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Abstract. We develop a new approach to the isospectrality of the orbifolds
constructed by Vignéras. We give fine sufficient criteria for 𝑖-isospectrality
in given degree 𝑖 and for representation equivalence. These allow us to pro-
duce very small exotic examples of isospectral orbifolds: hyperbolic 3-orbifolds
that are 𝑖-isospectral for all 𝑖 but not representation equivalent, hyperbolic 3-
orbifolds that are 0-isospectral but not 1-isospectral, and others. Using the
same method, we also give sufficient criteria for rationality of regulator quo-
tients Reg𝑖(𝑌1)2/Reg𝑖(𝑌2)2 for Vignéras orbifolds 𝑌1, 𝑌2, sometimes even
when they are not isospectral. Moreover, we establish a link between the
primes that enter in these regulator quotients and at which torsion homology
of 𝑌1 and 𝑌2 can differ, and Galois representations.
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1. Introduction

1.1. Isospectral orbifolds. This paper is devoted to the venerable question [29]
of which geometric and topological properties of a closed Riemannian manifold or
orbifold are encoded in the spectrum of the Laplace-de Rham operator ∆ on the
space of differential 𝑖-forms for various 𝑖 ∈ Z≥0.

Given 𝑖 ∈ Z≥0, two closed Riemannian orbifolds are said to be 𝑖-isospectral
if the multisets of eigenvalues of ∆ on the spaces of differential 𝑖-forms of these
two orbifolds coincide. We abbreviate “0-isospectral” to just isospectral. In the
introduction, let us also abbreviate “𝑖-isospectral for all 𝑖” to Ω∙-isospectral. Sunada
[53] and Vignéras [57] each proposed a general construction for pairs of orbifolds
that are Ω∙-isospectral. Vignéras’s method is the focus of this paper.

We briefly sketch the setup of Vignéras in a special case. In Section 4 we de-
scribe the construction in detail and in much greater generality. The construction
yields a pair of discrete subgroups Γ1 and Γ2 of GL2(C) whose images in PGL2(C)
are cocompact and that arise from the unit groups of maximal orders in the same
quaternion algebra over a number field. These groups act on hyperbolic 3-space
𝑋 = GL2(C)/C× U2(C), and under some additional conditions the orbifolds Γ1∖𝑋
and Γ2∖𝑋 are isospectral. A lot of literature is devoted to the exploration of such
conditions, see [38] and extensive references therein, but all known conditions ac-
tually imply the stronger relationship that the L2-spaces L2(Γ1∖PGL2(C)) and
L2(Γ2∖PGL2(C)) are isomorphic as unitary representations of GL2(C). When that
is the case, we say that Γ1 and Γ2 are representation equivalent. It is a theorem
of DeTurck–Gordon [17, Theorem 1.16, Remark 1.18] that the quotients by rep-
resentation equivalent groups are in fact Ω∙-isospectral. In particular, as far as
we are aware, the smallest currently known pair of connected isospectral hyper-
bolic 3-orbifolds comes from representation equivalent groups, and was found by
Linowitz–Voight [38]. Their orbifolds have (necessarily equal) volume 2.83366 . . ..
The converse, whether Ω∙-isospectrality of two hyperbolic 3-orbifolds implies rep-
resentation equivalence of the corresponding groups, has until now been an open
question [45], [48, §4.1], [38, Remark 2.6], [35, Question 8.11]. The converse does
hold for hyperbolic 2-orbifolds [19] and it has been conjectured to hold in dimension
3, too [19, §12].

In this paper we develop much finer criteria for different kinds of isospectrality
in Vignéras’s construction. Before describing the nature of these criteria, we state
some of their applications. The following result will be proven in Example 7.4.

Theorem A. There exists a pair of closed connected orientable arithmetic hy-
perbolic 3-orbifolds with volume 0.251 . . . that are 𝑖-isospectral for all 𝑖, but not
representation equivalent, only one of which has a cyclic isotropy group of order 10.

This might well be the smallest Ω∙-isospectral pair of connected hyperbolic 3-
orbifolds. We make two remarks on this. Firstly, there exist only finitely many
hyperbolic 3-orbifolds of volume less than that in Theorem A, see [1]. This is the
first known isospectral pair with this property. Secondly, we will see in Section 1.5
that Sunada’s method can never produce a smaller pair.

It is known that there exist pairs of orbifolds that are 𝑖-isospectral for some 𝑖 but
not all [25]. However, no such examples have been known that are 3-dimensional
or hyperbolic [35, Question 8.10]. In [36] it is predicted that such examples should
exist, but that they must be difficult to construct. We have the following application
of our criteria, which will be proven in Example 7.5.

Theorem B. There exists a pair of closed connected orientable arithmetic hyper-
bolic 3-orbifolds with volume 0.246 . . . that are isospectral, but not 1-isospectral.
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Again, one may wonder whether this is the smallest pair of connected hyperbolic
isospectral 3-orbifolds.

Our method also shows that, without any further hypotheses, the groups Γ1 and
Γ2 are always “close to” representation equivalent, in the following sense. Let 𝑗 ∈
{1, 2}. As a representation of U2(C) the space L2(Γ𝑗∖PGL2(C)) decomposes as
a direct sum

⨁︀
𝑉 𝑉

𝑚𝑉,𝑗 over the irreducible representations 𝑉 of U2(C), where
𝑚𝑉,𝑗 ∈ Z≥0. Each of the isotypical subspaces Ω(𝑉,Γ𝑗) = 𝑉 𝑚𝑉,𝑗 decomposes into
a direct sum of eigenspaces Ω(𝑉,Γ𝑗)Δ=𝜆 under the Casimir operator, which is the
appropriate generalisation of the Laplace–de Rham operator. Weyl’s law implies
that as 𝑇 → ∞, one has

∑︀
𝜆≤𝑇 dimΩ(𝑉,Γ𝑗)Δ=𝜆 ∼ 𝑐𝑇 3/2 for some constant 𝑐 > 0.

The following result, which is a special case of Theorem 5.43, therefore implies that
the difference in the spectra for Γ1 and Γ2 is vanishingly small, in the limit.

Theorem C. For every irreducible representation 𝑉 of U2(C) there exists a con-
stant 𝑐𝑉 ≥ 0 such that for all 𝑇 > 0 one has∑︁

𝜆≤𝑇

⃒⃒
dimΩ(𝑉,Γ1)Δ=𝜆 − dimΩ(𝑉,Γ2)Δ=𝜆

⃒⃒
≤ 𝑐𝑉 𝑇

1/2.

This result defies some expert expectations. Indeed, Kelmer proves [30, Theo-
rem 1] that, in the opposite direction, if the groups Γ1 and Γ2 are close to being
representation equivalent, then in fact they are representation equivalent. He shows
that if for all irreducible U2(C)-representations 𝑉 the quotient between the left hand
side in Theorem C and 𝑇 1/2 tends to 0 as 𝑇 → ∞, then Γ1 and Γ2 are represen-
tation equivalent. He then speculates that his bound might be far from optimal,
and that perhaps this type of repulsion already happens close to the asymptotic of
Weyl’s law. Theorem C demonstrates that in fact Kelmer’s result is sharp, since
there do exist groups Γ1 and Γ2 as above that are not representation equivalent.

1.2. Hierarchy of isospectralities. Suppose that 𝑌1 and 𝑌2 are closed orientable
Riemannian manifolds of a common dimension 𝑑. If they are Ω∙-isospectral, then
the Cheeger–Müller Theorem [16, 41, 42] implies that one has

𝑑∏︁
𝑖=0

(︂
Reg𝑖(𝑌1)

#𝐻𝑖(𝑌1,Z)tors

)︂(−1)𝑖

=

𝑑∏︁
𝑖=0

(︂
Reg𝑖(𝑌2)

#𝐻𝑖(𝑌2,Z)tors

)︂(−1)𝑖

,(1.1)

where, for a Riemannian manifold 𝑌 , the real number Reg𝑖(𝑌 ) is the covolume of
the lattice 𝐻𝑖(𝑌,Z)/𝐻𝑖(𝑌,Z)tors in the inner product space 𝐻𝑖(𝑌,R) [46, §1.6].

There has been a lot of recent interest in understanding regulators and torsion
homology of arithmetic manifolds – see for instance [6, 7, 12, 13, 46]. In light of
equation (1.1), the following vague question seems natural.

Question 1.2. What can be said about Reg𝑖(𝑌1)/Reg𝑖(𝑌2) if 𝑌1 and 𝑌2 are 𝑖-
isospectral manifolds?

Poincaré duality implies that for a closed orientable 𝑑-manifold 𝑌 and for all 𝑖,
one has Reg𝑖(𝑌 ) = Reg𝑑−𝑖(𝑌 )−1. Thus, if 𝑑 is even, then equation (1.1) says noth-
ing about Reg𝑖(𝑌1)/Reg𝑖(𝑌2); while if 𝑑 is odd, and 𝑌1 and 𝑌2 are Ω∙-isospectral,
equation (1.1) implies that

(𝑑−1)/2∏︁
𝑖=0

(︂
Reg𝑖(𝑌1)

2

Reg𝑖(𝑌2)
2

)︂(−1)𝑖

∈ Q×.(1.3)

There is no analogue of the Cheeger–Müller formula for a single degree 𝑖. Neverthe-
less, it seems natural to wonder: if 𝑌1 and 𝑌2 are merely assumed to be 𝑖-isospectral

for some 𝑖, then does it follow that Reg𝑖(𝑌1)
2

Reg𝑖(𝑌2)2
is a rational number? And if it is, then

what primes can enter? Is there a connection between that and the rational number
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#𝐻𝑖(𝑌1,Z)tors
#𝐻𝑖(𝑌2,Z)tors ? We do not know the answers to these general questions, but we prove

strong results in the case when 𝑌𝑗 = Γ𝑗∖𝑋 arise from the Vignéras construction.
We think of different “kinds of isospectrality” between Γ1 and Γ2 as sitting in a

kind of approximate hierarchy: representation equivalence, which we sometimes also
call L2-isospectrality, Ω∙-isospectrality, isospectrality, which we also refer to as Ω0-

isospectrality, rationality of Reg𝑖(𝑌1)
2

Reg𝑖(𝑌2)2
for all 𝑖, which we refer to asℋ∙-isospectrality,

and finally, for a prime number 𝑝, the conditions

ord𝑝

(︂
Reg𝑖(𝑌1)

2

Reg𝑖(𝑌2)
2

)︂
= 0 and ord𝑝

(︂
#𝐻𝑖(𝑌1,Z)tors
#𝐻𝑖(𝑌2,Z)tors

)︂
= 0

for all 𝑖, where ord𝑝 denotes 𝑝-adic valuation, which we call Z𝑝-isospectrality. Of
course that last condition only makes sense if the regulator quotients are rational
in the first place, i.e. under the assumption of ℋ∙-isospectrality. For each of these
kinds of isospectralities, we prove sufficient criteria. We will not state them here
precisely, but we will give an impressionistic sketch of the general shape of our
results.

For each kind * of isospectrality as above, we identify certain types of Hecke
characters such that if there are no Hecke characters of that type, then Γ1 and Γ2

are *-isospectral, but we do not expect any kind of converse. For that reason we do
not call the characters an obstruction, but instead call them *-shady characters:
their presence merely stops our method from proving *-isospectrality. In summary,
our main results take the following shape.

Theorem D. At least one of the following two statements is true:

(i) there exists a number field 𝐿 in an a-priori finite list and a *-shady character
of 𝐿;

(ii) the groups Γ1 and Γ2 are *-isospectral.
The conditions of being *-shady are completely explicit. Presence or absence

of *-shady can be checked efficiently using existing algorithms for computations
of Hecke characters [40]. Moreover, we have the following implications between
existence of different shady characters:

L2-shady +3 Ω∙-shady +3

��

Ω0-shady

ℋ∙-shady
for all 𝑝 +3 Z𝑝-shady
for ∞-ly
many 𝑝

ks

It is worth noting, in particular, that our criteria for rationality of regulator
quotients are weaker than those for 𝑖-isospectrality, and in fact in Example 7.7 we
exhibit the following peculiar phenomenon.

Theorem E. There exists a pair of closed connected orientable hyperbolic 3-orbifolds
𝑌1, 𝑌2 with volume 5.902. . . that are not isospectral, nor 1-isospectral, and for which
dim𝐻1(𝑌1,R) = dim𝐻1(𝑌2,R) = 1, yet Reg1(𝑌1)

2/Reg1(𝑌2)
2 is rational.

For L2-, Ω∙-, Ω0-, and ℋ∙-isospectrality, we define the respective shady char-
acters and prove Theorem D in Section 5.4. Our theorem for Z𝑝-isospectrality
is proven as Theorem 6.8, conditional on a widely believed conjecture on Galois
representations attached to certain integral cohomology classes, Conjecture 6.4.
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1.3. Homology and regulators: theorems and musings. From a number the-
oretic point of view, it is natural to consider the homology of arithmetic orbifolds
together with their action of Hecke operators. Taking this additional structure into
account, our results on the homology of the 𝑌𝑗 sketched in Theorem D can be
considerably strengthened.

The “right” setup for Vignéras’s construction is an adelic one, in which 𝑌1 =
Γ1∖𝑋 and 𝑌2 = Γ2∖𝑋 are two connected components of one orbifold 𝒴. For now
we continue with a special case. Let 𝐹 be a number field, let Z𝐹 be its ring of
integers, and let 𝐷 be a division quaternion algebra over 𝐹 such that at least one
infinite place of 𝐹 splits in 𝐷. There is a ray class group 𝐶 that parametrises
left ideal classes of maximal orders of 𝐷, and thereby connected components of
𝒴; for simplicity of the exposition, assume that 𝐶 has order 2, corresponding to a
quadratic extension 𝐿 of 𝐹 , so that 𝒴 = 𝑌1 ⊔ 𝑌2. Let T1 denote the Hecke algebra
generated by Hecke operators 𝑇a for all ideals a of Z𝐹 whose class in 𝐶 is trivial.
Then T1 naturally acts on each of the homology groups 𝐻𝑖(𝑌𝑗 ,Z) for 𝑗 ∈ {1, 2},
and for every prime number 𝑝 we have a decomposition of Z𝑝 ⊗T1-modules

𝐻𝑖(𝑌𝑗 ,Z𝑝) ∼=
⨁︁
n

𝐻𝑖(𝑌𝑗 ,Z)n,

where the sum ranges over maximal ideals n of T1 of residue characteristic 𝑝. We
say that such a maximal ideal n corresponds to a Z𝑝-shady character Ψ of 𝐿 if for
every prime ideal q of Z𝐹 that splits in 𝐿, we have 𝑇q mod n = Ψ(Q) + Ψ(Q′),
where qZ𝐿 = QQ′. We prove the following result as Theorem 6.9.

Theorem F. Assume Conjecture 6.4. Let 𝑝 be an prime number, and let n be a
maximal ideal of T1 of residue characteristic 𝑝 that does not correspond to a Z𝑝-
shady character. Then for every 𝑖, there is an isomorphism of Z𝑝 ⊗T1-modules

𝐻𝑖(𝑌1,Z)n ∼= 𝐻𝑖(𝑌2,Z)n.

We could also prove an unconditional version, at the cost of replacing the con-
dition on n with a less useful one, namely 𝑇q2 ≡ −N(q) mod n for all q inert in 𝐿,
which can be shown to be equivalent to the previous one under Conjecture 6.4.

It is instructive to compare Theorem F with a conjecture of Calegari–Venkatesh.
In [13], they study the torsion homology and regulators of Jacquet–Langlands pairs
(𝑌 ′

1 , 𝑌
′
2) of orbifolds, which share some similarities with Vignéras orbifolds. The

orbifolds 𝑌 ′
1 and 𝑌 ′

2 are not isospectral, but their spectra are closely related. In
this setting there is also a Hecke algebra T′ generated by Hecke operators 𝑇p
for prime ideals p of Z𝐹 , and acting on both 𝐻𝑖(𝑌

′
𝑗 ,Z). We say that a maxi-

mal ideal m of T′ is Eisenstein if there exist Hecke characters Ψ,Ψ′ of 𝐹 such
that 𝑇p mod m = Ψ(p) + Ψ′(p) for all but finitely many p. Calegari and Venkatesh
define a certain quotient 𝐻𝑖(𝑌

′
𝑗 ,Z)new of 𝐻𝑖(𝑌

′
𝑗 ,Z) and formulate the following

conjecture [13, Conjecture 2.2.8].

