| Recall that E(A,B,C) =  (s2(AC)+s2(BC)-s2(AB))/2s(AC)s(BC). 
theoremThe A,B,C lie on a hyperbolic circle if and only if
 -1 < E(A,B,C) < 1.
 
proofThe condition is equivalent to
 (s2(AC)+s2(BC)-s2(AB)) < 2s(AC)s(BC), and
 (s2(AC)+s2(BC)-s2(AB)) > -2s(AC)s(BC).
 
And hence to(s(AC)-s(BC))2 < s2(AB), and
 (s(AC)+s(BC))2 > s2(AB).
 
All variables are positive so we gets(AC)-s(BC) < s(AB) and s(BC)-s(AC) < s(AB), and
 s(AC)+s(BC) > s(AB).
 
These are clearly equivalent to "there is a euclidean (s(AB),s(BC),s(CA)) euclidean triangle".
 
        |  |