Quantum PBW filtration and monomial ideals

Ghislain Fourier

University of Glasgow - Universität Bonn

joint work w. X.Fang and M.Reineke

Let $\mathfrak{g} = \mathfrak{n}^+ \oplus \mathfrak{h} \oplus \mathfrak{n}^-$ be a simple complex Lie algebra. We set

 $\deg(x) = 1 \ \forall \ x \in \mathfrak{n}^-$

and consider the induced filtration on $U(n^-)$:

$$U(\mathfrak{n}^{-})_{s} := \langle x_{i_{1}} \cdots x_{i_{\ell}} \mid x_{i_{j}} \in \mathfrak{n}^{-}, \ell \leq s \rangle_{\mathbb{C}}.$$

Now, since xy - yx - [x, y] = 0, the associated graded is isomorphic to $S(\mathfrak{n}^-) = \mathbb{C}[n^-]$.

This filtration is stable for the left n^+ -action, in fact n^+ acts by differential operators. We have a degeneration:

$$\mathfrak{g} \rightsquigarrow \mathfrak{g}^a = \mathfrak{b} \oplus \mathfrak{n}^{-,a}.$$

The corresponding algebraic group is

$$G \rightsquigarrow G^a = B^- \ltimes \mathbb{G}_a^{\dim n^-}$$
.

Classical setup: The PBW filtration

Let us turn to cyclic, highest weight \mathfrak{g} -modules:

Let $M = U(n^{-}).v_{m}$ and consider the induced filtration

$$\cdots U(\mathfrak{n}^{-})_{s-1}.v_m \subset U(\mathfrak{n}^{-})_s.v_m \subset U(\mathfrak{n}^{-})_{s+1}.v_m \subset M.$$

The associated graded module is a $\mathbb{C}[n^-]$ -module, we denote this module M^a .

Moreover, M^a is a $\mathfrak{b} \oplus \mathfrak{n}^{-,a}$ -module and hence a $B^- \ltimes \mathbb{G}_a^{\dim n^-}$ -module.

We are for now mainly interested in $V^a(\lambda)$, the associated graded module of the simple, finite-dimensional g-module $V(\lambda)$.

More general here: Replace n^- by any nilpotent Lie algebra and M a n^- -module with generators $\{m_i \mid i \in I\}$. Especially interesting: Demazure module.

Let us consider $\mathfrak{g} = \mathfrak{sl}_n$ and $M = \bigwedge^k \mathbb{C}^n$. Consider

$$v = v_{i_1} \wedge \ldots \wedge v_{i_k}$$
, with $i_1 < \ldots < i_\ell \le k < i_{\ell+1} < \ldots < i_k$

and denote $\{j_1 < \ldots < j_{k-\ell}\} = \{1, \ldots, k\} \setminus \{i_1, \ldots, i_\ell\}$. The PBW degree of v is $k - \ell$ and

$$\left(f_{\alpha_{j_{\sigma(1)}}+\ldots+\alpha_{i_{k}}}\cdots f_{\alpha_{j_{\sigma(k-\ell)}}+\ldots+\alpha_{i_{\ell+1}}}\right).v_{1}\wedge\ldots\wedge v_{k}=v \text{ for any } \sigma\in S_{k-\ell}.$$

So if we want to describe a monomial basis, we have to make a choice:

- 1 The choice $\sigma = id$ was made by Feigin-F-Littelmann.
- Solution The choice σ as the longest element in $S_{k-\ell}$ was made by Backhaus-Desczyk to uniform the following construction for all cominuscule weights of simple Lie algebras.

We will make the first choice, $\sigma = id$ and stay for the rest of the talk in the \mathfrak{sl}_n -case.

A Dyck path is a sequence of positive roots $\mathbf{p} = \beta(0), \dots, \beta(s)$ such that $\beta(0), \beta(s)$ are simple and

$$\beta(\boldsymbol{p}) = \alpha_i + \ldots + \alpha_j \Rightarrow \beta(\boldsymbol{p}+1) \in \{\alpha_{i+1} + \ldots + \alpha_j, \alpha_i + \ldots + \alpha_{j+1}\}.$$

We denote the set of all Dyck paths starting in α_i and ending in α_j by $\mathbb{D}_{i,j}$. Let $\lambda = (\lambda_1 \ge \lambda_2 \ge \ldots \ge \lambda_{n-1} \ge 0)$ and define (following Vinberg)

$$\mathcal{P}(\lambda) = \left\{ (s_{lpha}) \in \mathbb{R}_{\geq 0}^{\mathcal{N}} \mid \sum_{lpha \in \mathbf{p}} s_{lpha} \leq \lambda_i - \lambda_j \,, \, orall \, \mathbf{p} \in \mathbb{D}_{i,j}, \, orall \, i \leq j
ight\}$$

Theorem (Feigin-F-Littelmann '11)

For any dominant, integral λ :

The annihilating ideal of $v_{\lambda} \in V^{a}(\lambda)$ is generated by $\{U(\mathfrak{n}^{+}).f_{\alpha}^{\lambda(h_{\alpha})+1} \mid \alpha > 0\}$.

