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Simple Lie algebras

The representation ring R(g) of a complex sim-

of W-invariants in the integral group ring Z[P],
where P is the corresponding weight lattice
and W is the Wey! grbup. The isomorphism is
given by the character map Ch. : R(g) — Z[P]W.

Our goal is to generalise this result to the case
of Lie superalgebras.

Basic classical Lie superalgebras and g
eralised root systems

Following V. Kac (1977,1978) we call Lie
superalgebra g = gg @ gy basic classical if



a) g is simple,

b) Lie algebra gg is a reductive subalgebra of
9

c) there exists a non-degenerate invariant even
bilinear form on g.

Kac proved that the complete list of basic clas-
sical Lie superalgebras, which are not Lie alge-
bras, consists of Lie superalgebras of the type

A(m,n), B(m,n),C(n), D(m,n), D(2,1,), F(4),G(3,

In full analogy with the case of simple Lie al-
gebras one can consider the decomposition of
g with respect to adjoint action of Cartan sub-
algebra § :

g:bea(@ga)a

where the sum is taken over the set R of non-
zero linear forms on §, which are called roots



of g. With the exception of the Lie superal-
gebra of type A(1,1) the corresponding root
subspaces g, have dimension 1 (for A(1, 1)
type the met subspaces corresponding to the
isotropic roots have dimension 2).

It is turned out that the corresponding root
systems admit the folliow

ing simple geometric
description found by V.Serganova (1996).

Let V be a finite dimensional complex vector
space with a non-degenerate bilinear form (,).

Definition. The finite set R C V'\ {0} is called
a generalised root system if the following con-

ditions are fulfilled -

1) Rspans Vand R= —R :

2) if &, € R and (a,a) # O then 2 ) e z
and sq(f) = B — 228, ¢ R,



3) ifa € R and (a,a) = 0 then there exists
an invertible mapping ro : R — R such that

ra(B) = B if (B,a) =0 and ro(B) € {B+a, B—

a} otherwise.

The roots a such that (a,a) = 0 are calle
isotropic. A generalised root system R is calles
reducible if it can be represented as a direct
orthogonal sum of two non-empty generalised
root systems R; and Ry V =V V,, Ry C V4,
Ry C Vo, R = R1 U R,. Otherwise the system
is called irreducible.

(f

Any generalised root system has a partial sym-
metry described by the finite group Wy gen-
erated by the reflections with respect to the
non-isotropic roots.

A remarkable fact proved by Serganova is that
classification list for the irreducible generalised
root systems with isotropic roots coincides with



the root systems of the basic classical Lie su-
peralgebras from the Kac list (with the excep-
tion of A(1,1)) and B(0,n)). Note that the
superalgebra B(0,n) has no isotropic roots: its
root system is the usual non-reduced system of
BC(n) type.

Main Result

Let g be such Lie superalgebra different from
A(1,1) and § be its Cartan subalgebra (which
in this case is also Cartan subalgebra of the Lie
algebra gg). Let Py C h* be the abelian group
of weights of gg, Wy be the Weyl group of gg
and Z[Pg]Wo be the ring of Wy-invariants in the
integral group ring Z[Py]. The decomposition
of g with respect to the adjoint action of §
gives the {(generalised) root system R of Lie
superalgebra g. By definition has a natural
non-degenerate bilinear form on § and hence
on §*, which will be denoted as (, ). In contrast




to the theory of semisimple Lie algebras some
of the roots a € R are isotropic: (a,a) = 0.
For isotropic roots one can not define the usual
reflection, which explains the difficulty with the
notion of Weyl group in this case.

Define the following ring of exponential super-
invariants J(g), replacing the algebra of Weyl
group invariants in the classical case of Lie al-
gebras:

J(g) = {f € Z[Po]""° : Daof € (e* — 1)

for any isotropic root a}

where (e®* — 1) denotes the principal ideal in
Z[Po]"0o generated by e* — 1 and the deriva-
tive D, is defined by the property Dy(ef) =
(o, B)eP. This ring is a variation of the algebra
of invariant polynomials investigated for Lie su-
peralgebras by F. Berezin (1977), A.Sergeev
(1982,1999), V. Kac (1984). For the spe-
cial case of the Lie superaigebra A(1,1) one



should slightly modify the definition because
of the multiplicity 2 of the isotropic roots (see
section 8 below).

Our main result is the following

Theorem. The Grothendieck ring K(g) of
finite dimensional representations of a basic
classical Lie superalgebra is isomorphic to
the ring J(g). The isomorphism is given by the
supercharacter map Sch : K(g) — J(g).

The elements of J(g) can be described as the

: p rings under the
| groupoid 208, which we
call super Weyl groupoid. It is defined as a
disjoint union

W(R) = Wy H Wo X Tiso,

where %, is the groupoid, whose base is the
set R;;, Of all isotropic roots of g and the set



of morphisms from a — 3 is non-empty if and
only if 8 = 4o in which case it consists of just
one element 1o. This notion was motivated by
our work on deformed Calogero-Moser systems
A.Sergeev, A.Veselov (2004).

ral way and thus defines a semi-direct prod-
uct groupoid Wy X %;5, (see details in section
9). One can define a natural action of 20 on
h with 7o acting as a shift by « in the hyper-
plane (o, z) = 0. If we exclude the special case
of A(1,1) our Theorem can now be reformu-
lated as the following version of the classical
case:

The Grothendieck ring K(g) of finite dimen-
sional representations of a basic classical Lie
superalgebra g is isomorphic to the ring Z[PO]QU
of the invariants of the super Weyl groupoid 8.



Concluding remarks

Thus we have now a description of the Grothendieck
rings of finite-dimensional representations for

all basic classical Lie superalgebras. 1

that the corresponding rings can be descCribe

by simple algebraic conditions seems te be re-
markable. We believe that these rings as well

as the corresponding super Weyl groupoids will

play an important role in the representation
theory.

An important problem is to describe "good”
bases of the rings K(g) as modules over Z and
transition matrices between them. For exam-
ple, in the classical case of Lie algebra of type
A(n) we have various bases labeled by Young
diagrams \: Schur polynomials s, (or charac-
ters of the irreducible representations), sym-
metric functions h) and e, . We hope also



that our result could lead to a better under-
standing of the algorithms of computing the
characters proposed by V. Serganova {1996)

idan (2003). The investigation of

lions of the correspond-
, ed Calogero-Moser
d Macdonald oﬁ@fr@t@m which were intro-
duced by M. Feigin, O. Chaly ;é’a A Veselov
(199¢

6), A.Sergeev, A.Veselov (2004) n
help to clarify the situation.

One can define also the Grothendieck ring P(g)
of projective finite-dimensional g-modules . It

an be shown that P(g) C K(g) is an ideal in
the Grothendieck ring K{(g). The problem is
to describe the structure of P(g) as a K(g)-
module.