Conjecture 1.4 (Calegari–Venkatesh). Let (𝑌 ′
1 , 𝑌

′
2) be a Jacquet–Langlands pair

of 3-orbifolds. Let m be a non-Eisenstein maximal ideal of T′. Then we have

|𝐻1(𝑌
′
1 ,Z)newm | = |𝐻1(𝑌

′
2 ,Z)newm |.

In addition, they prove several partial results [13, Section 6.8] towards their
conjecture, but only when averaging over all maximal ideals m, hence forgetting
the Hecke action. The Calegari–Venkatesh conjecture is an analogue for torsion
homology of a famous theorem from the theory of automorphic representations,
the Jacquet–Langlands correspondence (see Theorem 5.6). We now explain how
Theorem F can be seen as a torsion analogue of another automorphic phenome-
non, studied by Labesse and Langlands [31]. The relationship between Vignéras’s
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construction of isospectral orbifolds and the work of Labesse–Langlands was first
exposed by Rajan [47]. The Langlands programme postulates the existence of a
compact group 𝐿𝐹 and conjectures that, to each cuspidal automorphic representa-
tion Π of 𝐷×, one should be able to attach a continuous irreducible representation
(called a Langlands parameter)

𝜙 = 𝜙(Π): 𝐿𝐹 → GL2(C).

In addition, 𝜙(Π) ∼= 𝜙(Π′) if and only if Π ∼= Π′, and each such Π appears with
multiplicity 1 in the space of automorphic forms (see Theorem 5.4). In contrast,
to each cuspidal automorphic representation Π of the kernel 𝐷1 of the reduced
norm 𝐷× → 𝐹×, one should be able to attach an irreducible Langlands parameter

𝜙 : 𝐿𝐹 → PGL2(C),

but several nonisomorphic Π can have isomorphic parameters 𝜙: they are said to
form an 𝐿-packet. While the existence of the group 𝐿𝐹 and the parameters 𝜙
are still conjectural, Labesse and Langlands gave an ad-hoc definition of 𝐿-packets
for𝐷1, realised that sometimes not all Π in the same 𝐿-packet are automorphic, and
proved a formula for the multiplicity of each Π in the space of automorphic forms.
This manifests concretely as follows. To every Π = Π∞⊗Π𝑓 corresponds a Casimir
eigenvalue (coming from Π∞) and system of eigenvalues for the Hecke operators
of 𝐷1 (coming from Π𝑓 ), and these eigenvalues are the same for every Π in an 𝐿-
packet. However, given a compact open subgroup 𝐾𝑓 of the points of 𝐷1 over the

finite adeles, the dimension of the space Π
𝐾𝑓

𝑓 of fixed points under 𝐾𝑓 may depend
on Π, even when Π varies inside a fixed 𝐿-packet. This may result in the system
of eigenvalues attached to a given 𝐿-packet appearing with different multiplicities
in the L2-space attached to Γ for the various arithmetic groups Γ = 𝐾𝑓 ∩ 𝐷1.
If the distributions of the automorphic multiplicities in 𝐿-packets were completely
random, Vignéras pairs of orbifolds would never be isospectral. However, as Labesse
and Langlands proved [31, Proposition 7.2] (see also [47, Theorem 4]), this is far
from true.

Theorem 1.5 (Labesse–Langlands). Suppose 𝜙 : 𝐿𝐹 → PGL2(C) is not induced
from a character of an index 2 subgroup. Then the automorphic multiplicity of
every Π in the 𝐿-packet of 𝜙 is the same.

This strong restriction allowed Rajan to prove [47, Theorem 2] the representation
equivalence of many orbifolds generalising Vignéras’s construction. Returning to
torsion homology, let 𝑝 > 2 be a prime number, and let 𝐺𝐹 be the absolute Galois
group of 𝐹 . For every maximal ideal n of T1 of residue field F of characteristic 𝑝,
there should conjecturally exist a continuous Galois representation

𝜌 : 𝐺𝐹 → GL2(F)

such that det 𝜌 is the cyclotomic character and Tr 𝜌(Frobq) ≡ 𝑇q mod n for ev-
ery q whose class in 𝐶 is trivial. In fact, the maximal ideal n does not completely
determine 𝜌 but it completely determines its projectivisation

𝑃𝜌 : 𝐺𝐹 → PGL2(F).

One may think of 𝑃𝜌 as the “Langlands parameter” of the “𝐿-packet” correspond-
ing to n. In addition, our previous condition that n corresponds to a Z𝑝-shady
character Ψ of 𝐿 is equivalent to 𝜌 ∼= Ind𝐺𝐹 /𝐺𝐿

𝜓, where 𝜓 corresponds to Ψ via
class field theory. This makes Theorem F a torsion analogue of Theorem 1.5. More
generally, Labesse and Langlands prove a formula for the automorphic multiplicity
of every Π. We think that this naturally leads to a very interesting question.
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Question 1.6. Can one formulate a torsion analogue of the full Labesse–Langlands
multiplicity formula? Can one prove it?

We also obtain a Hecke-equivariant refinement of our results on the 𝑝-adic val-
uation of regulator ratios. It may seem difficult to make sense of it, as regulators
are only numbers and therefore cannot afford an action of the Hecke algebra. One
might hope to have a factorisation of the form Reg𝑖(𝑌𝑗) =

∏︀
n Reg𝑖(𝑌𝑗)n, but this

is unlikely to be possible, as regulators come from constructions over R, while de-
compositions according to maximal ideals of T1 are 𝑝-adic in nature. However, we
show that such a decomposition exists for the ratios of regulators, under conditions
ensuring that they are are rational numbers. More precisely, to certain modules 𝑀
we attach a number 𝒞(𝑀) that we call a regulator constant by analogy with [18],
satisfying

𝒞(𝐻𝑖(𝒴,Z)) ∈ Q×,

and for every maximal ideal n of T1 of residue characteristic 𝑝,

𝒞(𝐻𝑖(𝒴,Z)n) ∈ Q×
𝑝 /(Z×

𝑝 )
2.

We will provide more details on our construction of regulator constants in Sec-
tion 1.6. The following theorem is a combination of Lemma 4.12, Theorem 5.32,
and Theorem 6.9.

Theorem G. Assume that there is no ℋ∙-shady character of 𝐿. Then for all 𝑖 we
have

Reg𝑖(𝑌1)
2

Reg𝑖(𝑌2)
2
= 𝒞(𝐻𝑖(𝒴,Z)).

Let 𝑝 be a prime number. Then for all 𝑖 we have

𝒞(𝐻𝑖(𝒴,Z)) ≡
∏︁
n

𝒞(𝐻𝑖(𝒴,Z)n) mod (Z×
𝑝 )

2,

where the product ranges over maximal ideals n of T1 of residue characteristic 𝑝.
Now assume Conjecture 6.4. Let n be a maximal ideal of T1 of residue character-
istic 𝑝 that does not correspond to a Z𝑝-shady character. Then for all 𝑖 we have

𝒞(𝐻𝑖(𝒴,Z)n) ∈ Z×
𝑝 .

The definition of 𝒞(𝐻𝑖(𝒴,Z)n) involves the choice of arbitrary non-degenerate
Q𝑝-valued pairings on the free parts of 𝐻𝑖(𝑌𝑗 ,Z)n satisfying certain properties.
We speculate that there should exist a canonical construction of such pairings,
leading to a notion of 𝑝-adic regulators Reg𝑖,𝑝(𝑌𝑗) ∈ Q×

𝑝 /(Z×
𝑝 )

2, compatible with
localisation at maximal ideals of T1 and such that one has

Reg𝑖,𝑝(𝑌1)
2

Reg𝑖,𝑝(𝑌2)
2
≡ 𝒞(𝐻𝑖(𝒴,Z)) mod (Z×

𝑝 )
2.

Question 1.7. Can one define a notion of 𝑝-adic regulator in this context? Of
𝑝-adic analytic torsion? Is there a 𝑝-adic Cheeger–Müller formula?

Finally, note that the Cheeger–Müller formula merely provides a motivation for
our results on torsion homology and regulators, we do not use this formula in our
proofs. In particular our methods are very different from those of [13]. What
makes the Vignéras case more accessible than the Jacquet–Langlands case is that
the orbifolds 𝑌1 and 𝑌2 are commensurable, unlike Jacquet–Langlands pairs. The
next section explains how we exploit this commensurability.
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1.4. Our approach to isospectrality. The basic idea of our approach is appli-
cable much more widely than in the setting sketched in the previous subsections.
In Section 4, where we explain the general setup, we take 𝐷 to be any division
algebra over an arbitrary number field 𝐹 . An adelic construction then yields a
closed orbifold 𝒴, and the only restriction on 𝐷 is that 𝒴 be positive-dimensional.
One has a Hecke algebra T acting on, say, the space Ω𝑖(𝒴) of differential 𝑖-forms
on 𝒴, and commuting with the action of the Laplace–de Rham operator ∆. That
space decomposes as

Ω𝑖(𝒴) =
⨁︁

Ω𝑖(𝑌 )

with the direct summands corresponding to the connected components 𝑌 of 𝒴. The
Hecke algebra is generated by elements 𝑇p indexed by the prime ideals p of Z𝐹 , and
the operators 𝑇p permute the direct summands Ω𝑖(𝑌 ) of Ω𝑖(𝒴), and the action on
the set of direct summands is determined by the class of p in a certain class group 𝐶.
In particular, the algebra T1 introduced in Subsection 1.3 is the subalgebra of T
consisting of those Hecke operators that preserve all direct summands in the above
decomposition.

Suppose once again, for simplicity, that we have 𝒴 = 𝑌1 ⊔ 𝑌2, and let 𝐿/𝐹 be
the corresponding quadratic extension, so that 𝑇p preserves the direct summands
Ω𝑖(𝑌𝑗) if and only if p is split in 𝐿/𝐹 . Fix 𝜆 ∈ R. The algebra T acts on the
𝜆-eigenspace Ω𝑖(𝒴)Δ=𝜆. If there exists a Hecke operator 𝑇 ∈ T inducing a map

𝑇 : Ω𝑖(𝑌1)Δ=𝜆 → Ω𝑖(𝑌2)Δ=𝜆

and acting invertibly on Ω𝑖(𝒴)Δ=𝜆, then that Hecke operator witnesses equal multi-
plicity of 𝜆 in the spectra of 𝑌1 and 𝑌2 by defining an explicit isomorphism between
the respective ∆-eigenspaces. A priori one might imagine that such an invertible
Hecke operator can easily fail to exist in such a way that for every p that is inert
in 𝐿/𝐹 , there is some line in Ω𝑖(𝒴)Δ=𝜆 that is annihilated by 𝑇p. If these different
lines had nothing to do with each other, then it would be completely unclear how to
control when this happens. However, we show in Proposition 3.7 that if no Hecke
operator 𝑇 ∈ T that sends Ω𝑖(𝑌1)Δ=𝜆 to Ω𝑖(𝑌2)Δ=𝜆 acts invertibly, then in fact
there is a single line in Ω𝑖(𝒴)Δ=𝜆 that is annihilated by 𝑇p for every prime p that
is inert in 𝐿/𝐹 . This is the first main result of Section 3.

We deduce that if no Hecke operator that maps Ω𝑖(𝑌1)Δ=𝜆 to Ω𝑖(𝑌2)Δ=𝜆 acts
invertibly, then there is a simultaneous eigenvector in Ω𝑖(𝒴)Δ=𝜆 under all the Hecke
operators such that “half” of the Hecke operators 𝑇p have eigenvalue 𝑎p = 0. In
other words, we obtain a Hecke eigenvalue system (𝑎p)p such that for all p one has

𝑎p = 𝜒(p)𝑎p,

where 𝜒 : 𝐶 → C× is the quadratic Hecke character attached by class field theory
to the unique non-trivial character of the Galois group Gal(𝐿/𝐹 ). This should
remind the reader of coefficients 𝑎𝑝 attached to an elliptic curve with complex
multiplication. The associated Galois representation is then induced from a linear
character of the absolute Galois group of a quadratic extension.

It is at this point in our analysis that we specialise to the case of quaternion
algebras. In this case, as the example of elliptic curves suggests, the automorphic
representation ofGL2 over 𝐹 attached to the Hecke eigenvalue system (𝑎p)p as above
is the automorphic induction of a Hecke character from the quadratic extension
𝐿/𝐹 . In Section 5 we use the explicit classification of representations of GL2 to
arrive at precise conditions on this Hecke character, and thus at our definitions of

*-shady characters, and to prove various instances of Theorem D.

Remark. It is possible that for most kinds of isospectrality, Theorem D can be
derived from a careful analysis of the Labesse–Langlands multiplicity formula or
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directly of the trace formula. However, our approach has two advantages: firstly, it
allows us to realise the isospectralities through direct identification of eigenfunctions
rather than just a numerical comparison of multiplicities; and secondly and most
importantly for our purposes, it applies to the torsion setting by considering the
Hecke action on 𝐻𝑖(𝒴,Z𝑝). It is for this reason that Proposition 3.7 and other
results in Section 3 allow 𝑅 to be a more complicated ring than just 𝑅 = C.

Technical discussion: algebraic axiomatisation. In Section 3 we work in a com-
pletely abstract algebraic setting: the class group parametrising the connected
components of 𝒴 is replaced by an arbitrary finite abelian group 𝐶, the Hecke al-
gebra T becomes a commutative algebra graded by 𝐶, the space that the Hecke
algebra acts on, such as Ω𝑖(𝒴) or 𝐻𝑖(𝒴), is just a graded T-module. Also in Sec-
tion 3 the reader will encounter a certain group homomorphism 𝜈 : 𝑊 → 𝐶, which
could benefit from some motivating comments. Some of the components of 𝒴 cor-
respond to orders in the division algebra that are conjugate to each other, so that
the components are isometric to each other. To obtain the strongest results, we do
not limit ourselves to Hecke operators that map Ω𝑖(𝑌1) to Ω𝑖(𝑌2), but consider all
those mapping Ω𝑖(𝑌1) to Ω𝑖(𝑌 ) for any component 𝑌 isometric to 𝑌2. Formalising
this is not just a simple matter of passing to the quotient by this equivalence rela-
tion, since such a quotient does not carry a well-defined T-action. The function of
𝐶iso = 𝐶/𝜈(𝑊 ) is to parametrise connected components up to this equivalence. If̂︀𝐶iso were replaced by ̂︀𝐶 in all these results, then we would only pick out the ele-
ments of T that map Ω𝑖(𝑌1) to Ω𝑖(𝑌2) and get more restrictive sufficient conditions
for isospectrality.

1.5. Comparison with the Sunada method. Sunada constructs pairs of Ω∙-
isospectral orbifolds as follows: let 𝑀 be a Riemannian orbifold, let 𝐺 be a finite
group acting on 𝑀 by isometries, and let 𝐻, 𝐻 ′ ≤ 𝐺 be two subgroups such that
the linear representations C[𝐻∖𝐺] and C[𝐻 ′∖𝐺] of 𝐺 are isomorphic. Then the
quotients 𝐻∖𝑀 and 𝐻 ′∖𝑀 are Ω∙-isospectral.

The analogy between the permutation representations C[𝐻∖𝐺] and the unitary
representations L2(Γ∖PGL2(C)) has led many authors to view Vignéras’s method as
a special case of an extension of Sunada’s. However, as Theorems A and B illustrate,
this framing does not do justice to the flexibility of Vignéras’s construction, which
is capable of producing isospectral orbifolds without isomorphisms of L2-spaces.
Instead, in this paper we make the case that the parallel between the two methods is
of a different nature: as we explained in Section 1.4, our conditions ensure that the
isospectralities in Vignéras’s construction are realised by Hecke operators, which
one can view as so-called transplantation maps. It is well known that Sunada’s
construction can be formulated in such a way that the same is true there [26, §2.2].

We claimed earlier that Sunada’s construction cannot yield connected hyperbolic
3-orbifolds of smaller volume than that appearing in Theorem A. We are now in a
position to explain this. The orbifolds 𝐻∖𝑀 and 𝐻 ′∖𝑀 as above cover a common
orbifold, namely 𝐺∖𝑀 , with degree [𝐺 : 𝐻] = [𝐺 : 𝐻 ′]. The smallest hyperbolic 3-
orbifold has volume 0.039 . . .. Moreover, it is known that among all finite groups 𝐺
and non-conjugate subgroups 𝐻, 𝐻 ′ such that C[𝐻∖𝐺] and C[𝐻 ′∖𝐺] are isomorphic
𝐺-representations, the smallest index [𝐺 : 𝐻] is 7 (realised by two subgroups of
𝐺 = GL3(F2)) [44, Theorem 3]. Thus the smallest orbifolds that Sunada’s method
could produce have volume at least 7 · 0.039 . . . = 0.273 . . ..

