G and 〈χΛ2V ,1〉G are
zero, while if V is self–dual, then exactly one of the inner products is 1 and the
other one is 0. Which one of the two is non-trivial is a crucial characteristic of
self-dual irreducible representations.

8.3 Realisability over R
Definition 8.14. Let χ be a class function of a group G. The Frobenius–Schur
indicator of χ is defined as

s2(χ) =
1

|G|
∑
g∈G

χ(g2).

Proposition 8.15. Let χ be an irreducible character of G. Then s2(χ) ∈
{−1, 0, 1}. Moreover,

� s2(χ) = 0 if and only if χ is not real valued;

� s2(χ) = 1 if and only if the representation of χ can be realised over R,
i.e. if the associated vector space carries a non-degenerate symmetric G–
invariant bilinear pairing;
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� s2(χ) = −1 if and only if χ is real-valued but the representation cannot be
realised over R, i.e. if the associated vector space carries a non-degenerate
alternating G–invariant bilinear pairing.

Proof. Using equation (8.6) and (8.7), we can write

χ2 =
1

2
(χS2V (g)− χΛ2V (g)),

so that s2(χ) = 〈χS2V ,1〉G − 〈χΛ2V ,1〉G. We have already observed that if χ
is not self–dual, then both inner products are 0, and otherwise exactly one of
them is 1. It follows that s2(χ) ∈ {−1, 0, 1} with s2(χ) = 0 if and only if χ
is not real valued. Assume for the rest of the proof that χ is real valued. We
claim that 〈χS2V ,1〈G= 1 if and only if V admits a symmetric non-degenerate
G–invariant bilinear pairing. Indeed, a bilinear pairing

〈 , 〉 : V × V −→ C

is the same as a linear map 〈 , 〉 : V ⊗ V −→ C. In other words, the dual
of the vector space V ⊗ V is the space of bilinear forms on V . Namely, given
f : V ⊗ V → C, define a bilinear form 〈 , 〉f on V by

〈v, w〉f = f(v ⊗ w).

This form is G-invariant if and only if f ∈ (V ⊗ V )G. Now, the decomposition
V ⊗2 = S2V ⊕ Λ2V induces the corresponding decomposition of dual spaces.
Moreover, an element of (S2V )∗ induces a symmetric bilinear form on V : given
f : (S2V )∗ → C, define 〈 , 〉f by

〈v, w〉f = f(v ⊗ w + w ⊗ v),

and again this form in G-invariant if and only if f is fixed by the G-action on
S2V . Similarly, an element of (Λ2V )∗ gives an alternating bilinear form. So,
we deduce that

(S2V )G 6= 0 ⇔ there exists a G-invariant symmetric bilinear form on V,

(Λ2V )G 6= 0 ⇔ there exists a G-invariant alternating bilinear form onV,

as claimed.

We finish our discussion of realisability over R by considering the Wedder-
burn components of the real group algebra RG. Recall that for general fields
K of characteristic coprime to |G|, Wedderburn blocks of KG are of the form
Mn(D), where D are division algebras over K. The division algebras D are the
endomorphism rings of the simple KG– modules. By a theorem of Burnside,
the only division algebras over R are R, C, and H.

Theorem 8.16. Let ρ be an irreducible complex representation of G.

1. ρ is not self-dual if and only if ρ ⊕ ρ∗ is realisable over R and is a sim-
ple RG–module with the corresponding Wedderburn block of RG equal to
Mn(C).

2. ρ is realisable over R (and therefore a simple RG–module) if and only if
the corresponding Wedderburn block of RG is Mn(R).
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3. ρ is self–dual but not realisable over R if and only if ρ ⊕ ρ is realisable
over R and is a simple RG–module with corresponding Wedderbun block
Mn(H). Such a representation is called quaternionic or symplectic.

Sketch proof. The basic idea for proving that ρ⊕ ρ∗ (case 1) and ρ⊕ ρ (case 3)
are realisable over R is to construct a symmetric non–degenerate G–invariant
bilinear pairing on each of them. For example, in case 3, let [ , ] be a non–
degenerate G–invariant alternating bilinear pairing on ρ. Define 〈 , 〉 on ρ ⊕ ρ
by

〈(u1, u2), (v1, v2)〉 = [u1, v1] · [u2, v2].

