
RONNIE LEE’S GENERATOR FOR L5(Z[Z]).

DANIEL A.P. GALVIN

Abstract. We present Ronnie Lee’s description of a generator for L5(Z[Z]) from the 1970s. This
was previously only available as a handwritten letter which is not easily accessible.

1. Introduction

The purpose of this note is to provide a typed, freely available description of Ronnie Lee’s gener-
ator of L5(Z[Z]). This was originally presented in a letter [Lee70] addressed to Martin Scharlemann
from some time in the 1970s. The main change since then is that we know about Freedman’s disc
embedding theorem, which simplifies some of the description. This note will assume that the reader
understands what surgery is, and what a surgery problem is. For a description of surgery theory
there are a wide variety of sources, including [Ran02] and [LM23]. For this note, we recommend
[Wal70], which is what Lee cited in the original letter.

One should note the difference in notation between this note and the letter by Lee. We write
L5(Z[Z]) to mean the set of stable equivalence classes of quadratic formations over stably free
Z[Z]-modules, whereas Lee denotes this as L5(Z).

1.1. Acknowledgements. I would like to thank Ian Hambleton for providing me with a copy of
the original letter. I would also like to thank Mark Powell for helpful discussions and comments.

2. A generator for L5(Z[Z])

2.1. Constructing any generator. The aim of this note is to give a ‘nice’ description for the
generator of L5(Z[Z]), but first we simply need to construct any generator. Shaneson splitting
[Sha69, Theorem 5.1] gives us that

L5(Z[Z]) ∼= L5(Z)× L4(Z).
Wall [Wal70, Theorem 13A.1] computes that L5(Z) = 0 and similarly that L4(Z) ∼= L0(Z) ∼= Z,
hence L5(Z[Z]) ∼= Z, generated by the image of the generator of L4(Z) in L5(Z[Z]). The injection
L4(Z) ↪→ L5(Z[Z]) is given by taking a surgery problem and multiplying it by S1. We have an
isomorphism L4(Z) ∼= Z⟨σ/8⟩ where σ denotes the signature, and so it is generated by the standard
surgery problem associated to the E8 manifold. Hence, L5(Z[Z]) is generated by the induced surgery
problem on E8 × S1. We will now be more precise.

Consider the manifold P formed by plumbing along the E8-lattice. The created manifold P is
a manifold with boundary ∂P a homology 3-sphere Y , and by Freedman [Fre82] Y also bounds
a contractible manifold which we will denote by B. In a slight abuse of notation, we then define
E8 := P ∪Y B. By construction, E8 has intersection form given by the E8-lattice

(2.1) λE8 =



2 1
1 2 1

1 2 1
1 2 1

1 2 1 1
1 2 1

1 2 1
1 1 2


and one can diagonalise this matrix to read off its signature (the computation can be found in full
detail in [Sco05, Section 3.2]). This gives σ(E8) = 8. This means that by Rokhlin’s theorem [Rok52]
this manifold is non-smoothable. By Wall, this means that the surgery problem corresponding to
the standard degree-1 normal map

φ′ : E8 → S4
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has surgery obstruction the generator of L4(Z) and hence the surgery problem corresponding to the
map

φ := φ× IdS1 : E8 × S1 → S4 × S1

has surgery obstruction the generator of L5(Z[Z]).
Now that we have constructed a surgery problem with the required generator as its obstruction,

the aim is to find an algebraic description for this element in L5(Z[Z]). For this, we follow the method
given in [Wal70, §6]. It is not hard to see that our map φ is already 2-connected, since it is clearly
an isomorphism on π1, and π2(S

4×S1) = 0. The surgery kernel is therefore π3(φ) ∼= H2(E8×S1; Λ),
where Λ := Z[π1(E8 × S1)] = Z[Z] = Z[T 1, T−1]. Choose a Λ-basis for this, represented by eight
disjoint embeddings hi : S

2 × D3 ↪→ E8 × S1 corresponding to the basis given for the intersection
form in (2.1), and let U denote the union of all of these embeddings U := ∪ihi(S

2 ×D3).

We have now split our manifold E8 ×S1 into two pieces: E8 × S1 \ U and U . Furthermore, after
cellular approximation we can assume that our map φ takes the form of a map of triads

φ : (E8 × S1; (E8 × S1 \ U), U) → (S4 × S1; (S4 × S1 \D5), D5).