In [4] we showed that the regulator quotients of Sunada-isospectral manifolds
𝐻∖𝑀 , 𝐻 ′∖𝑀 are rational numbers, and that for all 𝑖 ∈ Z≥0 and all prime numbers
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𝑝 ∤ #𝐺 we have

ord𝑝

(︂
Reg𝑖(𝐻∖𝑀)2

Reg𝑖(𝐻
′∖𝑀)2

)︂
= ord𝑝

(︂
#𝐻𝑖(𝐻∖𝑀)tors
#𝐻𝑖(𝐻 ′∖𝑀)tors

)︂
= 0.

If 𝑌1, 𝑌2 are orbifolds that come out of Vignéras’s construction, then they typically
do not sit in a common finite covering, so there is no obvious analogue of the
condition 𝑝 ∤ #𝐺 that would exclude all but finitely many primes from contributing
to the regulator quotients.

In Theorem 6.18 we find an analogue of “the set of prime divisors of #𝐺” in the
Vignéras setting.

Theorem H. There is an explicit set 𝑆 of prime numbers such that:

∙ every prime number 𝑝 for which there exists a Z𝑝-shady character is contained
in 𝑆, and

∙ the set 𝑆 is infinite if and only if there exists a ℋ∙-shady character.

1.6. Our approach to rationality of regulator quotients. As we explained in
Section 1.4, we obtain conditions under which the spaces 𝐻𝑖(𝑌1,R) and 𝐻𝑖(𝑌2,R)
are not merely abstractly isomorphic, but such that there are isomorphisms given
by Hecke operators. In particular, they preserve the rational structure. That by
itself is still not enough to show that Reg𝑖(𝑌1)

2/Reg𝑖(𝑌2)
2 is rational. The crucial

additional property that the Hecke algebra has is that it is stable under taking
adjoints with respect to the harmonic forms pairing, which is used to define the
regulators. This does turn out to be sufficient to imply rationality of regulator
quotients.

In order to show this, we once again axiomatise the situation purely algebraically.
In Section 2 we first describe the very general setup. As a by-product, we reprove in
a Hecke-algebraic way a foundational result of the Dokchitsers on so-called regulator
constants, Theorem 2.5, which we used in [4, 5] to analyse the regulator quotients
of Sunada-isospectral manifolds.

Then in Section 3.2 we prove that the existence of a suitable pairing on a graded
module 𝑀 with the adjointness property described above is equivalent to the exis-
tence of such a pairing that takes values in Q. The crucial ingredient in this proof is
a nice criterion, Proposition 3.13, for existence of pairings with the required prop-
erties. The following is a special case. We refer to Section 3 for the definitions of
the standard algebraic terms used here.

Proposition I. Let 𝐶 be a finite abelian group, let A =
⨁︀

𝑐∈𝐶 A𝑐 be a 𝐶-graded
commutative reduced finite-dimensional Q-algebra, and let 𝑀 =

⨁︀
𝑐∈𝐶𝑀𝑐 be a

finitely generated graded A-module. Let 𝐿 be a field of characteristic 0. Then the
following are equivalent:

∙ there exists a non-degenerate 𝐿-valued bilinear pairing on𝑀 with respect to which
all 𝑇 ∈ A are self-adjoint and such that for all 𝑐 ̸= 𝑐′ ∈ 𝐶 the graded pieces 𝑀𝑐

and 𝑀𝑐′ are orthogonal to each other;
∙ for every 𝑐 ∈ 𝐶 the (𝐿⊗A1)-module 𝐿⊗𝑀𝑐 is self-dual.

The descent of pairings from C to Q easily follows from this and the Deuring–
Noether Theorem, see Proposition 3.16

In Section 3.3 we define regulator quotients 𝒞(𝑀) in this abstract setting, a
priori with respect to a given pairing, but then we use the formalism of Section
2 to show that in fact the values of such regulator quotients do not depend on
the pairing. In conjunction with the previously mentioned existence of Q-valued
pairings this proves rationality of regulator quotients of Vignéras pairs. Moreover,
this formalism is very flexible, and allows us to prove Theorem G.
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We expect that one might also be able to extract some information on the alge-
braicity or even rationality of the regulator quotients by relating them to special
values of 𝐿-functions. For an analogous observation in the Jacquet–Langlands set-
ting see [13, §6.5]. However, it seems like it would be hard to obtain more precise
information on the primes that enter or any Hecke equivariance properties along
the lines of Theorem G.

As a by-product of our approach, we have stumbled upon a curious connection
between fields generated by Hecke eigenvalues and regulator quotients. We do not
pursue this connection seriously in this paper, but Proposition 3.24 is an example
of this phenomenon. The following is a special case.

Proposition J. Suppose that 𝒴 has exactly two connected components, 𝑌1 and
𝑌2, suppose that dim𝐻1(𝑌1,C) = dim𝐻1(𝑌2,C) = 1, and suppose that there is no
ℋ∙-shady character. Then the field generated by the Hecke eigenvalues of T acting
on 𝐻1(𝒴,C) is Q(Reg1(𝑌1)/Reg1(𝑌2)).

It was the observation of this numerical coincidence that suggested to us that it
should be possible to expand the Dokchitsers’ formalism of regulator constants to
Hecke algebras, and eventually led us to our Hecke operator approach to isospec-
trality.

1.7. Notation and conventions. All our modules will be left modules. A module
that is a direct sum of a number of copies of a simple module will be referred to as
isotypical.

If 𝐵 is a ring, 𝑛 ∈ Z≥1, and 𝑀 is a 𝐵 module, then MaxSpec(𝐵) denotes the set
of maximal ideals of 𝐵, the ring of 𝑛×𝑛 matrices over 𝐵 is denoted by M𝑛(𝐵), and
Ann𝐵(𝑀) denotes the annihilator of 𝑀 in 𝐵. If 𝑄 is a field and 𝐴 is a 𝑄-algebra,
then N𝐴/𝑄 denotes the 𝑄-algebra norm. The sign ⊗ denotes tensor product over
Z. If 𝑅 is a ring, 𝑀 is an 𝑅-module, and 𝐿 an 𝑅-algebra, then we abbreviate the
𝐿-module 𝐿⊗𝑅𝑀 to 𝑀𝐿. By an ideal we will always mean a two-sided ideal. The
radical J(𝑅) of a ring 𝑅 is defined as the intersection of its maximal left ideals. It
is a two-sided ideal. If 𝑝 is a prime number, then Z(𝑝) = {𝑎/𝑏 : 𝑎, 𝑏 ∈ Z, 𝑏 ̸∈ 𝑝Z}
denotes the localisation of Z at 𝑝.

If 𝐶 is a finite abelian group, then ̂︀𝐶 = Hom(𝐶,C×) denotes its group of complex
character.

If 𝑋 is a set, 𝜎 is an automorphism of 𝑋, and 𝑓 is a function defined on 𝑋, then
𝑓𝜎 denotes the function 𝑥 ↦→ 𝑓(𝜎𝑥). We will also use this notation when 𝑋 is a
normal subgroup of a group containing 𝜎, in which case the automorphism of 𝑋 is
𝑥 ↦→ 𝜎𝑥𝜎−1.

When talking about homology, differential forms, etc. on orbifolds, we always
intend the meaning of these words in the orbifold sense, rather than just in reference
to the underlying vector space. We refer to [27, 14] for the definitions and many
additional details. Note that all our orbifolds are “good” in the sense of ibid.: they
have (finite) coverings by manifolds.
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2. Regulator constants via Hecke algebras

In this section we start by describing a very general setting in which one can
define algebraic invariants that specialise to regulator quotients in certain number
theoretic and geometric situations. We then explain how the regulator constants
of Dokchitser–Dokchitser attached to Brauer relations of finite groups [18] can be
viewed as a special case of this construction, and we use this description to give a
new basis-free proof of their main algebraic theorem, [18, Theorem 2.17]. That last
application will not be needed in the remainder of the paper.

2.1. Adjoint pairs. Throughout this section, let 𝑅 be a commutative domain,
and let 𝑄 be its field of fractions. An isogeny of 𝑅-modules is a homomorphism of
𝑅-modules with 𝑅-torsion kernel and cokernel, equivalently a homomorphism 𝜑 of
𝑅-modules such that 𝑄⊗𝑅 𝜑 is an isomorphism of 𝑄-vector spaces. Let 𝑁1 and 𝑁2

be free finite rank 𝑅-modules, and let 𝜑 : 𝑁1 → 𝑁2, 𝜑
* : 𝑁2 → 𝑁1 be isogenies.

If 𝐵𝑖 is an 𝑅-basis for 𝑁𝑖 for 𝑖 = 1, 2, then we define

𝒟𝐵1,𝐵2,𝜑,𝜑* =
det𝐵1,𝐵2

𝜑

det𝐵2,𝐵1 𝜑
* ∈ 𝑄×,

where the determinants are computed with respect to the bases 𝐵1 and 𝐵2. If 𝐵
′
1

and 𝐵′
2 are other 𝑅-bases of 𝑁1, respectively 𝑁2, then

𝒟𝐵1,𝐵2,𝜑,𝜑* ≡ 𝒟𝐵′
1,𝐵

′
2,𝜑,𝜑

* mod (𝑅×)2,

so we have a well-defined invariant

𝒟𝜑,𝜑* = 𝒟𝐵1,𝐵2,𝜑,𝜑*(𝑅×)2 ∈ 𝑄×/(𝑅×)2

for any choice of bases 𝐵1, 𝐵2 as above, which does not depend on these choices.
Now let 𝐿 be a field containing 𝑅, and suppose that ⟨·, ·⟩1 and ⟨·, ·⟩2 are non-
degenerate 𝐿-valued 𝑅-bilinear pairings on 𝑁1, respectively 𝑁2, satisfying

⟨𝜑𝑛1, 𝑛2⟩2 = ⟨𝑛1, 𝜑*𝑛2⟩1(2.1)

for all 𝑛1 ∈ 𝑁1 and 𝑛2 ∈ 𝑁2, in other words making the diagram

𝐿⊗𝑅 𝑁1
𝜑

//

⟨·,·⟩1
��

𝐿⊗𝑅 𝑁2

⟨·,·⟩2
��

Hom(𝑁1, 𝐿)
𝜑*
// Hom(𝑁2, 𝐿),

commute. Then one has

𝒟𝐵1,𝐵2,𝜑,𝜑* =
det𝐵1

⟨·, ·⟩1
det𝐵2⟨·, ·⟩2

.(2.2)

This basic observation has the following two important consequences.

(O1) The right hand side of equation (2.2) is independent of the pairings, and deter-
mines a well-defined invariant in 𝑄×/(𝑅×)2 (rather than just in 𝐿×/(𝑅×)2),
when the determinants are evaluated with respect to any bases on 𝑁1 and 𝑁2.
More precisely, if ⟨·, ·⟩′1 and ⟨·, ·⟩′2 are also non-degenerate 𝑅-bilinear pairings
on 𝑁1, respectively 𝑁2, with values in a field containing 𝑅, with respect to
which the maps 𝜑 and 𝜑* are adjoint as in equation (2.1), then we have(︂

det𝐵1
⟨·, ·⟩1

det𝐵2
⟨·, ·⟩2

)︂
(𝑅×)2 =

(︂
det𝐵1

⟨·, ·⟩′1
det𝐵2

⟨·, ·⟩′2

)︂
(𝑅×)2 ∈ 𝑄×/(𝑅×)2.
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(O2) The expression 𝒟𝜑,𝜑* is independent of the pair 𝜑, 𝜑* of adjoint maps with
respect to the pairings ⟨·, ·⟩1 and ⟨·, ·⟩2. More precisely, if 𝜓 : 𝑁1 → 𝑁2 and
𝜓* : 𝑁2 → 𝑁1 are 𝑅-linear embeddings satisfying adjointness property (2.1)
with 𝜑 replaced by 𝜓, then 𝒟𝜑,𝜑* ≡ 𝒟𝜓,𝜓* mod (𝑅×)2.

These consequences are particularly useful in situations in which one has a supply
of pairs of maps as above that are adjoint with respect to fixed pairings and/or a
supply of pairings that make a given pair of maps adjoint. One such situation is
provided by the formalism of Brauer relations and regulator constants. The rest of
the section is devoted to recalling that formalism, reinterpreting it in Hecke algebra
terms, and applying the above observations in that context.

2.2. Brauer relations and regulator constants. Let 𝐺 be a finite group. If
𝐻 is a subgroup and 𝑉 is an 𝑅[𝐺]-module, then we identify Hom𝑅[𝐺](𝑅[𝐺/𝐻], 𝑉 )

with the group 𝑉 𝐻 of 𝐻-fixed points in 𝑉 via 𝑓 ↦→ 𝑓(1 ·𝐻). In particular if 𝐻 and
𝐻 ′ are two subgroups of 𝐺, then one has isomorphisms

Hom𝑅[𝐺](𝑅[𝐺/𝐻
′], 𝑅[𝐺/𝐻]) ∼= 𝑅[𝐺/𝐻]𝐻

′ ∼= 𝑅[𝐻 ′∖𝐺/𝐻],

where the inverses of the last and the first isomorphism are given by

𝐻 ′𝑔𝐻 ↦→
∑︁

𝑢∈𝐻′/(𝐻′∩𝑔𝐻)

𝑢𝑔𝐻 and 𝑔𝐻 ↦→ (𝛼 : ℎ𝐻 ′ ↦→ ℎ𝑔𝐻),(2.3)

respectively. For 𝑔 ∈ 𝐺, we will denote the element of Hom𝑅[𝐺](𝑅[𝐺/𝐻
′], 𝑅[𝐺/𝐻])

corresponding to the double coset𝐻 ′𝑔𝐻 by 𝑇𝐻′𝑔𝐻 . Composition of homomorphisms
defines a product on 𝑅[𝐻∖𝐺/𝐻]. This 𝑅-algebra is called a Hecke algebra, and its
elements are called Hecke operators. There is an 𝑅-linear map

𝑅[𝐻 ′∖𝐺/𝐻] → 𝑅[𝐻∖𝐺/𝐻 ′],

𝑇 ↦→ 𝑇 *,

defined by (𝑇𝐻′𝑔𝐻)* = 𝑇𝐻𝑔−1𝐻′ . If, moreover, 𝑉 is a module over the group ring
𝑅[𝐺], then there is a map

Hom𝑅[𝐺](𝑅[𝐺/𝐻
′], 𝑅[𝐺/𝐻]) → Hom𝑅(𝑉

𝐻 , 𝑉 𝐻
′
)

𝛼 ↦→ 𝜑𝛼 = (𝑓 ↦→ 𝑓 ∘ 𝛼).(2.4)

Slightly abusing notation, we will sometimes denote the image of an element 𝑇 of
Hom𝑅[𝐺](𝑅[𝐺/𝐻

′], 𝑅[𝐺/𝐻]) under this map by 𝑇 : 𝑉 𝐻 → 𝑉 𝐻
′
.

