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Introduction

Transvectants

The goal of this talk is to show that

transvectants

give us a natural language in which to describe the process of computing
the Differential Invariants in many geometries.
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What are transvectants?

classical invariant theory

Transvectants were invented in the middle of the 19th century to compute
new covariants (or invariants) from old ones in classical invariant theory.

determinant

The simplest example is given by two linear forms. Their first transvectant
is the determinant of the coefficients.

discriminant

Another example is the discriminant of a quadratic form, which is the
second transvectant of the quadratic form with itself.
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Gordan’s theory

finite number

Gordan (1868) proved that every covariant of one or more binary forms
(the groundforms) could be expressed as a polynomial of transvectants of
the basic forms, and that there only exists a finite number of algebraically
independent ones.

Emmy Noether

To carry out the algorithm in particular cases is not an easy task. It
motivated one student of Gordan to great levels of abstraction.
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Hilbert’s theory

Hilbert 1890

Hilbert (1890) reproved Gordan’s result, simplifying and generalizing the
whole thing tremendously and laying the foundations for commutative
algebra in the process.

nonconstructive proof

The only criticism one could have was that the proof was nonconstructive.

Hilbert 1893

In 1893 Hilbert gave a constructive proof.
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Differential invariants

sl2
Let us define

F =
n∑

α=1

∞∑
k=1

k(k − 1)uα
k−1

∂

∂uα
k

H =
n∑

α=1

∞∑
k=0

2kuα
k

∂

∂uα
k

D =
n∑

α=1

∞∑
k=0

uα
k+1

∂

∂uα
k

.

u = (u1, · · · , un): curve,
x : curve parameter uα: coordinates on an n-manifold.
uα
k : kth (invariant) derivative. with respect to x .
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Geometry

Infinitesimal generators of the geometric group

The operators F , D and H form an sl2 and all commute with the
prolongation of vector fields of the form

v =
∂

∂x
+

n∑
α=1

φα ∂

∂uα

This implies that there exists a representation of sl2 in the space of
differential invariants of curves.

If ψ is a differential invariant, so is Dψ.

Restrict attention to those differential invariants that are not in the image
of D.
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Infinite dimensional sl2 representation theory

For certain types of infinite dimensional sl2 representations one can split
the representation space as a direct sum of ker F and im D, the trivial part.

This happens in particular if F is nilpotent, that is to say, for a given ψ
there exists a k such that F kψ = 0.

For instance, polynomials in u and its derivatives.

In this case one can always express the elements in ker F as transvectants
of lower order elements.
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Transvectants

Definition of transvectants

Let U and V be sl2-modules. We define the n-transvectant
τ (n) : U ⊗ V → U ⊗ V as follows.

Let f ∈ U and g ∈ V , with H-eigenvalues wf = ω(f ) and wg = ω(g),
respectively, and we denote fi = D i f , gi = D ig .

Then

τ (m)f ⊗ g =
∑

i+j=m

(−1)i
(
ωf + m − 1

j

)
fi ⊗

(
ωg + m − 1

i

)
gj

If the geometry is determined by a bilinear form, we denote the result of
transvection followed by contraction by (f , g)(m).
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Transvectants

Lemma

If f , g ∈ ker F , then τ (m)f ⊗ g ∈ ker F .

Corollary

If f , g ∈ ker F , then (f , g)(m) ∈ ker F .
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Transvectants

Definition of transvectants

We now show how such a representation implies that transvection can take
the role of differentiation in the process of finding differential invariants of
parametrized curves.

By doing so we are capable of finding bases of differential invariants which
are always in the kernel of F , and so in the complement of the image of D.

In many cases one can perform the process with appropriate weights to
ensure the result is also invariant under reparametrizations.
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Projective geometry

Wylczinski

In the case of differential invariants of projective curves Wylczinski proved
that one could lift a curve in RPn to a curve in Rn+1 the standard way,
multiply by a factor the lift and define a different vector µ ∈ Rn+1.

He then proceeded to recurrently differentiate this vector and to produce a
basis of differential invariants for projective curves by taking determinants
of the derivatives.

It just so happens that the vector µ is a relative invariant of the prolonged
projective action with constant weight and the Wylczinski process mirrors
the transvection process.
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Projective geometry

Transvectation can substitute differentiation in Wylczinski’s original
method.

In many other geometric flat manifolds G/H the method works identically
for both differentiation and transvection.

That is, one can lift the curve to a vector in a higher dimensional Rm

where the group acts linearly.

We can modify the vector to produce relative differential invariants and we
can then apply recurrent transvection of it with a properly chosen
differential invariant, requiring the eigenvalue to be 2.

By doing so (in fact by merely differentiating) we can produce enough
relative invariants to generate a basis for the space of differential invariants
of curves in G/H all of them in the kernel of the operator F .
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Projective geometry

We have shown explicitly the projective, conformal and Grasmannian
Lagrangian cases.

Thus, it is not at all surprising that Schwarzian and Euclidean curvature lie
in the kernel of the operator F and can be written as transvectants of the
derivative u1.

In fact, being differential invariants of lowest order within their
corresponding geometrical background (projective and Euclidean
respectively) they needed to be.
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The Schwarzian as a transvectant

A question

The following construction is an answer to a question that was asked in
1999 by John McKay.

M∼= PSL(2)/H ∼= RP1

Assume that M∼= PSL(2)/H ∼= RP1. It is known that any differential
invariant for curves in RP1 can be written as a function of the Schwarzian
derivative of u,

S(u) =
u3

u1
− 3

2

(
u2

u1

)2

and its derivatives with respect to x .