An element of L5(Z[Z]) is a formation. Every formation is equivalent to a formation of the form
(Hε(F );F,G), but we can see this explicitly in our case. Since ∂U ∼= ⊔iS

2 × S2, a disjoint union of
embedded copies of S2×S2, H2(∂U ; Λ) is already the standard hyperbolic form over Λ with sixteen
generators, where ei corresponds to the ith copy of S2 ×{pt} and fi corresponds to the ith copy of
{pt} × S2.

More specifically, the formation corresponding to this surgery problem is given by (H;F,G) where

H := ker
(
(φ |∂U )∗ : H2(∂U ; Λ) → H2(∂D

5;φ∗Λ)
)
,

F := ker
(
(φ |U )∗ : H3(U, ∂U ; Λ) → H3(D

5, ∂D5;φ∗Λ)
)
,

G := ker
(
(φ |

E8×S1\U )∗ : H3(E8 × S1 \ U, ∂U ; Λ) → H3(S4 × S1 \D5, ∂D5;φ∗Λ)
)
.

All of the restriction maps that we take above are the zero maps on their respective homol-
ogy groups because their targets vanish, hence H ∼= H2(∂U ; Λ), F ∼= H3(U, ∂U ; Λ) and G ∼=
H3(E8 × S1 \ U, ∂U ; Λ). It is not too hard to see that F is isomorphic to the standard Lagrangian
of H, generated by the fi basis elements. Thus, all of the information about the formation as an
element in L5(Z[Z]) is contained in G. We shall describe G in terms of a basis e′i which can be
viewed as the upper half of a 16× 16 matrix. For demonstrative purposes, we can describe F in the
same way as the bottom half of the same matrix easily as f

′
i := fi which corresponds to the matrix[

0 Id
]

where Id denotes the 8× 8 identity matrix.

Lemma 2.1. The matrix corresponding to G by describing a basis {e′i} for G in terms of the
elements ei and fi is given below (the additional horizontal and vertical rules have been added for
readability).

T−1 T+1 1

T−1 T+1 1

T−1 T T+1 1

T−1 T T T+1 1

T−1 T T+1 1

T−1 T T+1 1

T−1 T T+1 1

T−1 T T+1

i.e. e′1 = (T − 1)e1 + (T + 1)f1 + f4, e
′
2 = (T − 1)e2 + (T + 1)f2 + f3 etc.

Remark 2.2. By construction (which will be seen below), the form should die on the e′i, but perhaps
it is helpful to explicitly see this. Let λ denote the standard Z[Z]-valued intersection form on H.
Then

λ(e′1, e
′
1) = λ((T − 1)e1, (T + 1)f1) + λ((T + 1)f1, (T − 1)e1) = (T − T−1) + (T−1 − T ) = 0,

λ(e′1, e
′
4) = λ((T − 1)e1, T f1) + λ(f4, (T − 1)e4) = (T − 1)T−1 + T−1 − 1 = 0,
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and all other cases are analogous.

Proof of Lemma 2.1. Since we are describing a basis for G = H3(E8 × S1 \ U, ∂U ; Λ) we will work
in the universal cover of E8×S1 which is E8×R. First arrange the embeddings hi : S

2×D3 ↪→ E8×R
such that each hi(S

2 × {pt}) lies in the slice E8 × { i−1
8 } and then write ei = hi(S

2 × {pt}) and

similarly write fi = hi({pt} × S2). Furthermore, we may assume that the projections pi of ei
onto the E8-factors give a basis for H2(E8) corresponding to the basis used for (2.1). We will now
describe eight distinct elements in G.

Let Ai := pi× [ i−1
8 , 1+ i−1

8 ] be annuli in E8×R and note these have ∂Ai = (T − 1)ei. The annuli
Ai are not disjoint from U , but Ai ∩ U consists of disjoint 3-balls corresponding to the intersection
form given in (2.1). However, note that because of how we chose to make the ei disjoint in E8 ×R,
if pi and pj have non-trivial intersection then Ai intersects U at ej for j > i, at Tej for j < i, and
twice at ej and Tej for j = i. Remove all of these 3-balls from Ai to form the element A′

i which
picks up extra boundary components as the boundaries of the removed 3-balls, which can be seen
by taking the duals fj for every ej that appeared above. We now see that ∂A′

i = e′i as defined by
the matrix in the statement of the lemma.

It remains to be seen that these eight elements generate the whole of G. Consider the following
diagram, made out of the long exact sequence of the triple (E8 × S1, E8 × S1 \ U, ∂U) and the pair
(E8 × S1, ∂U) (with Λ-coefficients suppressed).