Now let 𝑉 be a finitely generated 𝑅[𝐺]-module that is free over 𝑅, and let
𝑆1 =

⨆︀
𝑖𝐺/𝐻𝑖 and 𝑆2 =

⨆︀
𝑗 𝐺/𝐻

′
𝑗 be finite 𝐺-sets, where 𝐻𝑖 and 𝐻

′
𝑗 are subgroups

of 𝐺. Define

𝑉 𝑆1 = Hom𝑅[𝐺](𝑅[𝑆1], 𝑉 ) ∼=
⨁︁
𝑖

𝑉 𝐻𝑖 , 𝑉 𝑆2 = Hom𝑅[𝐺](𝑅[𝑆2], 𝑉 ) ∼=
⨁︁
𝑗

𝑉 𝐻
′
𝑗 ,

where 𝑅[𝑆𝑖] are the 𝑅-linear permutation modules attached to 𝑆𝑖 for 𝑖 ∈ {1, 2}.
Then similarly to (2.4), an element 𝑇 ∈ Hom𝑅[𝐺](𝑅[𝑆2], 𝑅[𝑆1]) induces an 𝑅-

homomorphism 𝑇 : 𝑉 𝑆1 → 𝑉 𝑆2 .
We say that the pair Θ = (𝑆1, 𝑆2) is a Brauer relation if there is an isogeny of

𝑅-modules in Hom𝑅[𝐺](𝑅[𝑆2], 𝑅[𝑆1]).
Assume that Θ = (𝑆1, 𝑆2) is a Brauer relation. If ⟨·, ·⟩ is a non-degenerate

𝑅-bilinear 𝐺-invariant pairing on 𝑉 with values in a field 𝐿 containing 𝑅, and 𝑈
is a subgroup of 𝐺, then let ⟨·, ·⟩𝑈 be the pairing on 𝑉 𝑈 defined by ⟨𝑣1, 𝑣2⟩𝑈 =
1

#𝑈 ⟨𝑣1, 𝑣2⟩ for 𝑣1, 𝑣2 ∈ 𝑉 𝑈 . It is not hard to see that this pairing is non-degenerate

on 𝑉 𝑈 . Thus, such a pairing ⟨·, ·⟩ induces an 𝑅-bilinear non-degenerate pairing
⟨·, ·⟩1 on 𝑉 𝑆1 whose restriction to each direct summand 𝑉 𝐻𝑖 is given by ⟨·, ·⟩𝐻𝑖

and
that makes the distinct direct summands orthogonal, and analogously there is an
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induced non-degenerate pairing ⟨·, ·⟩2 on 𝑉 𝑆2 . The regulator constant of 𝑉 with
respect to the Brauer relation Θ is defined as

𝒞Θ(𝑉 ) =
det(⟨·, ·⟩1|𝑉 𝑆1)

det(⟨·, ·⟩2|𝑉 𝑆2)
∈ 𝐿×/(𝑅×)2.

Theorem 2.5 ([18, Theorem 2.17]). The value of 𝒞Θ(𝑉 ) does not depend on ⟨·, ·⟩,
i.e. if ⟨·, ·⟩ and ⟨·, ·⟩′ are non-degenerate 𝐺-invariant 𝑅-bilinear pairings on 𝑉 ,
inducing pairings ⟨·, ·⟩𝑗 and ⟨·, ·⟩′𝑗, respectively, on 𝑉 𝑆𝑗 for 𝑗 ∈ {1, 2} as above, then

det(⟨·, ·⟩′1|𝑉 𝑆1)

det(⟨·, ·⟩′2|𝑉 𝑆2)
≡ det(⟨·, ·⟩1|𝑉 𝑆1)

det(⟨·, ·⟩2|𝑉 𝑆2)
mod (𝑅×)2.

We will now give a new proof of Theorem 2.5, using the observations of Section
2.1.

Proof of Theorem 2.5. We claim that if 𝐻 and 𝐻 ′ are subgroups of 𝐺, and ⟨·, ·⟩ is
a non-degenerate 𝐺-invariant 𝑅-bilinear pairing on 𝑉 , then the adjoint of

𝑇𝐻′𝑔𝐻 : 𝑉 𝐻 → 𝑉 𝐻
′

with respect to the induced pairings ⟨·, ·⟩𝐻 and ⟨·, ·⟩𝐻′ is 𝑇𝐻𝑔−1𝐻′ : 𝑉 𝐻
′ → 𝑉 𝐻 . In-

deed, an elementary calculation shows that there is a well-defined function 𝐻 ′𝑔𝐻 →
𝐻 ′/(𝐻 ′ ∩ 𝑔𝐻) satisfying 𝑢𝑔ℎ ↦→ 𝑢(𝐻 ′ ∩ 𝑔𝐻) for all 𝑢 ∈ 𝐻 ′ and ℎ ∈ 𝐻, all of whose

fibres have cardinality #𝐻, whence we deduce that for every 𝑣 ∈ 𝑉 𝐻 and 𝑣′ ∈ 𝑉 𝐻
′

we have

1

#𝐻 ′ ⟨𝑇𝐻′𝑔𝐻𝑣, 𝑣
′⟩ =

1

#𝐻 ′

∑︁
𝑢∈𝐻′/(𝐻′∩𝑔𝐻)

⟨𝑢𝑔𝑣, 𝑣′⟩

=
1

#𝐻 ′ ·#𝐻
∑︁

𝑥∈𝐻′𝑔𝐻

⟨𝑥𝑣, 𝑣′⟩

=
1

#𝐻 ′ ·#𝐻
∑︁

𝑦∈𝐻𝑔−1𝐻′

⟨𝑣, 𝑦𝑣′⟩

=
1

#𝐻

∑︁
ℎ∈𝐻/(𝐻∩𝑔−1𝐻′)

⟨𝑣, ℎ𝑔−1𝑣′⟩

=
1

#𝐻
⟨𝑣, 𝑇𝐻𝑔−1𝐻′𝑣′⟩,

as claimed.
In particular, it follows that if ⟨·, ·⟩ and ⟨·, ·⟩′ are non-degenerate 𝐺-invariant

𝑅-bilinear pairings on 𝑉 , and 𝑇 ∈ Hom𝑅[𝐺](𝑅[𝑆2], 𝑅[𝑆1]) is an isogeny, then the

adjoint of the induced isogeny 𝑇 : 𝑉 𝑆1 → 𝑉 𝑆2 with respect to ⟨·, ·⟩1 and ⟨·, ·⟩2 is the
same as with respect to ⟨·, ·⟩′1 and ⟨·, ·⟩′2, namely equal to 𝑇 * in both cases. Thus,
𝒞Θ(𝑉 ) = 𝒟𝑇,𝑇* , and in particular is the same when computed with respect to ⟨·, ·⟩
as with respect to ⟨·, ·⟩′. □

Remark 2.6. The above proof shows the following. Let 𝐿 be a field containing 𝑅,
let 𝐺 be a finite group, let 𝑉 be a finitely generated 𝐿[𝐺]-module, let PermMod𝐿
denote the category whose objects are finite 𝐺-sets and in which, for two finite
𝐺-sets 𝑆, 𝑆′, one has HomPermMod𝐿

(𝑆, 𝑆′) = Hom𝐿[𝐺](𝐿[𝑆], 𝐿[𝑆
′]), and let Vect𝐿

be the category of 𝐿-vector spaces. We continue to use the isomorphisms (2.3), but
with 𝑅 replaced by 𝐿. Let ℱ1 be the additive contravaraint functor PermMod𝐿 →
Vect𝐿 defined on objects by ℱ1(𝑆) = Hom𝐿[𝐺](𝐿[𝑆], 𝑉 ), and on morphisms, for
𝐻 ′𝑔𝐻 ∈ 𝐿[𝐻 ′∖𝐺/𝐻] ∼= HomPermMod𝐿

(𝐺/𝐻 ′, 𝐺/𝐻), by ℱ1(𝐻
′𝑔𝐻) = 𝑇𝐻′𝑔𝐻 ∈

HomVect𝐿(𝑉
𝐻 , 𝑉 𝐻

′
). Let ℱ2 be the additive contravariant functor PermMod𝐿 →
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Vect𝐿 defined on objects by ℱ2(𝑆) = Hom𝐿(Hom𝐿[𝐺](𝐿[𝑆], 𝑉 ), 𝐿), and on mor-

phisms, for 𝐻 ′𝑔𝐻 ∈ 𝐿[𝐻 ′∖𝐺/𝐻] and for 𝛼 ∈ Hom𝐿(𝑉
𝐻 , 𝐿) by ℱ2(𝐻

′𝑔𝐻)(𝛼) : 𝑣 ↦→
𝛼(𝑇𝐻𝑔−1𝐻′𝑣) for all 𝑣 ∈ 𝑉 𝐻

′
, and extended by additivity. A non-degenerate 𝐺-

invariant 𝐿-valued bilinear pairing ⟨·, ·⟩ on 𝑉 defines, for each subgroup 𝐻 of 𝐺,
a map ℱ1(𝐻) → ℱ2(𝐻) by 𝑣 ↦→ (𝑤 ↦→ 1

#𝐻 ⟨𝑣, 𝑤⟩) ∈ Hom𝐿(𝑉
𝐻 , 𝐿) for all 𝑣,

𝑤 ∈ ℱ1(𝐻) ∼= 𝑉 𝐻 . The above proof shows that this defines an isomorphism of
functors ℱ1 ⇒ ℱ2.

3. Algebras graded by finite abelian groups

Another, and for our present purposes the most important situation in which the
formalism of adjoint pairs from Section 2.1 applies arises in the context of Vignéras
pairs. In this section we develop the theory in an abstract algebraic setting, and
prove the main algebraic results of the paper. For motivation for this somewhat
technical treatment, the reader might benefit from consulting, in addition to the
introduction, the descripton of the geometric setup at the beginning of Section 4.

The following notation and assumptions will remain in place for the rest of the
section. Let 𝑅 be a commmutative Noetherian domain and let 𝑄 be its field of
fractions. An 𝑅-algebra is a ring A equipped with a ring homomorphism from 𝑅 to
the centre of A. If 𝐶 is a group and A is an 𝑅-algebra, then a grading of A by 𝐶 is
a collection of 𝑅-submodules A𝑐 ⊂ A indexed by 𝑐 ∈ 𝐶 such that there is a direct
sum decomposition of 𝑅-modules A =

⨁︀
𝑐∈𝐶 A𝑐 and such that for all 𝑐, 𝑐′ ∈ 𝐶 one

has A𝑐A𝑐′ ⊂ A𝑐𝑐′ . An 𝑅-algebra that is equipped with a grading by a group 𝐶
is said to be graded by 𝐶, and the 𝑅-submodules A𝑐 of such an 𝑅-algebra A are
referred to as the homogeneous components of A.

For the rest of the section, let T be a commutative 𝑅-algebra that is graded by
a finite abelian group 𝐶. The trivial homogeneous piece T1 is an 𝑅-subalgebra of
T, and for every 𝑐 ∈ 𝐶, the 𝑅-submodule T𝑐 of T is an T1-module. Next, let𝑊 be
a group equipped with a group homomorphism 𝜈 : 𝑊 → 𝐶. Thus, 𝑊 is endowed
with a 𝐶-grading, given, for 𝑐 ∈ 𝐶, by 𝑊𝑐 = 𝜈−1(𝑐), also inducing a 𝐶-grading on

the group algebra T[𝑊 ]. Let 𝐶iso = 𝐶/𝜈(𝑊 ). Thus, ̂︀𝐶iso is canonically identified

with the group of all 𝜒 ∈ ̂︀𝐶 that are trivial on 𝜈(𝑊 ). Let A be a quotient of
T[𝑊 ] by a homogeneous ideal, equivalently a 𝐶-graded algebra together with a
grading-preserving surjection from T[𝑊 ], and assume that A is finitely generated
as an 𝑅-module. In particular, every A-module is also a T[𝑊 ]-module.

For us, a graded A-module is a finitely generated A-module 𝑀 equipped with a
collection of 𝑅-submodules 𝑀𝑐 ⊂ 𝑀 indexed by 𝑐 ∈ 𝐶 such that one has a direct
sum decomposition of T1-modules 𝑀 =

⨁︀
𝑐∈𝐶𝑀𝑐 and such that for all 𝑐, 𝑐′ ∈ 𝐶

one has A𝑐𝑀𝑐′ ⊂𝑀𝑐𝑐′ . Recall that the group Hom(𝐶,C×) of irreducible characters

of 𝐶 is denoted by ̂︀𝐶.
If an element of a ring is invertible modulo the radical, then it is invertible. A ring

is called semilocal if its quotient by the radical is a semisimple ring. A commutative
ring is semilocal if and only if it has only finitely many maximal ideals. We denote
the set of maximal ideals of 𝑅 by MaxSpec(𝑅). We refer to [32] for these definitions
and basic facts from ring theory.

3.1. Linked modules. The purpose of this subsection is to develop, in an ab-
stract algebraic setting, sufficient criteria for isospectrality. The main result of the
subsection is Proposition 3.7.

Definition 3.1. Let 𝑀 be a graded A-module, and let 𝑐1, 𝑐2 ∈ 𝐶. If 𝐿 is a ring
containing 𝑅, we say that 𝑀𝑐1 is 𝐿-linked to 𝑀𝑐2 by 𝑇 ∈ A𝑐2𝑐

−1
1

if the induced

map 𝑇 : (𝑀𝑐1)𝐿 → (𝑀𝑐2)𝐿 is an isomorphism. We say that 𝑀𝑐1 is 𝐿-linked to 𝑀𝑐2
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if it is 𝐿-linked to it by some 𝑇 ∈ A𝑐2𝑐
−1
1
. We say that 𝑀𝑐1 is linked to 𝑀𝑐2 if for

some ring 𝐿 containing 𝑅, the module 𝑀𝑐1 is 𝐿-linked to 𝑀𝑐2 .

Lemma 3.2. Suppose that T1 is a field. Let 𝑐 ∈ 𝐶, and let 𝑀 be a non-zero
A-module. Then the following are equivalent:

(1) there exists an element in A𝑐 that is invertible in A;
(2) there exists a simple subquotient 𝑁 of 𝑀 and an element of A𝑐 that does not

annihilate 𝑁 .

If, moreover, T/AnnT𝑀 is reduced, then the conditions are equivalent to the fol-
lowing:

(3) the graded component A𝑐 does not annihilate 𝑀 .

Proof. The forward implications are trivial, without the reduced assumption.
We now prove that 3 implies 2. The homogeneous component A𝑐 is generated by

the images of T𝑑 ·𝑊𝑑−1𝑐, as 𝑑 runs over 𝐶. The hypothesis therefore implies that
there exist 𝑑 ∈ 𝐶, 𝑇 ∈ T𝑑, and 𝑤 ∈ 𝑊𝑑−1𝑐 such that 𝑇𝑤 does not annihilate 𝑀 .
Since 𝑤 is invertible, this is equivalent to 𝑇 not annihilating 𝑀 . Since T/AnnT𝑀
is reduced, 𝑇 is not nilpotent in T/AnnT𝑀 . Since𝑀 has finite length, this implies
that 𝑇 cannot annihilate every simple subquotient of 𝑀 , and therefore the same is
true for 𝑇𝑤 ∈ A𝑐.

Finally we prove that 2 implies 1. By the same argument as in the previous
paragraph, the assumption implies that there exist 𝑑 ∈ 𝐶, 𝑇 ∈ T𝑑, and 𝑤 ∈𝑊𝑑−1𝑐

such that 𝑇𝑤 does not annihilate a subquotient 𝑁 , equivalently that 𝑇 does not
annihilate 𝑁 , equivalently that 𝑇 acts invertibly on 𝑁 . Let 𝑛 be the order of 𝑑 ∈ 𝐶.
Then 𝑇𝑛 ∈ T1 also acts invertibly on 𝑁 . Since T1 is a field, this implies that 𝑇𝑛

is invertible, therefore so is 𝑇𝑤, whose image in A is in A𝑐. □

Proposition 3.3. Assume that T𝑄 is reduced. Let 𝑀 be a graded A-module and
let 𝑐1, 𝑐2 ∈ 𝐶. Then 𝑀𝑐1 is linked to 𝑀𝑐2 if and only if the two modules are
𝑄-linked.

Proof. Without loss of generality, replace 𝑅 by 𝑄, applying the tensor product
𝑄⊗𝑅 ∙ throughout. The algebra T1, being a reduced commutative algebra over a
field, is a product of fields. Moreover, every quotient of T is then also reduced. If
𝐿 is a field containing 𝑄, then the module 𝑀𝑐1 is 𝐿-linked to 𝑀𝑐2 if and only if
for every maximal ideal m of T1 the (A/m)-module (T1/m)⊗T1 𝑀𝑐1 is 𝐿-linked to
(T1/m)⊗T1 𝑀𝑐2 . For every such maximal ideal m, the ring T1/m is a field, so the
criteria of Lemma 3.2 apply in this setting. But clearly criterion (3) of the lemma
is invariant under field extension from 𝑄 to 𝐿, which proves the claim. □

Lemma 3.4. Suppose that 𝑅 is semilocal. Let 𝑐 ∈ 𝐶, and let 𝑀 be an A-module
such that for every simple subquotient 𝑁 of 𝑀 , there exists an element of A𝑐 that
acts non-trivially (equivalently invertibly) on 𝑁 . Then there exists an element of
A𝑐 that acts invertibly on 𝑀 .