- 2 The set { $f^{\mathbf{s}}$. $v_{\lambda} \in V^{a}(\lambda) \mid \mathbf{s} \in S(\lambda) = P(\lambda) \cap \mathbb{Z}^{N}$ } is a basis of $V^{a}(\lambda)$.
- 3 $P(\lambda)$ is normal and $P(\lambda) + P(\mu) = P(\lambda + \mu)$ for any dominant integral μ .

String polytopes

Let $B(\lambda)$ be the crystal graph, $b \in B(\lambda)$, $w_0 = s_{i_1} \cdots s_{i_N}$ a reduced decomposition.

$$e_{i_1}^{a_{i_1}} \xrightarrow{b_1 \cdots b_1} e_{i_2}^{a_{i_2}} \xrightarrow{e_{i_3}} b_3 \cdots \cdots b_\lambda$$
$$\longrightarrow \mathbf{a}_b = (a_{i_1}, a_{i_2}, \cdots) \in \mathbb{Z}_{\geq 0}^N$$

Theorem (Littelmann '98, Berenstein-Zelevinsky '00, Alexseev-Brion '04, Kaveh '11)

 \exists a normal polytope $Q_{w_0}(\lambda)$, called the string polytope, whose lattice points are precisely $\{\mathbf{a}_b \mid b \in B(\overline{\lambda})\}$. The associated toric variety $X(Q_{w_0}(\lambda))$ is a flat degeneration of $\mathfrak{F}(\lambda)$. $Q_{w_0}(\lambda)$ is the Newton-Okounkov Body of $\mathfrak{F}(\lambda)$.

The Gelfand-Tsetlin polytope corresponds to $w_0 = s_1 s_2 s_1 s_3 s_2 s_1 \cdots s_{n-1} \cdots s_1$. There are many reduced decompositions,

Stanley, '84 :
$$\binom{n}{2}!/1^{n-1}3^{n-2}5^{n-3}\cdots(2n-3),$$

and hence many polytopes and hence many toric varieties. But:

Lemma

There exists λ such that for every reduced decomposition of w_0 , the polytope $Q_{\underline{w_0}}(\lambda)$ is not isomorphic to $P(\lambda)$.

In this sense, the polytope $P(\lambda)$ is new.

Follow-Up Workshop, Hlm, Bonn, 2015

Flag varieties

Let us consider a geometric interpretation: we define

$$\mathfrak{F}^{a}(\lambda) := \overline{\mathbb{G}^{N}_{a}.[\boldsymbol{v}_{\lambda}]} \subset \mathbb{P}(V^{a}(\lambda)) \ , \ \mathfrak{F}^{t}(\lambda) := \overline{\mathbb{G}^{N}_{a}.[\boldsymbol{v}_{\lambda}]} \subset \mathbb{P}(V^{t}(\lambda))$$

(here: $V^t(\lambda) = \operatorname{gr}^t V(\lambda)$ for an appropriate homogeneous total \mathbb{N}^N -order).

Theorem (Feigin '12, Feigin-F-Littelmann '13)

For any dominant, integral weight λ : $\mathbb{P}^{a}(\lambda)$ is a flat degeneration of $\mathbb{P}(\lambda)$ and $\mathbb{P}^{t}(\lambda)$ is a flat degeneration of both.

Feigin's proof contains a description of the degenerated Plücker relations and even more a description in terms of subspaces

$$\mathcal{F}^{a}(\lambda) = \mathcal{F}^{a} := \{ \underline{U} \in \prod_{i=1}^{n} \operatorname{Gr}(i, n) \mid \operatorname{dim}(U_{i}) = i \text{ and } \operatorname{pr}_{i+1} U_{i} \subset U_{i+1} \},$$

here

$$\operatorname{pr}_{i+1}: \mathbb{C}^n \longrightarrow \mathbb{C}^n : \sum_j a_j e_j \mapsto \sum_{j \neq i+1} a_j e_j.$$

The degenerated flag variety again

Two more interesting identifications of this degenerated flag variety:

Theorem

Let λ be dominant integral then

- The degenerated flag variety $\mathcal{F}^a(\lambda)$ is a Schubert variety $X_{w,\mu}$ inside a partial flag variety for SL_{2n} (Cerulli Irelli-Lanini '14).
- 2 $H^0(X_w, \mathcal{L}_\mu) \cong_{\mathfrak{g}^a} V^a(\lambda)$ (Cerulli Irelli-Lanini-Littelmann '15).
- **3** $P(\lambda) \cong Q_{\underline{w}}(\mu)$ and hence $\mathcal{F}^t(\lambda) \cong X(Q_{\underline{w}}(\mu))$ (F-Littelmann '15).