0

H2(E8 × S1)

H2(∂U)

0 H3(E8 × S1 \ U, ∂U) H3(E8 × S1, ∂U) H3(U, ∂U) 0

0

∂

Further, the horizontal short exact sequence splits via the map on homology induced by the inclusion
of pairs (U, ∂U) ↪→ (E8 × S1, ∂U). Hence H3(E8 × S1, ∂U) ∼= H3(E8 × S1 \ U, ∂U)⊕H3(U, ∂U).

Let B ∈ H3(E8 × S1 \ U, ∂U). Write ∂B =
∑

k=1,...,8 λkek+µkfk. Further assume λk = (T−1)λk

for all k (for some λk ∈ Λ), then

∂(B −
∑
k

λkAk) =
∑
k

(T − 1)λkek + µkfk −
∑
k

λk∂Ak

=
∑
k

µkfk

for some µk ∈ Λ. Let Ck for k = 1, . . . , 8 denote the basis for H3(U, ∂U) such that ∂Ck = fk. Then

∂(B −
∑
k

λkAk −
∑
k

µkCk) =
∑
k

µkfk − µkfk = 0,

and hence the injectivity of ∂ implies that B −
∑

k λkAk −
∑

k µkCk = 0 ∈ H3(E8 × S1, ∂U). Since

this group splits as a direct sum, we see that B can be written as a Λ-linear combination of the Ai.
We now claim that the assumption that λk = (T − 1)λk holds for all B, which will complete the

proof. Consider the following commutative diagram (where we are explicit about the coefficients).

H3(E8 × S1 \ U, ∂U ; Λ) H3(E8 × S1, ∂U ; Λ) H2(∂U ; Λ) ⟨ei⟩Λ

H3(E8 × S1 \ U, ∂U ;Z) H3(E8 × S1, ∂U ;Z) H2(∂U ;Z) ⟨ei⟩Z



4 DANIEL A.P. GALVIN

Here the vertical maps are the augmentation maps (given by setting T = 1). To prove the claim,

it suffices to show that mapping any element B ∈ H3(E8 × S1 \ U, ∂U ; Λ) horizontally along the
diagram and vertically down to ⟨ei⟩Z gives the zero element. By considering the long exact sequence
of the pair (E8 × S1, ∂U) with Z-coefficients, one can see that the map H3(E8 × S1, ∂U ;Z) →
H2(∂U ;Z) only hits the subgroup generated by the fi, and hence the composition of the final two
lower horizontal maps in the diagram is the zero map. This completes the proof of the claim, and
hence the proof of the whole lemma. □

2.2. Constructing the specific generator. The aim of this subsection is to take the generator
for L5(Z[Z]) that we constructed in the last section and show that it can be realised algebraically
by a much smaller matrix. To do this, we will perform a sequence of row and column operations on
the matrix from Lemma 2.1.

Let Σi =
1−T i+1

1−T = 1+ T + · · ·+ T i and let T ′ := T − 1. We then perform the following sequence
of row and column operations on the 8 × 16 matrix from Lemma 2.1, though we have given the
initial matrix again below. Naturally, empty spaces denote zeroes but we have particularly noted
zeroes when they have first appeared from the previous stage of row or column operations. We will
sometimes use ⋆ to denote an entry that whose value is too lengthy to succinctly state but whose
precise value is not important to the calculation. We also give the row and column operations used
to go between each step. For example, the notation

Rn→Rn+ΣkRn−1

means add Σk times the (n− 1)th row to the nth row. Similarly, we denote the nth column by Cn.
We now begin the operations.