Proof. By replacing A by A/AnnT1
𝑀 ·A, we may assume that T1 acts faithfully

on 𝑀 . Let 𝑁 be a T-simple subquotient of 𝑀 . Then m = AnnT1
(𝑁) is a maximal

ideal of T1. By Lemma 3.2, applied to T1/m in place of T1, there exists 𝑢m ∈ A𝑐

that acts invertibly on 𝑀/m𝑀 . Conversely, since the T1-action is faithful, every
maximal ideal of T1 is the annihilator of some simple subquotient of 𝑀 . Thus, the
Chinese Remainder Theorem implies that there exists 𝑢 ∈ A𝑐 that acts invertibly
on 𝑀/ J(T1)𝑀 , where recall that J(T1) =

∏︀
m∈MaxSpec(T1)

m denotes the radical

of T1. By [32, Corollary 5.9], J(T1) ·A is contained in the radical of A, so 𝑢 acts
invertibly on 𝑀 . □
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Lemma 3.5. Suppose that 𝑅 is semilocal. Let 𝑀 be an T-module. Then for
every simple T-subquotient 𝐸 of 𝑀 there exists p ∈ MaxSpec(𝑅) such that 𝐸 is
isomorphic to a T-submodule of 𝑅/p⊗𝑅𝑀 .

Proof. By replacing T by T/Ann𝑀 ⊂ End𝑀 , we may assume that T is finitely
generated over 𝑅. Let 𝐸 be a simple subquotient of 𝑀 . Then its annihilator is
a maximal ideal P of T. By [20, Corollary 4.17] the intersection p = P ∩ 𝑅 is a
maximal ideal of 𝑅, and 𝐸 is a subquotient of the localisation (𝑅/p⊗𝑅𝑀)P. Now,
𝑅/p is a field, so that T/p is Artinian. By [20, Corollary 2.16], the localisation
(T/p)P is local and is a direct factor of T/p, so that (𝑅/p ⊗𝑅 𝑀)P is a direct
T-summand of 𝑅/p⊗𝑅𝑀 . Since this localisation is Artinian, it contains a simple
submodule. But since (T/p)P is local, all simple (T/p)P-modules are pairwise
isomorphic, and in particular 𝐸 is isomorphic to a simple T-submodule of (𝑅/p⊗𝑅
𝑀)P ⊂ 𝑅/p⊗𝑅𝑀 , which proves the result. □

Lemma 3.6. Let 𝑐 ∈ 𝐶 be non-trivial, and for every 𝜒 ∈ ̂︀𝐶 with 𝜒(𝑐) ̸= 1, let
𝑐𝜒 ∈ 𝐶 be such that 𝜒(𝑐𝜒) ̸= 1. Then 𝑐 ∈ ⟨𝑐𝜒⟩𝜒 ⊂ 𝐶.

Proof. By induction, suppose that 𝑋 is a set of 𝜒 ∈ ̂︀𝐶 satisfying the hypothesis.

If 𝑐 ∈ 𝑈 = ⟨𝑐𝜒⟩𝜒∈𝜒, then we are done. Otherwise, there exists 𝜒′ ∈ ̂︀𝐶 such that
𝜒′|𝑈 = 1 and 𝜒′(𝑐) ̸= 1, so the subgroup ⟨𝑐𝜒⟩𝜒∈𝑋∪{𝜒′} has strictly bigger cardinality
than 𝑈 . □

Proposition 3.7. Suppose that 𝑅 is semilocal. Let 𝑐 ∈ 𝐶, and let 𝑀 be a graded
A-module. Suppose that for all the finitely many p ∈ MaxSpec(𝑅), for all simple

(ungraded) A-submodules 𝐸 of 𝑅/p ⊗𝑅 𝑀 , and for all 𝜒 ∈ ̂︀𝐶iso with 𝜒(𝑐) ̸= 1,
there exist 𝑐𝜒,𝐸 ∈ 𝐶 with 𝜒(𝑐𝜒,𝐸) ̸= 1 and 𝑇𝜒,𝐸 ∈ A𝑐𝜒,𝐸

that does not annihilate
𝐸. Then there exists 𝑇 ∈ A𝑐 that acts invertibly on 𝑀 .

Proof. Let 𝑁 be a simple A-subquotient of 𝑀 . We claim that the hypothesis

implies that for all 𝜒 ∈ ̂︀𝐶 satisfying 𝜒(𝑐) ̸= 1 there exist 𝑐𝜒,𝑁 ∈ 𝐶 with 𝜒(𝑐𝜒,𝑁 ) ̸= 1

and 𝑆𝜒,𝑁 ∈ A𝑐 that do not annihilate 𝑁 . Indeed, for 𝜒 ∈ ̂︀𝐶 that do not vanish on
𝜈(𝑊 ), we may take 𝑆𝜒,𝑁 to be the image of any 𝑤 ∈ 𝑊 for which 𝜒(𝜈(𝑤)) ̸= 1.

Suppose instead that 𝜒 ∈ ̂︀𝐶iso satisfies 𝜒(𝑐) ̸= 1. Since the image of T in A is
central, the T-module 𝑁 is isomorphic to 𝐸𝑟 for a simple T-module 𝐸 and some
𝑟 ∈ Z>0. By Lemma 3.5 𝐸 is isomorphic to a simple submodule of 𝑅/p⊗𝑅𝑀 for
some p ∈ MaxSpec(𝑅). We may then take 𝑆𝜒,𝑁 = 𝑇𝜒,𝐸 . By Lemma 3.6, there exist
𝛼𝜒,𝑁 ∈ Z such that 𝑐 =

∏︀
𝜒 𝑐

𝛼𝜒,𝑁

𝜒,𝑁 , so that
∏︀
𝜒 𝑆

𝛼𝜒,𝑁

𝜒,𝑁 belongs to A𝑐. This product
clearly acts invertibly on 𝑁 . The conclusion follows from Lemma 3.4. □

Corollary 3.8. Let 𝑐 ∈ 𝐶 and let 𝑀 be a graded A-module. Suppose that for all

simple (ungraded) A-submodules 𝐸 of 𝑀𝑄, and for all 𝜒 ∈ ̂︀𝐶iso with 𝜒(𝑐) ̸= 1,
there exist 𝑐𝜒,𝐸 ∈ 𝐶 with 𝜒(𝑐𝜒,𝐸) ̸= 1 and 𝑇𝜒,𝐸 ∈ A𝑐𝜒,𝐸

that does not annihilate 𝐸.
Then for every 𝑏 ∈ 𝐶, the graded piece 𝑀𝑏 is linked to 𝑀𝑐𝑏.

Proof. Apply Proposition 3.7 to the semilocal ring 𝑄. □

3.2. Polarisations. In this subsection we investigate the existence and fields of
definition of pairings on graded A-modules. The main result of the subsection is
Proposition 3.16, which will be central for proving rationality of regulator quotients.

An involution on T is an 𝑅-module homomorphism 𝜄 : T → T satisfying the
following properties:

∙ 𝜄2 = id,
∙ for all 𝑥, 𝑦 ∈ T one has 𝜄(𝑥𝑦) = 𝜄(𝑦)𝜄(𝑥),
∙ for all 𝑐 ∈ 𝐶 one has 𝜄(T𝑐) = T𝑐−1 .



18 ALEX BARTEL AND AUREL PAGE

In particular, every involution on T stabilises T1. We will tacitly extend any
involution 𝜄 on T to an involution on T[𝑊 ] by defining 𝜄(𝑤) = 𝑤−1 for all 𝑤 ∈𝑊 ,
and we will assume that this involution descends to A. Whenever 𝑀 is an A-
module (resp. T1-module), we give 𝑀* = Hom𝑅(𝑀,𝑅) the structure of an A-
module (resp. T1-module), called the dual of 𝑀 , via 𝜄, i.e. (𝑇𝜑)(𝑚) = 𝜑(𝜄(𝑇 )𝑚)
for 𝜑 ∈ 𝑀*,𝑚 ∈ 𝑀 and 𝑇 ∈ A (resp. 𝑇 ∈ T1). We say that an A-module
(resp. T1-module) 𝑀 is self-dual if 𝑀* is isomorphic to 𝑀 .

Assumption 3.9. For the rest of the section, assume that T is reduced, i.e. that
for all 𝑥 ∈ T, if for some 𝑛 ∈ Z>0 one has 𝑥

𝑛 = 0, then 𝑥 = 0. Further, assume that
T is equipped with an involution 𝜄, and that 𝜄, when extended to T𝑊 as above,
descends to A.

Definition 3.10. Let 𝑀 be a graded A-module that is 𝑅-torsion-free. If 𝐿 is a
field containing 𝑄, then a polarisation on 𝑀 over 𝐿 is a non-degenerate bilinear
pairing ⟨·, ·⟩ : 𝑀 ⊗𝑅𝑀 → 𝐿 such that for 𝑐 ̸= 𝑐′ ∈ 𝐶, the module 𝑀𝑐 is orthogonal
to 𝑀𝑐′ , and such that for every 𝑇 ∈ A, the element 𝑇 is adjoint to 𝜄(𝑇 ). If 𝑀 is
equipped with a polarisation over 𝐿, then we say that 𝑀 is polarised over 𝐿, and
if 𝑀 admits a polarisation over 𝐿, then we say that 𝑀 is polarisable over 𝐿.

Remark 3.11. A pairing ⟨·, ·⟩ : 𝑀 ⊗𝑅𝑀 → 𝐿 is a polarisation for A if and only
if it is a polarisation for T that is 𝑊 -invariant, i.e. such that for all 𝑤 ∈𝑊 and all
𝑚,𝑚′ ∈𝑀 we have ⟨𝑤𝑚,𝑤𝑚′⟩ = ⟨𝑚,𝑚′⟩.
Remark 3.12. If 𝑀 is as in Definition 3.10, then 𝑀* = Hom𝑅(𝑀,𝑅) is a graded
A-module, where for every 𝑐 ∈ 𝐶, the homogeneous component (𝑀*)𝑐 consists of
the homomorphisms 𝑀 → 𝑅 that factor through 𝑀𝑐−1 . A polarisation on 𝑀 over
a field 𝐿 is the same as an isomorphism of (not graded) A𝐿-modules 𝑀𝐿 → (𝑀*)𝐿
that sends 𝑀𝑐 to (𝑀*)𝑐−1 .

Proposition 3.13. Let 𝑀 be a graded A-module that is 𝑅-torsion-free, and let 𝐿
be a field containing 𝑄. Then 𝑀 is polarisable over 𝐿 if and only if for every 𝑐 ∈ 𝐶,
(𝑀𝑐)𝐿 is a self-dual (A1)𝐿-module.

Proof. The “only if” direction is clear, so we prove the other direction.
We may, without loss of generality, replace 𝑅 by 𝐿, and replace all the algebras

and modules by their tensor product with 𝐿 over 𝑅. Then T, being a reduced
commutative algebra over a field, is a product of fields. In particular, every quotient
of T is also reduced, an observation that we will use repeatedly. The algebra T1, is
a product of factors 𝐵 that are each either a field that is stabilised by 𝜄, or a product
𝐵 = 𝐴1 × 𝐴2 of fields with 𝜄 inducing an isomorphism from 𝐴1 to 𝐴2 and from
𝐴2 to 𝐴1. Accordingly the tensor products 𝐵 ⊗T1

∙ for all such factors 𝐵 induce a
direct product decomposition on the T1-algebras A1, T, and A, and a direct sum
decomposition on the modules 𝑀 and 𝑀𝑐 for all 𝑐 ∈ 𝐶. Clearly, 𝑀 is polarisable
if and only if for all 𝐵 as above the module 𝐵 ⊗T1 𝑀 is, and similarly, for a given
𝑐 ∈ 𝐶, the A1-module 𝑀𝑐 is self-dual if and only if for all 𝐵, the 𝐵⊗T1

A1-module
𝐵 ⊗T1

𝑀𝑐 is. Moreover, T being reduced implies that so is 𝐵 ⊗T1
T for all 𝐵

as above. Thus, we assume, without loss of generality, that T1 is either a field
stabilised by 𝜄 or isomorphic to 𝐴1 ×𝐴2 as just described.

Let
𝐶 = {𝑐 ∈ 𝐶 : A𝑐𝑀 ̸= 0}.

For an arbitrary 𝑇 ∈ A, the non-degeneracy of the pairing on 𝑀 implies that
𝑇𝑀 ̸= 0 if and only 𝜄(𝑇 )𝑀 ̸= 0. It follows that if 𝑐 ∈ 𝐶, and T1 = 𝐴1 × 𝐴2, then
(𝐴1⊗T1

A)𝑐 does not annihilate 𝑀 if and only if (𝐴2⊗T1
A)𝑐 does not. Therefore,

Lemma 3.2 implies that we have

𝐶 = {𝑐 ∈ 𝐶 : A𝑐 contains an invertible element}.
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In particular, 𝐶 is a subgroup of 𝐶.
Now, suppose that for every 𝑐, the A1-module is self-dual. Let 𝐷 be a complete

set of coset representatives for 𝐶/𝐶, and for each 𝑑 ∈ 𝐷, let ⟨·, ·⟩𝑑 be a non-
degenerate 𝐿-valued 𝐿-bilinear pairing on𝑀𝑑 such that for all 𝑇 ∈ A1, the operator
𝜄(𝑇 ) is the adjoint of 𝑇 . For every 𝑐 ∈ 𝐶, fix an invertible element 𝑇𝑐 ∈ A𝑐. For

𝑐 ∈ 𝐶 and 𝑑 ∈ 𝐷, define a pairing ⟨·, ·⟩𝑐𝑑 on 𝑀𝑐𝑑 by setting, for every 𝑚, 𝑚′ ∈𝑀𝑐𝑑,

⟨𝑚,𝑚′⟩𝑐𝑑 = ⟨𝑇−1
𝑐 𝑚, 𝜄(𝑇𝑐)𝑚

′⟩𝑑.
Let ⟨·, ·⟩ be the unique pairing on 𝑀 that restricts to ⟨·, ·⟩𝑐 for all 𝑐 ∈ 𝐶 and that
makes the different graded components pairwise orthogonal. It is clear that each
⟨·, ·⟩𝑐 is non-degenerate, therefore so is ⟨·, ·⟩. We claim that for all 𝑇 ∈ A, the adjoint
of 𝑇 with respect to this pairing is 𝜄(𝑇 ). It suffices to prove this for homogeneous

elements 𝑇 . Let 𝑐, 𝑐′ ∈ 𝐶, 𝑑 ∈ 𝐷, 𝑇 ∈ A𝑐, 𝑚 ∈ 𝑀𝑐−1𝑐′𝑑 and 𝑚′ ∈ 𝑀𝑐′𝑑. Then we
have

⟨𝑇𝑚,𝑚′⟩𝑐′𝑑 = ⟨𝑇−1
𝑐′ 𝑇𝑚, 𝜄(𝑇𝑐′)𝑚

′⟩𝑑
= ⟨(𝑇−1

𝑐′ 𝑇𝑇𝑐′𝑐−1)⏟  ⏞  
∈A1

𝑇−1
𝑐′𝑐−1𝑚, 𝜄(𝑇𝑐′)𝑚

′⟩𝑑

= ⟨𝑇−1
𝑐′𝑐−1𝑚, 𝜄(𝑇

−1
𝑐′ 𝑇𝑇𝑐′𝑐−1)𝜄(𝑇𝑐′)𝑚

′⟩𝑑
= ⟨𝑇−1

𝑐′𝑐−1𝑚, 𝜄(𝑇𝑐′𝑐−1)𝜄(𝑇 )𝑚′⟩𝑑
= ⟨𝑚, 𝜄(𝑇 )𝑚′⟩𝑐−1𝑐′𝑑,

as required. This shows that ⟨·, ·⟩ is a polarisation on 𝑀 , and completes the proof.
□

Remark 3.14. For 𝑀 as in Definition 3.10 to be polarisable over a field 𝐿, it is
not sufficient that 𝑀𝐿 be a self-dual (A1)𝐿-module. Indeed, let 𝑊 = 1, A1 =
T1 = 𝑄 × 𝑄, with 𝜄 swapping the two factors, T = A = T1 with trivial grading
by a group 𝐶 = {1, 𝑐} of order 2, and let 𝑀1 = 𝑄 with T acting via projection
onto the first factor 𝑄, and 𝑀𝑐 = 𝑄 with T acting via projection onto the second
factor. Then𝑀1 and𝑀𝑐 are dual to each other, so that𝑀 =𝑀1⊕𝑀𝑐 is a self-dual
T1-module. However, 𝑀1 is not self-dual, so 𝑀 is not polarisable over 𝑄.