The other one is in terms of quiver Grassmannian and due to Cerulli-Irelle-Feigin-Reineke and you will see more in this direction in the next talk:

Theorem (Cerulli Irelli-Feigin-Reineke)

The degenerated flag variety \mathfrak{F}^a is isomorphic to the quiver Grassmannian $\operatorname{Gr}_{\dim A}(A \oplus A^*)$, where A is the path algebra of the equioriented Dynkin quiver of type A.

So we have

$$\mathfrak{F}^a \cong \mathfrak{F}^a(\lambda) \cong X_{w,\mu} \cong \operatorname{Gr}_{\dim A}(A \oplus A^*).$$

Our goal was to define/study a PBW filtration for quantum groups $U_q(g)$:

 $\rightarrow \mathbb{N}$ -filtration with gr $U_q(\mathfrak{n}^-) \cong \mathbb{C}_q[\mathfrak{n}^-]$

Let $E_i, F_i, K_i^{\pm 1}$ be the generators subject to the usual relations and T_i Lusztig's automorphism

$$T_i(E_i) = -F_iK_i, \ T_i(F_i) = -K^{-1}E_i, \ T_i(K_j) = K_jK_j^{-c_{ij}}$$

and

$$T_i(E_j) = \sum_{r+s=-c_{ij}} (-1)^r q_i^{-r} E_i^{(s)} E_j E_i^{(r)}, T_i(E_j) = \sum_{r+s=-c_{ij}} (-1)^r q_i^r F_i^{(r)} F_j F_i^{(s)}.$$

We fix a reduced decomposition of $w_0 = s_{i_1} \cdots s_{i_N}$ and define for $\beta = s_{i_1} \cdots s_{i_{l-1}} (\alpha_{i_l})$ the PBW root vector

$$F_{\beta}=T_{i_1}T_{i_2}\cdots T_{i_{t-1}}(F_{i_t})\in U_q(\mathfrak{n}^-).$$

Ordered monomials in the F_{β} form a basis of $U_q(\mathfrak{n}^-)$.

For $\lambda \in P^+$, we denote $V_q(\lambda)$ the simple $U_q(\mathfrak{g})$ -module of highest weight λ and type 1, with highest weight vector v_{λ} .

Setting deg $F_{\alpha} = 1$ for all $\alpha > 0$ is not working out for us:

Use $\mathfrak{g} = \mathfrak{sl}_4$ and fix the reduced expression $w_0 = s_1 s_2 s_1 s_3 s_2 s_1$. The following relation holds in $U_q(\mathfrak{n}^-)$:

$$F_{\alpha_2+\alpha_3}F_{\alpha_1+\alpha_2}=F_{\alpha_1+\alpha_2}F_{\alpha_2+\alpha_3}-(q-q^{-1})F_{\alpha_2}F_{\alpha_1+\alpha_2+\alpha_3},$$

which specializes to $f_{\alpha_2+\alpha_3}f_{\alpha_1+\alpha_2} = f_{\alpha_1+\alpha_2}f_{\alpha_2+\alpha_3}$ in $U(\mathfrak{n}^-)$.

2 Let g be of type G_2 and fix the reduced expression $w_0 = s_1 s_2 s_1 s_2 s_1 s_2$. We have in $U_q(n^-)$:

$$F_{3\alpha_1+2\alpha_2}F_{3\alpha_1+\alpha_2} = q^{-3}F_{3\alpha_1+\alpha_2}F_{3\alpha_1+2\alpha_2} + (1-q^{-2}-q^{-4}+q^{-6})F_{2\alpha_1+\alpha_2}^{(3)},$$

which specializes to
$$f_{3\alpha_1+2\alpha_2}f_{3\alpha_1+\alpha_2} = f_{3\alpha_1+\alpha_2}f_{3\alpha_1+2\alpha_2}$$
 in $U(\mathfrak{n}^-)$.

To find an appropriate grading we use Ringel's identification of $U_q(n^-)$ with the Hall algebra H(Q):

Let *Q* be the equioriented Dynkin quiver of type *A*, *D*, *E* and for every positive root let U_{α} be the indecomposable representation of dimension vector α .