S(u) ∈ ker F

It is also trivial to check that S(u) is in the kernel of F .
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The Schwarzian as a transvectant

Schwarzian

We compute, with u1 and 1
u1
∈ ker F ,

τ (2)u1 ⊗
1

u1
=

∑
i+j=2

(
3

j

)
ui+1 ⊗ D j 1

u1

= 3u1 ⊗ (2
u2
2

u3
1

− u3

u2
1

)− 3u2 ⊗
u2

u2
1

+ u3 ⊗
1

u1

and this contracts by symmetrization to

3
u2
2

u2
1

− 2
u3

u1
= −2S(u).

This shows that the Schwarzian is a transvectant, and a differential
invariant by construction.
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Differential invariants of curves of Lagrangian planes

Consider the manifold Sp(n)/H ≡ Ln identified with the space of
Lagrangian planes in R2n.

The set of differential invariants of curves in this manifold under the action
of Sp(n) has been classified.

Some of these invariants are projectively invariant and had been previously
found.

A basis for the differential invariants can be described as follows.

Jan A. Sanders (1) Differential invariants by transvection July 2007 17 / 23



Differential invariants of curves of Lagrangian planes

Consider the manifold Sp(n)/H ≡ Ln identified with the space of
Lagrangian planes in R2n.

The set of differential invariants of curves in this manifold under the action
of Sp(n) has been classified.

Some of these invariants are projectively invariant and had been previously
found.

A basis for the differential invariants can be described as follows.

Jan A. Sanders (1) Differential invariants by transvection July 2007 17 / 23



Differential invariants of curves of Lagrangian planes

Consider the manifold Sp(n)/H ≡ Ln identified with the space of
Lagrangian planes in R2n.

The set of differential invariants of curves in this manifold under the action
of Sp(n) has been classified.

Some of these invariants are projectively invariant and had been previously
found.

A basis for the differential invariants can be described as follows.

Jan A. Sanders (1) Differential invariants by transvection July 2007 17 / 23



Differential invariants of curves of Lagrangian planes

Consider the manifold Sp(n)/H ≡ Ln identified with the space of
Lagrangian planes in R2n.

The set of differential invariants of curves in this manifold under the action
of Sp(n) has been classified.

Some of these invariants are projectively invariant and had been previously
found.

A basis for the differential invariants can be described as follows.

Jan A. Sanders (1) Differential invariants by transvection July 2007 17 / 23



Lagrangian planes

symmetric matrix

A Lagrangian plane in R2n can be identified with a symmetric matrix and,
in fact, the quotient Sp(n)/H can be locally identified with matrices of the
form (

I u
0 I

)
where u is n × n and symmetric and where I represents the unit n × n
matrix.

The subgroup H can thus be represented by matrices of the form(
I 0
S I

) (
g 0
0 g−T

)
with g ∈ GL(n,R) and S symmetric.
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Lagrangian planes

Let vk = u
−1/2
1 uku

−1/2
1 .

With this description, it is known that a basis for the space of differential
invariants of Lagrangian curves is given by the eigenvalues of the
Lagrangian Schwarzian derivative of u

S(u) = v3 −
3

2
v2
2

together with the off-diagonal entries of the matrix of differential invariants

I4 = v4 − 2v3v2 − 2v2v3 + 3v3
2

It was shown that I4 contains in its diagonal the derivative of the
eigenvalues of S(u).

Jan A. Sanders (1) Differential invariants by transvection July 2007 19 / 23



Lagrangian planes

Let vk = u
−1/2
1 uku

−1/2
1 .

With this description, it is known that a basis for the space of differential
invariants of Lagrangian curves is given by the eigenvalues of the
Lagrangian Schwarzian derivative of u

S(u) = v3 −
3

2
v2
2

together with the off-diagonal entries of the matrix of differential invariants

I4 = v4 − 2v3v2 − 2v2v3 + 3v3
2

It was shown that I4 contains in its diagonal the derivative of the
eigenvalues of S(u).

Jan A. Sanders (1) Differential invariants by transvection July 2007 19 / 23



Lagrangian planes

Let vk = u
−1/2
1 uku

−1/2
1 .

With this description, it is known that a basis for the space of differential
invariants of Lagrangian curves is given by the eigenvalues of the
Lagrangian Schwarzian derivative of u

S(u) = v3 −
3

2
v2
2

together with the off-diagonal entries of the matrix of differential invariants

I4 = v4 − 2v3v2 − 2v2v3 + 3v3
2

It was shown that I4 contains in its diagonal the derivative of the
eigenvalues of S(u).

Jan A. Sanders (1) Differential invariants by transvection July 2007 19 / 23



Lagrangian planes

The Lagrangian Schwarzian generates projective differential invariants for
Lagrangian planes.
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Lagrangian planes

One can show that, if g = Θu
−1/2
1 , where Θ ∈ O(n) is such that

ΘS(u)ΘT is diagonal (uniquely determined by Gramm-Schmidt), then

µ =

(
u
I

)
gT

is a relative invariant for the action of Sp(n) on the space of Lagrangian
planes.

We denote by D = ΘS(u)ΘT the diagonalization of S(u). These will be
our initial differential invariants. They are generated by a certain
contraction of a transvectant of u1.
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Lagrangian planes

Let us consider the group-invariant contraction

C : M2n×n ⊗M2n×n → Mn×n

given by C (v ,w) = vT Jw , where

J =

(
0 I
−I 0

)
.
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Lagrangian planes

Theorem

Let us call V0 = µ and define Vi+1 = (D,Vi )
(1), i = 1, 2, . . . . Then, the

entries of D = ΘS(u)ΘT and C (V2,V0)
(0) = V T

2 JV0 generate all
differential invariants for curves of Lagrangian planes under the action of
the symplectic group.
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