Corollary 3.15. Assume that 𝑊 = 1 and that either T1 is a field or 𝜄 is trivial.
Let 𝑀 be a graded T-module that is 𝑅-torsion-free. Then 𝑀 is polarisable over 𝑄.

Proof. Under the assumptions, T1 is a product of fields, each preserved by 𝜄, and
𝑀 is polarisable over 𝑄 if and only if it is after taking the tensor product with each
of these factors. Thus, it suffices to assume that T1 is a field. In that case, for
every 𝑐 ∈ 𝐶 the T1-vector spaces (𝑀𝑐)𝑄 and (𝑀*

𝑐 )𝑄 have the same dimension, and
are therefore isomorphic. The result follows from Proposition 3.13. □

Proposition 3.16. Let 𝑀 be a graded A-module that is 𝑅-torsion-free, and let 𝐿
be a field containing 𝑄. Then𝑀 is polarisable over 𝑄 if and only if𝑀 is polarisable
over 𝐿.

Proof. Assume that 𝑀 is polarisable over 𝐿. Let 𝑐 ∈ 𝐶 be arbitrary. Then the
(T1)𝐿-module (𝑀𝑐)𝐿 is self-dual, i.e. (𝑀𝑐)𝐿 and (𝑀*

𝑐 )𝐿 are isomorphic. By the
Deuring–Noether Theorem [32, Theorem 19.25] this implies that (𝑀𝑐)𝑄 and (𝑀*

𝑐 )𝑄
are isomorphic, i.e. the (T1)𝑄-module (𝑀𝑐)𝑄 is self-dual. By Proposition 3.13 𝑀
is polarisable over 𝑄. □

Definition 3.17. We will say that a graded A-module 𝑀 is polarisable if it is po-
larisable over some field containing 𝑄. In light of Proposition 3.16 this is equivalent
to 𝑀 being polarisable over 𝑄.
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3.3. Regulator constants for graded modules. In this subsection we explain
the significance of Section 2.1 for regulators of manifolds. Recall that Assumption
3.9 is still in place.

Definition 3.18. Let𝑀 be a graded A-module that is free over 𝑅. Let 𝑐1, 𝑐2 ∈ 𝐶.
Suppose that 𝑀 is polarisable and that 𝑀𝑐1 is 𝐿-linked to 𝑀𝑐2 by 𝑇 ∈ (A𝑐2𝑐

−1
1
)𝐿

for some field 𝐿 containing 𝑄. Then 𝜄(𝑇 ), being the adjoint of an isomorphism with
respect to a polarisation, induces an isomorphism (𝑀𝑐2)𝐿 → (𝑀𝑐1)𝐿. Define the
regulator constant of 𝑀 with respect to the pair (𝑐1, 𝑐2) by

𝒞𝑐1,𝑐2(𝑀) =
det(𝑇 : 𝑀𝑐1 →𝑀𝑐2)

det(𝜄(𝑇 ) : 𝑀𝑐2 →𝑀𝑐1)
= 𝒟𝑇,𝜄(𝑇 ) ∈ 𝐿×/(𝑅×)2,

using the notation of Section 2.1, where recall that the determinants are evaluated
with respect to any bases 𝐵1 of 𝑀𝑐1 and 𝐵2 of 𝑀𝑐2 .

Proposition 3.19. For every polarisation ⟨·, ·⟩ on 𝑀 we have

𝒞𝑐1,𝑐2(𝑀) =
det(⟨·, ·⟩ |𝑀𝑐1)

det(⟨·, ·⟩ |𝑀𝑐2)
.

The value of 𝒞𝑐1,𝑐2(𝑀) does not depend on 𝑇 , nor on the polarisation.

Proof. Apply equation (2.2) and observations (O1) and (O2) of Section 2.1. □

Corollary 3.20. Let 𝑀 be a polarisable graded A-module that is free over 𝑅, and
let 𝑐1, 𝑐2 ∈ 𝐶 be such that 𝑀𝑐1 and 𝑀𝑐2 are linked. Then we have

𝒞𝑐1,𝑐2(𝑀) ∈ 𝑄×/(𝑅×)2.

Proof. By Proposition 3.16 there exists a polarisation on𝑀 that takes values in 𝑄,
and by Proposition 3.19 the value of 𝒞𝑐1,𝑐2(𝑀) does not depend on the polarisation.

□

Remark 3.21. Let 𝑀 be a graded A-module that is free over 𝑅 and polarisable
over a field 𝐿. Then being 𝐿-linked is an equivalence relation on the homogeneous
components of𝑀 , and for all 𝑐1, 𝑐2, 𝑐3 ∈ 𝐶 such that𝑀𝑐1 , 𝑀𝑐2 , and𝑀𝑐3 are linked
we have

𝒞𝑐1,𝑐2(𝑀) = 𝒞𝑐2,𝑐1(𝑀)−1 and 𝒞𝑐1,𝑐3(𝑀) = 𝒞𝑐1,𝑐2(𝑀)𝒞𝑐2,𝑐3(𝑀).

In other words, 𝒞(𝑀) is a functor from the groupoid with objects 𝐶 and morphisms

Hom(𝑐1, 𝑐2) = {𝑇 ∈ A𝑐2𝑐
−1
1
|𝐿 ⊗𝑅 𝑇 : (𝑀𝑐1)𝐿

∼−→ (𝑀𝑐2)𝐿} to the group 𝐿×/(𝑅×)2

seen as a one element groupoid.

Lemma 3.22. Let 𝑀 be a graded A-module that is free over 𝑅. Let 𝑐1, 𝑐2 ∈ 𝐶,
and set 𝑐 = 𝑐2𝑐

−1
1 . Suppose that there exists 𝑇 ∈ A𝑐 such that 𝑇 : 𝑀 → 𝑀 is

surjective. Then one has 𝒞𝑐1,𝑐2(𝑀) ∈ 𝑅×/(𝑅×)2.

Proof. By Nakayama’s lemma [39, Theorem 2.4], the T-module endomorphism 𝑇
of 𝑀 , being surjective, is in fact an isomorphism. This also implies that 𝜄(𝑇 ) is
an isomorphism. Thus det(𝑇 : 𝑀𝑐1 → 𝑀𝑐2) and det(𝜄(𝑇 ) : 𝑀𝑐2 → 𝑀𝑐1), evaluated
with respect to any 𝑅-bases on𝑀𝑐1 and𝑀𝑐2 , are units in 𝑅, and the result follows.

□

Lemma 3.23. Let 𝑅 →˓ 𝑅̃ be an embedding of commutative domains, let 𝐿 be a
field containing 𝑅̃, and let 𝑀 be a graded A-module that is free over 𝑅 and that is
polarisable over 𝐿. Then for all 𝑐1, 𝑐2 ∈ 𝐶 one has

𝒞𝑐1,𝑐2(𝑀) ≡ 𝒞𝑐1,𝑐2(𝑅̃⊗𝑅𝑀) mod (𝑅̃×)2.

Proof. This is immediate from the definitions. □
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Proposition 3.24. Let 𝑅 = 𝑄 be a field, let T1 be a field, take 𝑊 to be trivial,
let 𝑀 be a graded T-module. Let 𝑐 ∈ 𝐶 have order 2, and assume that 𝑀1 and 𝑀𝑐

are linked, by 𝑇 , say, and let 𝑇 2 = 𝑎 ∈ T1. Then 𝑀 is polarisable, and we have

𝒞1,𝑐(𝑀) = NT1/𝑄(𝑎)
𝑛 mod (𝑄×)2,

where 𝑛 is the common dimension of𝑀1 and𝑀𝑐 over T1, and where NT1/𝑄 denotes
the 𝑄-algebra norm on T1.

Proof. By Corollary 3.15, 𝑀 is polarisable. Write the action of 𝑇 on 𝑀1⊕𝑀𝑐 as a

block-diagonal matrix

(︂
0 𝐴
𝐵 0

)︂
over the field T1 with 𝐴,𝐵 invertible. Then 𝑇 2 = 𝑎

acts as (︂
𝐴𝐵 0
0 𝐵𝐴

)︂
=

(︂
𝑎 · Id𝑛 0

0 𝑎 · Id𝑛

)︂
,

so that 𝒞1,𝑐(𝑀) = det𝑄(𝐴)/ det𝑄(𝜄(𝐵)) ≡ det𝑄(𝐴𝐵) ≡ NT1/𝑄(𝑎
𝑛) mod (𝑄×)2,

where det𝑄(𝜄(𝐵)) = det𝑄(𝐵) holds since 𝜄 is an automorphism of T that is trivial
on 𝑄. This proves the result. □

The next three results show that in many situations regulator constants of a
module can be factored as products of regulator constants of “simpler” modules.

Lemma 3.25. Let 𝑀 be a polarisable graded A-module that is free over 𝑅 and
that decomposes as a direct sum 𝑀 =

⨁︀
𝑖𝑀𝑖 of polarisable graded A-submodules.

Let 𝑐1, 𝑐2 ∈ 𝐶, and assume that 𝑀𝑐1 and 𝑀𝑐2 are linked. Then for every 𝑖, (𝑀𝑖)𝑐1
and (𝑀𝑖)𝑐2 are linked, and we have

𝒞𝑐1,𝑐2(𝑀) =
∏︁
𝑖

𝒞𝑐1,𝑐2(𝑀𝑖).

Proof. The first assertion is clear. Also, by hypothesis, we may choose a polarisa-
tion on 𝑀 that makes all summands 𝑀𝑖 pairwise orthogonal, whence the second
assertion follows. □

Proposition 3.26. Let 𝑅 = 𝑄 be a field, and let 𝑀 be a polarisable graded A-
module that is free over 𝑅. Let 𝑐1, 𝑐2 ∈ 𝐶, and assume that𝑀𝑐1 and𝑀𝑐2 are linked.
Let T1

∼=
∏︀
𝑖𝐵𝑖 be a direct product decomposition of 𝑄-algebras with involution, and

for all 𝑖, let 𝑀𝑖 = 𝐵𝑖⊗T1
𝑀 . Then for all 𝑖, the graded A-module 𝑀𝑖 is polarisable,

(𝑀𝑖)𝑐1 and (𝑀𝑖)𝑐2 are linked, and we have

𝒞𝑐1,𝑐2(𝑀) =
∏︁
𝑖

𝒞𝑐1,𝑐2(𝑀𝑖) ∈ 𝑄×/(𝑄×)2.

Proof. By Proposition 3.13, since𝑀 is polarisable, the𝑀𝑖 are polarisable. We have
a direct product decomposition The last two assertions follow from Lemma 3.25,
applied to the direct sum decomposition 𝑀 =

⨁︀
𝑖𝑀𝑖. □

Proposition 3.27. Let 𝑅 = Z𝑝, and let 𝑀 be a polarisable graded A-module that
is free over 𝑅. Let 𝒩 = {m ∩ 𝜄(m) : m ∈ MaxSpec(T1)}, and for all n ∈ 𝒩 let
𝑀n = (T1)n ⊗T1 𝑀 . Then for all n ∈ 𝒩 , the graded A-module 𝑀n is polarisable.

Let 𝑐1, 𝑐2 ∈ 𝐶, and assume that 𝑀𝑐1 and 𝑀𝑐2 are linked. Then for all n ∈ 𝒩 ,
(𝑀n)𝑐1 and (𝑀n)𝑐2 are linked, and we have

𝒞𝑐1,𝑐2(𝑀) =
∏︁
n∈𝒩

𝒞𝑐1,𝑐2(𝑀n) ∈ Q×
𝑝 /(Z×

𝑝 )
2.

Proof. By [20, Corollary 7.6], there is a decomposition T1 =
∏︀

m(T1)m, with
the product running over the maximal ideals of T1. Accordingly, by grouping
terms, there is a direct sum decomposition 𝑀 =

⨁︀
n∈𝒩 𝑀n. By Proposition 3.13,

since𝑀 is polarisable, the𝑀n are polarisable. The last two statements follow from
Lemma 3.25. □
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4. Vignéras pairs of manifolds

In the present section we will introduce the number theoretic situation we are
interested in and apply the results of Section 3 to this situation.

Throughout this section, we fix the following notation.
𝐹 a number field.
Z𝐹 the ring of integers of 𝐹 .
p a prime ideal of Z𝐹 .
𝐹R R⊗Q 𝐹 .
N an ideal of Z𝐹 .
Cl𝐹 (N𝒱) the ray class group with modulus N times a subset 𝒱 of the real

places of 𝐹 .
𝑈𝐹 (N𝒱) the group of units of Z𝐹 congruent to 1 mod N and positive at all

places of 𝒱. We write ∞ for the set of all real places.
Zp ring of integers of the completion 𝐹p.
A𝐹 the ring of adèles of 𝐹 .
A𝐹,𝑓 the ring of finite adèles of 𝐹 .
𝐷 a division algebra over 𝐹 of degree 𝑑 ≥ 2 that is not totally definite.
𝒱R(𝐷), the sets of infinite places of 𝐹 that are real and split in 𝐷,
𝒱C(𝐷), respectively complex (and necessarily split in 𝐷),
𝒱H(𝐷) respectively ramified in 𝐷.
𝒪 a maximal order in 𝐷.
G the algebraic group corresponding to 𝐷×, i.e. representing

the functor (∙ ⊗𝐹 𝐷)× on the category of 𝐹 -algebras.
𝐺∞ G(𝐹R).
𝐾∞ a maximal compact subgroup of 𝐺∞.
𝑍∞ the centre of 𝐺∞.
Λp, 𝑑p are defined up to isomorphism by Zp ⊗Z𝐹

𝒪 ∼= M𝑑p(Λp), where
Λp is a local ring. From now on fix such isomorphisms.

∆p the division algebra 𝐹p ⊗Zp
Λp.

𝛿𝐷 the finite product
∏︀

p p
𝑑−𝑑p ⊂ Z𝐹 .

𝐾(p𝑖), GL𝑑p(Λp) if 𝑖 = 0, 1 + J(Λp)
𝑖M𝑑p(Zp) if 𝑖 > 0 (i.e. the kernel of

𝑖 ∈ Z≥0 reduction modulo J(Λp)
𝑖), where J(Λp) denotes the radical of

Λp, which in this case is just the unique maximal ideal of Λp.
𝐾(N)

∏︀
p𝑖‖N𝐾(p𝑖), the product running over all prime ideals of Z𝐹 .

𝐾𝑓 an open subgroup of G(A𝐹,𝑓 ) containing 𝐾(N) and
such that 𝐾𝑓/𝑍(𝐾𝑓 ) is compact.

nrd the reduced norm map from G to the multiplicative group G𝑚.
G(A𝐹 )+ {𝑔 = (𝑔𝑣) ∈ G(A𝐹 ) : det(𝑔𝑣) > 0 for all 𝑣 ∈ 𝒱R(𝐷)}.
𝐻+ 𝐻 ∩G(A𝐹 )+, where 𝐻 is a subgroup of G(A𝐹 ).
𝒴 G(𝐹 )+∖G(A𝐹 )/𝑍∞𝐾∞𝐾𝑓 .
𝐶 nrd(G(𝐹 )+)∖A×

𝐹,𝑓/ nrd(𝐾𝑓 ).

N(𝐾𝑓 ) the normaliser of 𝐾𝑓 in G(A𝐹,𝑓 ).
𝑊 𝐹×∖(N(𝐾𝑓 )/𝑍∞𝐾∞ ×𝐾𝑓 ).
𝑐 the class of 𝑐 in 𝐶iso, where 𝑐 ∈ 𝐶 – see the discussion after

Proposition 4.2.
T the subalgebra of Z[𝐾𝑓∖G(A𝐹,𝑓 )/𝐾𝑓 ] generated by

𝐾𝑓G(𝐹p)𝐾𝑓 for all p ∤ 𝛿𝐷N.

We will now recall some basic facts about these objects. We refer to [23, §2.6,
§5.5, §15.2] for these facts and further material.

The double quotient 𝒴 is a compact orientable orbifold. Let 𝑋 = 𝐺∞/(𝑍∞𝐾∞),
and fix a set ℛ of double coset representatives of G(𝐹 )+∖G(A𝐹,𝑓 )/𝐾𝑓 . For each
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𝑔 ∈ ℛ, define Γ𝑔 = G(𝐹 )+ ∩ 𝑔𝐾𝑓𝑔
−1, and 𝑌𝑔 = Γ𝑔∖𝑋. Then each 𝑌𝑔 is connected,

and one has 𝒴 =
⨆︀
𝑔∈ℛ 𝑌𝑔. The reduced norm map induces a canonical bijection

between the component set ℛ and the group 𝐶, and we will from now on implicitly
use this bijection and index the connected components of 𝒴 by 𝐶. The group 𝐶 is
a quotient of

nrd(G(𝐹 )+)∖ nrd(G(A𝐹,𝑓 ))/nrd(𝐾(N)) = Cl𝐹 (N∞).