{isomorphism classes [*M*]} \leftrightarrow {functions $R^+ \longrightarrow \mathbb{N}, \beta \mapsto \mathbf{m}(\beta)$ },

the same parametrization of a PBW basis of $U_q(\mathfrak{n}^-)$. We denote this set \mathcal{B} .

If we fix a reduced decomposition of $w_0 = s_{i_1} \cdots s_{i_N}$, then the isomorphism $U_q(\mathfrak{n}^-) \longrightarrow H(Q)$ is induced by the assignment

$$\mathcal{F}^{\mathbf{m}} \mapsto \mathcal{F}_{[M]} := q^{\dim \operatorname{End}(M) - \dim M} u_{[M]} = u_{[U_{\beta_1}]}^{\mathbf{m}(\beta_1)} \cdots u_{[U_{\beta_N}]}^{\mathbf{m}(\beta_N)}$$

To construct a filtration on $U_q(\mathfrak{n}^-)$ we should consider possible degree functions on \mathcal{B} . Remember: the associated graded should be isomorphic to $\mathbb{C}_q[\mathfrak{n}^-]$.

New gradings

Let us consider possible degree functions $w : \mathcal{B} \longrightarrow \mathbb{N}$ on isomorphism classes $[M] \in \mathcal{B}$. We call *w* (strongly) admissible if

•
$$w([M]) = 0 \Leftrightarrow [M] = 0$$
,

- $w(X) \le w(M) + w(N)$ for every short exact sequence $0 \longrightarrow N \longrightarrow X \longrightarrow M \longrightarrow 0$.
- (and < iff only if the exact sequence is non-split).

Lemma (Fang-F-Reineke, '15)

This function induces a filtration on $U_q(\mathfrak{n}^-)$, where \mathcal{F}_n is spanned by $F_{[M]}$ with $w([M]) \leq n$. Moreover, the associated graded algebra is isomorphic to $\mathbb{C}_q[\mathfrak{n}^-]$.

Here is the main result that we are using from Hall algebras:

Theorem (Fang-F-Reineke)

w is admissible iff $w(M) = \dim Hom(V, M)$ for some Q representation V. w is strongly admissible iff V contains at least one direct summand of all simple and all non-projective indecomposable U_{α} .

Example: Type A_n and we consider the *canonical* choice, $V = \bigoplus_{\alpha \in R^+} U_{\alpha}$, one copy of each indecomposable. Then

$$\deg F_{\alpha_i+\ldots+\alpha_j}=(j-i+1)(n-j+1).$$

Back to the classical case

Let us apply this new grading in the non-quantum case. Then

deg $f_{i,j} = (j - i + 1)(n - i + 1)$ instead of 1,

and among all the $\sigma \in S_{k-\ell}$ there is a unique one, such that

$$f_{\alpha_{j_{\sigma(1)}}+\ldots+\alpha_{i_{\ell+1}}}\cdots f_{\alpha_{j_{\sigma(k-\ell)}}+\ldots+\alpha_{i_{\ell+k-\ell}}}$$

has minimal degree! This is precisely $\sigma = id$. If we denote $V^{\mathcal{F}}(\lambda)$ the associated graded module (of the simple module $V(\lambda)$), then

Theorem (Fang-F-Reineke, '15)

 $S(\lambda)$ parametrizes a basis of $V^{\mathcal{F}}(\lambda)$ and the defining ideal is monomial.

Remark

This is special about this filtration: The monomial basis is uniquely determined by forcing the grading to be strongly admissible. This implies that the polytope is somehow canonical. In this sense, this might be a special Newton-Okounkov body of $\mathcal{F}(\lambda)$.

Quantum case and outlook

Here is the quantum version of the previous theorem:

Theorem (Fang-F-Reineke, '15)

The set

```
\{F^{\mathbf{p}}.v_{\lambda} \mid \mathbf{p} \in S(\lambda)\} forms a basis of V_q^{\mathcal{F}}(\lambda)\},\
```

and the annihilating ideal is monomial.

Remark

- For other simply-laced Lie algebras, the ideal is not monomial in general: Consider so₈ and V(ω₁ + ω₃)_{-ω₄}, then there are two monomials of the same weight and degree, mapping to this weight space.
- Try the non-simply-laced case: spn. A good polytope is known but so far there is no admissible grading that provides exactly this monomial basis.
- The grading can be obtained by a specific reduced decomposition.
 Does any reduced decomposition leads to the associated graded algebra C_q[n⁻]? The polytope depends on the reduced decompositon.