T ′ T+1 1

T ′ T+1 1

T ′ T T+1 1

T ′ T T T+1 1

T ′ T T+1 1

T ′ T T+1 1

T ′ T T+1 1

T ′ T T+1

R8→R8−Σ1R7

T ′ T+1 1

T ′ T+1 1

T ′ T T+1 1

T ′ T T T+1 1

T ′ T T+1 1

T ′ T T+1 1

T ′ T T+1 1

−Σ1T ′ T ′ −TΣ1 −Σ2 0

R8→R8+Σ2R6−Σ3R5+Σ4R4−Σ5R3+Σ6R2

T ′ T+1 1

T ′ T+1 1

T ′ T T+1 1

T ′ T T T+1 1

T ′ T T+1 1

T ′ T T+1 1

T ′ T T+1 1

Σ6T ′ −Σ5T ′ Σ4T ′ −Σ3T ′ Σ2T ′ −Σ1T ′ T ′ TΣ4 Σ7 0 0 0 0 0

R3→R3−Σ1R2
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T ′ T+1 1

T ′ T+1 1

−Σ1T ′ T ′ Σ2 0 1

T ′ T T T+1 1

T ′ T T+1 1

T ′ T T+1 1

T ′ T T+1 1

Σ6T ′ −Σ5T ′ Σ4T ′ −Σ3T ′ Σ2T ′ −Σ1T ′ T ′ TΣ4 Σ7

R1→R1−R3

T ′ Σ1T ′ −T ′ T+1 Σ2 0

T ′ T+1 1

−Σ1T ′ T ′ −Σ2 1

T ′ T T T+1 1

T ′ T T+1 1

T ′ T T+1 1

T ′ T T+1 1

Σ6T ′ −Σ5T ′ Σ4T ′ −Σ3T ′ Σ2T ′ −Σ1T ′ T ′ TΣ4 Σ7

C1→C1+T−1C2

C10→C10−TC9

T ′(2 + T−1) Σ1T ′ −T ′ T+1 1

T ′T−1 T ′ T+1 1

−T ′T−1Σ1 −Σ1T ′ T ′ −Σ2 1

T ′ T −T 2 T T+1 1

T ′ T T+1 1

T ′ T T+1 1

T ′ T T+1 1

T ′T−1Σ6 Σ6T ′ −Σ5T ′ Σ4T ′ −Σ3T ′ Σ2T ′ −Σ1T ′ T ′ TΣ4 Σ7 − T 2Σ4

R8→R8−(Σ7−T 2Σ4)R1

T ′(2 + T−1) Σ1T ′ −T ′ T+1 1

T ′T−1 T ′ T+1 1

−T−1Σ1 −Σ1T ′ T ′ −Σ2 1

T ′ T −T 2 T T+1 1

T ′ T T+1 1

T ′ T T+1 1

T ′ T T+1 1

β(T ) ⋆ ⋆ Σ4T ′ −Σ3T ′ Σ2T ′ −Σ1T ′ T ′ α(T ) 0

0 0 0 0 1

0 0 0 1

0 0 0 0 1

0 0 0 0 0 1

0 0 0 1

0 0 0 1

0 0 0 1

β(T ) ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ α(T )

This concludes the matrix operations. The polynomials given in the last two matrices are defined
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as1

α(T ) = −1− T + T 3 + T 4 + T 5 − T 7 − T 8,

β(T ) = (T − 1)(−2− T + T 2 + T 3 + T 4 + T 5 − T 6 − 2T 7).

We conclude that we can represent the generator of L5(Z[Z]) by a 2-dimensional form H over Λ,
and a pair of lagrangians F ′ and G′ given by the matrix

M :=
α(T ) β(T )

0 1
.

Note that although we have used a matrix to encode the information about the lagrangians, this
matrix does not correspond to the automorphism of the form which sends F ′ to G′. By Wall [Wal70,
Corollary 5.3.1] we know that such an automorphism exists, and we can write it as the following
matrix

M ′ :=

[
γ(T )α(T )
δ(T ) β(T )

]
.

where we know the α(T ) and β(T ) are as above, but γ(T ) and δ(T ) are unknown. We can, however,
say something about the augmentation of this automorphism.

Lemma 2.3. The matrix M ′ augments to the matrix

M ′(1) :=

[
γ(1)α(1)
δ(1) β(1)

]
=

[
0 −1
−1 0

]
.

Proof. First note that α(1) = −1 and β(1) = 0. Now, since the matrix M ′(1) must represent an
automorphism of the Z valued hyperbolic form, the values of γ(1) and δ(1) are already determined.
A simple calculation shows that these values are γ(1) = 0 and δ(1) = −1. □

Presumably it is also possible to compute the exact Laurent polynomials γ(T ) and δ(T ), but we
have not attempted to do so.

2.3. Interpretation. Wall realisation [Wal70, Theorem 6.5] and Cappell-Shaneson [CS71, Theo-
rem 3.1] tells us that we can represent the generator of L5(Z[Z]) in the following way. Let W1 be
the standard cobordism between S1 × S3 and (S1 × S3)#(S2 × S2) and let W2 be the reversed
cobordism. Let (W ; ∂0W = S1 × S3, ∂1W = S1 × S3) be the cobordism formed by gluing these via
a homeomorphism

σ : S1 × S3#S2 × S2 → S1 × S3#S2 × S2

whose induced map on H2(S
1 × S3#S2 × S2; Λ) is exactly the 2 × 2-matrix M ′ above. Such a

homeomorphism exists by Stong-Wang [SW00, Theorem 2]. Then the degree-1 normal map

f : (W ; ∂0W,∂1W ) → (S1 × S3 × I;S1 × S3 × {0}, S1 × S3 × {1})
has surgery obstruction θ(f) the generator of L5(Z[Z]) defined by M ′.
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