We have

𝐺∞ ∼= GL𝑑(R)𝒱R(𝐷) ×GL𝑑(C)𝒱C(𝐷) ×GL𝑑/2(H)𝒱H(𝐷),

where H denotes the R-algebra of Hamilton quaternions. The maximal compact
subgroup 𝐾∞ is accordingly a product of maximal compact subgroups over the
infinite places of 𝐹 , is unique up to conjugation, and may be taken to be

𝐾∞ ∼= O𝑑(R)𝒱R(𝐷) ×U𝑑(C)𝒱C(𝐷) ×U𝑑/2(H)𝒱H(𝐷).

Accordingly, the dimension of 𝑋 (and therefore also of 𝒴) can be computed to be(︁
𝑑2+𝑑−2

2

)︁
·#𝒱R(𝐷)+

(︀
𝑑2 − 1

)︀
·#𝒱C(𝐷)+

(︁
𝑑2−𝑑−2

2

)︁
·#𝒱H(𝐷). Note, in particular,

that when 𝑑 = 2, the condition on 𝐷 to be not totally definite, equivalently the
set 𝒱R(𝐷) ∪ 𝒱C(𝐷) to be non-empty, is precisely the condition to ensure that the
dimension of 𝒴 is positive.

We now give an alternative description of 𝒴, which we will use in the next section.

Lemma 4.1. We have 𝑍+
∞𝐾

+
∞ = 𝐺+

∞ ∩ (𝑍∞𝐾∞).

Proof. One inclusion is obvious. For the other, it suffices to argue place by place,
and the statement is only non-empty at the places 𝑣 ∈ 𝒱R(𝐷). Locally at such
a place, the claim is that we have R×

>0 SO𝑑(R) = GL𝑑(R)+ ∩ (R× O𝑑(R)), where
GL𝑑(R)+ denotes the group of real 𝑑 × 𝑑 matrices with positive determinant, and
where R× denotes the subgroup of GL𝑑(R) consisting of scalar matrices. To prove
the claim, suppose that we have 𝑧 ∈ R×, 𝑘 ∈ O𝑑(R) such that det(𝑧𝑘) > 0. If
we have det(𝑧) > 0, and in particular if 𝑑 is even, then also det(𝑘) > 0, so that
𝑧𝑘 ∈ SO𝑑(R)R×

>0. If, on the other hand, 𝑑 is odd and det(𝑧) < 0, then −1 ∈ R× has
determinant −1, and is also an orthogonal matrix, so that 𝑧𝑘 = (−1 · 𝑧)(−1 · 𝑘) ∈
R×
>0 SO𝑑(R). This proves the claim, and hence the lemma. □

Proposition 4.2. We have canonical isomorphisms

𝒴 = G(𝐹 )∖G(A𝐹 )/𝑍+
∞𝐾

+
∞𝐾𝑓

and

𝐶 = 𝐹×
+ ∖A×

𝐹,𝑓/ nrd(𝐾𝑓 ) = 𝐹×∖(A×
𝐹,𝑓 × {±1}𝒱R(𝐷)∪𝒱H(𝐷))/ nrd(𝐾𝑓 ),

where 𝐹×
+ = {𝛼 ∈ 𝐹 : 𝑣(𝛼) > 0 for all 𝑣 ∈ 𝒱R(𝐷) ∪ 𝒱H(𝐷)}.

Proof. First we prove the first isomorphism. By Lemma 4.1, the inclusion 𝐺+
∞ →˓

𝐺∞ induces an injection

G(𝐹 )+∖(𝐺+
∞ ·G(A𝐹,𝑓 ))/𝑍+

∞𝐾
+
∞𝐾𝑓 →˓ G(𝐹 )+∖(𝐺∞ ·G(A𝐹,𝑓 ))/𝑍∞𝐾∞𝐾𝑓 .

Since the map det : 𝐾∞ → {±1}𝒱R(𝐷) is surjective, this injection is also a surjection.
Next, the same inclusion induces an injection

G(𝐹 )+∖(𝐺+
∞ ·G(A𝐹,𝑓 ))/𝑍+

∞𝐾
+
∞𝐾𝑓 →˓ G(𝐹 )∖(𝐺∞ ·G(A𝐹,𝑓 ))/𝑍+

∞𝐾
+
∞𝐾𝑓 .

By weak approximation, the map sign nrd: G(𝐹 ) → {±1}𝒱R(𝐷) is also surjective,
so this injection, too, is a surjection, and the first isomorphism is proven.

Next, we show that 𝐶 = 𝐹×
+ ∖A×

𝐹,𝑓/ nrd(𝐾𝑓 ). Indeed, by the Hasse–Schilling–

Maass Theorem [49, Theorem 33.15], the image of G(𝐹 )+ under the reduced norm
map is precisely 𝐹×

+ .
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The last isomorphism follows from the fact that the map 𝐹× → {±1}𝒱R(𝐷)∪𝒱H(𝐷)

is surjective. □

Applying Proposition 4.2, we have a map

𝜈 : 𝑊 → 𝐶 = 𝐹×∖({±1}𝒱R(𝐷)∪𝒱H(𝐷) × A×
𝐹,𝑓 )/nrd(𝐾𝑓 )

𝑤 = (𝑤∞, 𝑤𝑓 ) ↦→ 𝐹×(sign nrd(𝑤∞),nrd(𝑤𝑓 ))
−1 nrd(𝐾𝑓 ),

and we define, as in Section 3, the quotient 𝐶iso = 𝐶/𝜈(𝑊 ). We have a canonical
isomorphism

𝐶iso
∼= 𝐹×∖({±1}𝒱H(𝐷))× A×

𝐹,𝑓/ nrd(N(𝐾𝑓 )),(4.3)

and since N(𝐾𝑓 ) contains A×
𝐹,𝑓𝐾𝑓 , the group 𝐶iso is a quotient of

nrd(G(𝐹 )+)∖ nrd(G(A𝐹,𝑓 ))/ nrd(𝐾∞𝐾(N)A×
𝐹,𝑓 )=Cl𝐹 (N𝒱H(𝐷))/(Cl𝐹 (N𝒱H(𝐷)))𝑑.

Elements of 𝑊 act via isometries on 𝒴 by right multiplication.
The algebra T is commutative. It is generated by double cosets

𝑇𝒟 = 𝐾𝑓 diag(𝒟)𝐾𝑓 ,

where 𝒟 = (a1, . . . , a𝑑) ∈
(︁
A×
𝐹,𝑓/

∏︀
p Z

×
p

)︁𝑑
is such that for every p|𝛿𝐷N and for

every a𝑖 one has ordp(a𝑖) = 0, i.e. 𝒟 is a 𝑑-tuple of fractional ideals of 𝐹 that are
coprime to 𝛿𝐷N. The algebra T is a subalgebra of Z[𝐾𝑓∖G(A𝐹,𝑓 )/𝐾𝑓 ].

There is an involution on Z[𝐾𝑓∖G(A𝐹,𝑓 )/𝐾𝑓 ] – see [56, Ch. 1, §8.6(d)] – given
by inversion, which induces an involution 𝜄 on T. Explicitly, it is given by

𝜄 : T → T,

𝑇𝒟 ↦→ 𝑇𝒟−1 .

This involution is extended to T[𝑊 ] by defining it to be inversion on 𝑊 .
The algebra T[𝑊 ] is graded by 𝐶, the grading being defined on T by the condi-

tion that 𝑇𝒟 for 𝒟 as above belongs to the homogeneous piece of the image of

[𝒟]−1 =

𝑑∏︁
𝑖=1

[a𝑖]
−1 ∈ Cl𝐹 (N∞)

in the quotient 𝐶, and being induced on 𝑊 by the homomorphism 𝜈.

Definition 4.4. Let 𝐿 be a field. A Hecke eigensystem over 𝐿 is an 𝐿-algebra
homomorphism 𝑎 = (𝑎𝒟)𝒟 : 𝐿⊗T → 𝐿, 1⊗ 𝑇𝒟 ↦→ 𝑎𝒟. Let 𝑀 an (𝐿⊗T)-module.
The multiplicity in 𝑀 of a Hecke eigensystem (𝑎𝒟) is the 𝐿-dimension of the space
of all elements 𝑓 ∈𝑀 satisfying

𝑇𝒟𝑓 = 𝑎𝒟𝑓

for all 𝒟 ∈
(︁
A×
𝐹,𝑓/

∏︀
p Z

×
p

)︁𝑑
. A Hecke eigensystem in 𝑀 is a Hecke eigensystem

that has multiplicity at least 1 in 𝑀 .

Given a Hecke eigensystem (𝑎𝒟)𝒟 in 𝑀 and 𝜒 ∈ ̂︀𝐶, we say that (𝑎𝒟)𝒟 admits a

self-twist by 𝜒 if for all 𝒟 ∈
(︁
A×
𝐹,𝑓/

∏︀
p Z

×
p

)︁𝑑
satisfying 𝜒([𝒟]) ̸= 1 one has 𝑎𝒟 = 0.

In the case when 𝑅 contains all 𝑛-th roots of unity, where 𝑛 is the order of 𝜒, we
may view 𝜒 as taking values in 𝑅×, and then the condition of admitting a self-twist
is equivalent to the condition that for all 𝒟 one has 𝜒([𝒟]) · 𝑎𝒟 = 𝑎𝒟.

The prime ideal m𝑎 ⊂ T corresponding to 𝑎 = (𝑎𝒟)𝒟 is

m𝑎 = T ∩ ⟨𝑇𝒟 − 𝑎𝒟⟩𝐿 = ker(𝑎|T)
where 𝑎|T is the restriction of 𝑎 to T.

The following two lemmas will link the self-twist condition with Proposition 3.7.
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Lemma 4.5. Let 𝑀 be a graded T[𝑊 ]-module, and let 𝑐 ∈ 𝐶. Suppose that there

exists a field 𝐿, a character 𝜒 ∈ ̂︀𝐶iso∖𝑐⊥, and a Hecke eigensystem over 𝐿 in 𝐿⊗𝑀
admitting a self-twist by 𝜒. Then no element of T[𝑊 ]𝑐 acts invertibly on 𝑀 .

Proof. Let 𝑓 ∈ 𝐿 ⊗𝑀 be an eigenvector whose eigensystem has a self-twist by 𝜒.
We will show that every 𝑇 ∈ T[𝑊 ]𝑐 annihilates 𝑓 . First, let 𝑇 = 𝑡𝑤 ∈ T[𝑊 ]𝑐,
where 𝑤 ∈𝑊 and 𝑡 ∈ T𝑐𝜈(𝑤)−1 . Since 𝜒(𝑐𝜈(𝑤)−1) = 𝜒(𝑐) ̸= 1, we have 𝑡𝑓 = 0, and
therefore 𝑇𝑓 = 𝑤𝑡𝑓 = 0. Since T[𝑊 ]𝑐 is spanned by elements 𝑇 of this form, the
proof of the claim is complete. Finally, if an element of T[𝑊 ]𝑐 acted invertibly on
𝑀 , it would also act invertibly on 𝐿⊗𝑀 ; this proves the lemma. □

Lemma 4.6. Let 𝑅 be a domain, let 𝑀 be an (𝑅⊗T)-module that is finitely gener-
ated over 𝑅, let p ∈ MaxSpec(𝑅), and let 𝐸 be a simple T-submodule of 𝑅/p⊗𝑅𝑀 .
Then there exists a finite field extension 𝑆 of 𝑅/p and a Hecke eigensystem (𝑎𝒟)𝒟
over 𝑆 in 𝑆 ⊗𝑅𝑀 such that whenever 𝑇𝒟 ∈ T annihilates 𝐸, one has 𝑎𝒟 = 0.

Proof. Let m be the annihilator of 𝐸 in 𝑅/p ⊗ T, and let 𝑆 = (𝑅/p ⊗ T)/m be
the residue field of m. Since 𝑀 is finitely generated over 𝑅, the field 𝑆 is a finite
extension of 𝑅/p. The module 𝑆 ⊗𝑅/p 𝐸 is a 1-dimensional 𝑆-vector subspace of
𝑆 ⊗𝑅 𝑀 . For every 𝒟, define 𝑎𝒟 to be the image of 𝑇𝒟 in 𝑆. Then (𝑎𝒟)𝒟 is a
Hecke eigensystem with the claimed property. □

Fix an integer 𝑖 ∈ {0, . . . , 𝑑}. As in the introduction, let ∆ denote the Laplace
operator. If 𝑌 is either 𝒴 or 𝑌𝑐 for some 𝑐 ∈ 𝐶, and 𝜆 ∈ R, we will consider the
following 𝑅-modules ℱ(𝑌 ) attached to 𝑌 for suitable rings 𝑅:

∙ ℱ(𝑌 ) = Ω𝑖Δ=𝜆(𝑌 ), the space of real differential 𝑖-forms on 𝑌 on which ∆ acts by
multiplication by 𝜆, with 𝑅 = R,

∙ ℱ(𝑌 ) = ℋ𝑖(𝑌 ) = Ω𝑖Δ=0, the space of real harmonic 𝑖-forms, with 𝑅 = R,
∙ the homology group ℱ(𝑌 ) = 𝐻𝑖(𝑌,𝑅), where 𝑅 is any domain, e.g. Z or Z𝑝.

For each of these collections ℱ of 𝑅-modules one has a direct sum decomposition

ℱ(𝒴) =
⨁︁
𝑐∈𝐶

ℱ(𝑌𝑐),

which defines a 𝐶-grading on ℱ(𝒴). The Hecke algebra T[𝑊 ] naturally acts on
ℱ(𝒴), and the image T of 𝑅 ⊗ T in End(ℱ(𝒴)) is an 𝑅-algebra that is finitely
generated as an 𝑅-module. The algebraA inherits the 𝐶-grading and the involution
𝜄 from T[𝑊 ], and ℱ(𝒴) is a graded A-module in the sense of Section 3.3.

For 𝑐 ∈ 𝐶, let 𝑐⊥ be the set of 𝜒 ∈ ̂︀𝐶iso such that 𝜒(𝑐) = 1; for 𝑈 ⊂ 𝐶,
let 𝑈⊥ =

⋂︀
𝑐∈𝑈 𝑐

⊥.

Theorem 4.7. Let 𝑐 ∈ 𝐶. Let 𝑖 ≥ 0 be an integer.

(1) Let 𝜆 ∈ R. Then exactly one of the following two statements is true:

(i) there exist 𝜒 ∈ ̂︀𝐶iso ∖𝑐⊥ and a Hecke eigensystem over C in C⊗RΩ
𝑖
Δ=𝜆(𝒴)

admitting a self-twist by 𝜒;
(ii) there exists 𝑇 ∈ T[𝑊 ]𝑐 inducing, for all 𝑏 ∈ 𝐶, an isomorphism of R⊗T1-

modules

𝑇 : Ω𝑖Δ=𝜆(𝑌𝑏) → Ω𝑖Δ=𝜆(𝑌𝑐𝑏).

(2) At least one of the following two statements is true:

(i) there exist 𝜒 ∈ ̂︀𝐶iso ∖ 𝑐⊥ and a Hecke eigensystem over C in the module
C⊗R

⨁︀
𝜆∈R Ω𝑖Δ=𝜆(𝒴) admitting a self-twist by 𝜒;

(ii) for all 𝑏 ∈ 𝐶, the manifolds 𝑌𝑏 and 𝑌𝑐𝑏 are 𝑖-isospectral.
(3) Let 𝑝 be a prime number. Then exactly one of the following two statements is

true:
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(i) there exist 𝜒 ∈ ̂︀𝐶iso ∖𝑐⊥ and a Hecke eigensystem over F𝑝 in F𝑝⊗𝐻𝑖(𝒴,Z)
admitting a self-twist by 𝜒;

(ii) there exists 𝑇 ∈ T[𝑊 ]𝑐 inducing, for all 𝑏 ∈ 𝐶, an isomorphism of T1-
modules

𝑇 : 𝐻𝑖(𝑌𝑏,Z(𝑝)) → 𝐻𝑖(𝑌𝑐𝑏,Z(𝑝)).