Check that this is G-invariant, non–degenrate, bilinear, and symmetric. To
define a symmetric pairing in case 1 is an exercise.

Next, notice that the three different real division algebras have different
dimensions over R, so it will suffice to determine the dimension of the endomor-
phism ring of the simple RG–module in each case. Now, if τ is a CG–module
that is realisable over R and τR is the corresponding RG–module, then one can
show (exercise) that

dimR EndRG(τR) = dimC EndCG(τ),

the latter in turn being equal to 〈τ, τ〉G. The result now follows from 〈ρ, ρ〉G = 1,
〈ρ⊕ ρ∗, ρ⊕ ρ∗〉G = 2 when ρ is not self–dual, and 〈2ρ, 2ρ〉G = 4.

Example 8.17. Let us closely inspect the example of G = SL2(F3) ∼= Q8 oC3.
First, recall the character table of G. We label the columns by the sizes of the
conjugacy classes and by the orders of their elements:

size 1 1 4 4 6 4 4
order 1 2 3 3 4 6 6

1 = χ1 1 1 1 1 1 1 1
χ2 1 1 ω ω 1 ω ω
χ3 1 1 ω ω 1 ω ω
τ4 2 −2 −1 −1 0 1 1
τ5 2 −2 −ω −ω 0 ω ω
τ6 2 −2 −ω −ω 0 ω ω
τ7 3 3 0 0 −1 0 0

Here, ω is a primitive cube root of unity. We see immediately that the characters
χ2, χ3, τ5, and τ6 are not self–dual, while the other three are. To work out which
ones are realisable over Q, we can compute the Frobenius-Schur indicators. But
for that, we need to know which conjugacy classes square to which. Clearly, an
element of order 2 squares to the identity, while an element of order 4 squares
to an element of order 2. The square of an element of order 3 or 6 has order 3,
and there is therefore an ambiguity. In this particular case, we don’t need to
know whether the two conjugacy classes of elements of order 3 square to each
other (i.e. are inverses of each other) or not, since the characters τ4 and τ7 take
the same value on both order 3 conjugacy classes. But also note, that here we
can actually resolve the ambiguity: the number of self–inverse conjugacy classes
is equal to the number of real characters (exercise sheet), so that neither the
order 3 conjugacy classes nor the order 6 conjugacy classes can be self–inverse.
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So, we can now compute

s2(τ4) =
1

24
(2 + 2 + 4 · (−1) + 4 · (−1) + 6 · (−2) + 4 · (−1) + 4 · (−1)) = −1,

s2(τ7) =
1

24
(3 + 3 + 6 · 3) = 1.

We deduce that τ7 is realisable over R, but τ4 is not, only 2τ4 is. It is worth
noting that since τ4 is two–dimensional, it appears twice in the regular repre-
sentation. So, using the idempotent of CG corresponding to τ4, we could get an
explicit realisation of 2τ4 as a subrepresentation of CG or of RG.

8.4 Counting roots in groups

The last topic on Frobenius-Schur indicators will be a group theoretic applica-
tion of the machinery we have developed in this section.

Definition 8.18. Let G be a finite group. Define the square root counting
function r2 by

r2 : G → N
g 7→ #{h ∈ G : hg = g}.

For example r2(1)− 1 is the number of elements of order 2 in G.

Lemma 8.19. The function r2 is a class function.

Proof. If g′ = xgx−1, then h 7→ xhx−1 is a bijection between square roots of g
and square roots of g′, so r2(g) = r2(g′).

We can thus write r2 =
∑
χ∈Irr(G) αχχ for some scalars αχ. Let us compute

these coefficients:

〈r2, χ〉G =
1

|G|
∑
g∈G

r2(g)χ(g)

=
1

|G|
∑
g∈G

∑
h∈G

δh2,gχ(h2)

=
1

|G|
∑
h∈G

∑
g∈G

δh2,gχ(h2)

=
1

|G|
∑
h∈G

χ(h2) = s2(χ).

We deduce:

Proposition 8.20. The number of square roots of a group element is given by

r2(g) =
∑

χ∈Irr(G)

s2(χ)χ(g).

Corollary 8.21. Suppose that G has no symplectic representations. Then r2

assumes its maximum at the identity element.

Proof. This follows immediately from the two facts s2(χ) ∈ {0, 1} and χ(1) ≥
|χ(g)| for all g ∈ G.
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