(4) Let m be a maximal ideal of T1, let 𝑝 be the characteristic of T1/m. Then
exactly one of the following two statements is true:

(i) there exist 𝜒 ∈ ̂︀𝐶iso∖𝑐⊥ and a Hecke eigensystem over F𝑝 in F𝑝⊗𝐻𝑖(𝒴,Z)m
admitting a self-twist by 𝜒;

(ii) there exists 𝑇 ∈ T[𝑊 ]𝑐 inducing, for all 𝑏 ∈ 𝐶, an isomorphism of T1-
modules

𝑇 : 𝐻𝑖(𝑌𝑏,Z)m → 𝐻𝑖(𝑌𝑐𝑏,Z)m.
Proof.

(1) Take 𝑅 = R. Suppose that there are no 𝜒 and Hecke eigensystem as in the
statement. By Lemma 4.6, the graded A-module 𝑀 = Ω𝑖Δ=𝜆(𝒴) satisfies the
hypotheses of Proposition 3.7, so there exists 𝑇 ′ ∈ R⊗A𝑐 that acts invertibly
on 𝑀 . The subgroup A𝑐 generates the real vector space R ⊗ A𝑐, and being
an isomorphism is a non-empty Zariski-open condition, so there also exists
𝑇 ∈ A𝑐, and therefore also 𝑇 ∈ T[𝑊 ]𝑐, realising an isomorphism as claimed.
The converse follows from Lemma 4.5.

(2) This follows immediately from (1).
(3) Take 𝑅 = Z(𝑝). Suppose, once again, that there are no 𝜒 and Hecke eigensystem

as in the statement. By Lemma 4.6, the graded A-module 𝑀 = 𝐻𝑖(𝒴,Z(𝑝))
satisfies the hypotheses of Proposition 3.7, so there exists 𝑇 ′ ∈ Z(𝑝) ⊗A𝑐 that
acts invertibly on 𝑀 . Clearing denominators and lifting to T[𝑊 ], we obtain a
𝑇 ∈ T[𝑊 ]𝑐 as required. The converse follows from Lemma 4.5.

(4) The proof is identical to that of the previous part, with 𝑅 = Z𝑝 and 𝑀 =
𝐻𝑖(𝒴,Z)m. □

Remark 4.8. Notice that in part (2) there is no claim that the isospectrality
is realised by a Hecke operator, and we do not get an equivalence but only one
implication.

The group 𝐺∞ acts by unitary operators on the complex Hilbert space

L2(G(𝐹 )+∖G(A𝐹 )/𝑍∞𝐾𝑓 )

of square-integrable functions G(𝐹 )+∖G(A𝐹 )/𝑍∞𝐾𝑓 → C, and also, for each 𝑐 ∈ 𝐶,

on the analogously defined space L2(Γ𝑐∖𝐺∞/𝑍∞).

Definition 4.9. Let 𝑐1, 𝑐2 ∈ 𝐶. We say that the groups Γ𝑐1 and Γ𝑐2 are represen-
tation equivalent if there is an isomorphism of unitary 𝐺∞-representations

L2(Γ𝑐1∖𝐺∞/𝑍∞) ∼= L2(Γ𝑐2∖𝐺∞/𝑍∞).

The Hecke algebra T[𝑊 ] naturally acts on L2(G(𝐹 )+∖G(A𝐹 )/𝑍∞𝐾𝑓 ), making

the L2-space a 𝐶-graded T[𝑊 ]-module.

Theorem 4.10. Let 𝑐 ∈ 𝐶. Then at least one of the following two statements is
true:

(i) there exist 𝜒 ∈ ̂︀𝐶iso ∖ 𝑐⊥ and a Hecke eigensystem over C in the mod-

ule L2(G(𝐹 )+∖G(A𝐹 )/𝑍∞𝐾𝑓 ) admitting a self-twist by 𝜒;
(ii) for all 𝑏 ∈ 𝐶 the groups Γ𝑏 and Γ𝑐𝑏 are representation equivalent.
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Proof. Suppose that there are no 𝜒 and Hecke eigensystem as in the statement.
Fix 𝑏 ∈ 𝐶. By [21] (see also [24]), there are decompositions into Hilbert orthogonal
direct sums of isotypical unitary representations of 𝐺∞ with finite multiplicities

L2(G(𝐹 )+∖G(A𝐹 )/𝑍∞𝐾𝑓 ) ∼=
̂︂⨁︁

Π
𝑉 (Π),

and, for all 𝑐′ ∈ 𝐶,

L2(Γ𝑐′∖𝐺∞/𝑍∞) ∼=̂︂⨁︁
Π
𝑉 (Π)𝑐′ ,

both sums indexed by pair-wise non-isomorphic irreducible unitary representations
Π of G(A𝐹 ). The action of N(𝐾𝑓 )/𝐾𝑓×𝑍∞ commutes with that of 𝐺∞, and 𝐾∞ is
contained in 𝐺∞, so each 𝑉 (Π) is also a T[𝑊 ]-module, and each 𝑉 (Π) is a graded
module with 𝑐′-component 𝑉 (Π)𝑐′ .

Let Π be an irreducible unitary representation of 𝐺∞. We claim that Π occurs
with the same multiplicities in 𝑉 (Π)𝑏 and in 𝑉 (Π)𝑐𝑏. We have a Hilbert direct sum
decomposition of isotypical unitary finite-dimensional representations of 𝐾∞

𝑉 (Π)|𝐾∞
∼=̂︂⨁︁

𝜎
𝑉 (Π)(𝜎),

again compatible with the grading, and where each summand is preserved by T[𝑊 ].
Let 𝜎 be an irreducible unitary representation of𝐾∞ such that 𝑉 (Π)(𝜎) ̸= 0, so that
it is enough to prove that dim𝑉 (Π)(𝜎)𝑏 = dim𝑉 (Π)(𝜎)𝑐𝑏. Let 𝑅 = C and let A be
the image of C ⊗ T[𝑊 ] in the endomorphism algebra of the finite-dimensional C-
vector space 𝑉 (Π)(𝜎), so that A is a finite-dimensional C-algebra. By Lemma 4.6
the graded A-module 𝑀 = 𝑉 (Π)(𝜎) satisfies the hypotheses of Proposition 3.7, so
there exists 𝑇 ∈ A𝑐 that acts invertibly on 𝑀 , therefore realising an isomorphism

𝑇 : 𝑉 (Π)(𝜎)𝑏 → 𝑉 (Π)(𝜎)𝑐𝑏.

This proves the desired equality of dimensions, and therefore the desired equality of
multiplicities for Π. Since Π was arbitrary, we obtain an isomorphism as claimed.

□

For the rest of the section, fix a degree 𝑖 ∈ Z≥0, and a prime number 𝑝, and let
A be the image of T[𝑊 ] in EndZ𝐻𝑖(𝒴,Z)free, so that 𝐻𝑖(𝒴,Z)free is a graded A-
module. For every 𝑐 ∈ 𝐶 there is a canonical positive definite pairing on ℋ𝑖(𝑌𝑐) [4,
Notation 3.2 and Lemma 3.3], [50]. By the Hodge and de Rham theorems, this har-
monic forms pairing induces a non-degenerate R-valued pairing on 𝐻𝑖(𝑌𝑐,R). The
𝑖-th regulator Reg𝑖(𝑌𝑐) of 𝑌𝑐 is defined to be the covolume of the lattice 𝐻𝑖(𝑌𝑐,Z)free
in 𝐻𝑖(𝑌𝑐,R).

Define 𝒩 = {m ∩ 𝜄(m) : m ∈ MaxSpec(Z𝑝 ⊗T1)}.

Lemma 4.11. Define a pairing on 𝑀 = 𝐻𝑖(𝒴,Z)free induced by the harmonic
forms pairing on the summands 𝐻𝑖(𝑌𝑐,Z)free for 𝑐 ∈ 𝐶 and by making the distinct
summands pairwise orthogonal. Then this defines a polarisation on 𝑀 in the sense
of Definition 3.10. Moreover, for every n ∈ 𝒩 the graded Z𝑝 ⊗ A-module 𝑀n is
polarisable.

Proof. The adjoint of each 𝑇 ∈ T with respect to the harmonic forms pairing
is 𝜄(𝑇 ), and 𝑊 acts by isometries (see also Remark 3.11), so the pairing defines
a polarisation on the graded module ℋ𝑖(𝒴). Moreover, the Hodge–de Rham iso-
morphism between ℋ𝑖(𝒴) and 𝐻𝑖(𝒴,R) is A-equivariant, so the harmonic forms
pairing is an R-valued polarisation on the A-module 𝑀 . The last assertion follows
from Proposition 3.27. □

Lemma 4.12. Let 𝑐1, 𝑐2 ∈ 𝐶, let 𝑀 = 𝐻𝑖(𝒴,Z)free, and suppose that 𝑀𝑐1 and
𝑀𝑐2 are linked in the sense of Definition 3.1. Then:
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(1) we have

𝒞𝑐1,𝑐2(𝑀) =
Reg𝑖(𝑌𝑐1)

2

Reg𝑖(𝑌𝑐2)
2
,

where recall that the invariant 𝒞𝑐1,𝑐2(𝑀) was defined in Definition 3.18;
(2) we have

Reg𝑖(𝑌𝑐1)
2

Reg𝑖(𝑌𝑐2)
2
∈ Q×;

(3) for every prime number 𝑝 is a prime number and for all n ∈ 𝒩 , the graded
pieces (𝑀n)𝑐1 and (𝑀n)𝑐2 are linked, and we have

𝒞𝑐1,𝑐2(𝑀) ≡
∏︁
n∈𝒩

𝒞𝑐1,𝑐2(𝑀n) mod (Z×
𝑝 )

2,

where 𝒞𝑐1,𝑐2(𝑀) ∈ Q× is viewed as an element of Q×
𝑝 .

Proof. (1) By definition, Reg𝑖(𝑌𝑐1)
2 is the determinant of the Gram matrix of

the harmonic forms pairing with respect to any Z-basis of 𝐻𝑖(𝑌𝑐1 ,Z)free, and
similarly for 𝑌𝑐2 . The claim therefore follows from Lemma 4.11 and Proposi-
tion 3.19.

(2) The assertion follows from combining part (1) and Corollary 3.20.
(3) The assertion follows from Lemma 3.23, Lemma 4.11, and Proposition 3.27. □

Theorem 4.13. Let 𝑐 ∈ 𝐶. Then exactly one of the following two statements is
true:

(i) there exist 𝜒 ∈ ̂︀𝐶iso ∖ 𝑐⊥ and a Hecke eigensystem over C in C ⊗R ℋ𝑖(𝒴)
admitting a self-twist by 𝜒;

(ii) for all 𝑏 ∈ 𝐶 the graded pieces 𝐻𝑖(𝑌𝑏,Z)free and 𝐻𝑖(𝑌𝑐𝑏,Z)free are linked.

Proof. Suppose that there are no 𝜒 and Hecke eigensystem as in the statement. The
isomorphism between ℋ𝑖(𝒴) and 𝐻𝑖(𝒴,R) is A-equivariant. Lemma 4.6, applied
to 𝑀 = 𝐻𝑖(𝒴,Z)free, and Corollary 3.8 imply that 𝑀𝑐1 and 𝑀𝑐2 are linked. The
converse follows from Lemma 4.5. □

Theorem 4.14. Let 𝑐 ∈ 𝐶, and let 𝑝 be a prime number, and let 𝑀 = 𝐻𝑖(𝒴,Z)free.
(1) Let n ∈ 𝒩 . Then at least one of the following two statements is true:

(i) there exist 𝜒 ∈ ̂︀𝐶iso ∖𝑐⊥ and a Hecke eigensystem over F𝑝 in F𝑝⊗(𝑀/n𝑀)
admitting a self-twist by 𝜒;

(ii) for all 𝑏 ∈ 𝐶, the graded pieces (𝑀n)𝑏 and (𝑀n)𝑐𝑏 are linked, and we have

𝒞𝑏,𝑐𝑏(𝑀n) ∈ Z×
𝑝 ;

(2) At least one of the following two statements is true:

(i) there exist 𝜒 ∈ ̂︀𝐶iso ∖ 𝑐⊥ and a Hecke eigensystem over F𝑝 in F𝑝 ⊗ 𝑀
admitting a self-twist by 𝜒;

(ii) for all 𝑏 ∈ 𝐶, the graded pieces 𝑀𝑏 and 𝑀𝑐𝑏 are linked, and we have

Reg𝑖(𝑌𝑏)
2

Reg𝑖(𝑌𝑐𝑏)
2
∈ Z×

(𝑝).

Proof. (1) Suppose that there are no 𝜒 and Hecke eigensystem in F𝑝 ⊗ (𝑀/n𝑀)
as in the statement. By Lemma 4.6 the assumptions of Proposition 3.7 are
satisfied for 𝑀n, so there exists 𝑇 ∈ A𝑐 that acts invertibly on 𝑀n. The result
follows from Lemma 3.22.

(2) Suppose that there are no 𝜒 and Hecke eigensystem in F𝑝 ⊗ 𝑀 as in the
statement, and let 𝑏 ∈ 𝐶. By the same argument as in part (1), the graded
pieces 𝑀𝑏 and 𝑀𝑐𝑏 are linked. The claimed equality then follows by combining
Lemma 4.12 and part (1) of the present theorem. □
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5. Self-twists in characteristic 0 and automorphic induction

In this section we keep the notation of Section 4, but we assume that 𝑑 = 2,
i.e. that 𝐷 is a quaternion algebra. In particular we have 𝑍∞ = 𝑍+

∞. All group
representations will be on complex Hilbert spaces.

In subsections 5.1–5.3 we fix the notation and collect well known results about
the representation theory of GL2 and of its inner forms. General references for
these facts are [22, Appendix B] [23], [28].

Then in subsection 5.4 we will prove Theorem D for representation equivalence,
Ω∙-, Ω0-, and ℋ∙-isospectrality.

Two functorial transfers that will be important for us are the automorphic in-
duction [34], [23, §13.4], and the Jacquet–Langlands transfer [28], [23, §19.4].

5.1. Automorphic representations of GL1. In this section, we fix some notation
for Hecke characters. For a general reference, see e.g. [33, Ch. XIV].

Let 𝐺 be a locally compact group. Recall that a quasi-character of 𝐺 is a
continuous homomorphism 𝐺→ C×, and a character of 𝐺 is a quasi-character that
is unitary.

Every quasi-character of R× is of the form

ΨR(𝑘, 𝑠) : 𝑥 ↦→ sign(𝑥)𝑘|𝑥|𝑠

for a unique pair (𝑘, 𝑠) ∈ Z/2Z× C.
Every quasi-character of C× is of the form

ΨC(𝑘, 𝑠) : 𝑧 ↦→
(︂
𝑧

|𝑧|

)︂𝑘
|𝑧|2𝑠

for a unique pair (𝑘, 𝑠) ∈ Z× C.
In both cases, such a quasi-character is unitary if and only if 𝑠 ∈ 𝑖R.
If 𝐸 is a non-achimedean local field, p is the maximal ideal of the ring of integers

of 𝐸, and Ψ is a quasi-character of 𝐸×, then there exists 𝑚 ∈ Z≥0 such that Ψ is
trivial on 1 + p𝑚. The conductor of Ψ is p𝑚, where 𝑚 is the smallest such integer.

A Hecke quasi-character of 𝐹 is a quasi-character of 𝐹×∖A×
𝐹 , and a Hecke char-

acter of 𝐹 is a character of 𝐹×∖A×
𝐹 .

Every Hecke quasi-character Ψ of 𝐹 is of the form

Ψ =
∏︁
𝑣

Ψ𝑣

for quasi-characters Ψ𝑣 of 𝐹×
𝑣 , where 𝑣 runs over places of 𝐹 . For every infinite

place 𝑣, we define 𝑘𝑣 and 𝑠𝑣 by writing Ψ𝑣 = Ψ𝐹𝑣
(𝑘𝑣, 𝑠𝑣). Note that this definition

depends on identifications between 𝐹𝑣 and C for every complex place 𝑣. Replacing
a chosen identification with its complex conjugate does not change 𝑠𝑣 but negates
𝑘𝑣. Everything that we say in this section is insensitive to this ambiguity, as long
as we impose the following convention: whenever 𝐿/𝐹 is an extension of number
fields, 𝑣 is a complex place of 𝐹 , and 𝑤, 𝑤′ are places of 𝐿 extending 𝑣, we always
choose isomorphisms 𝐿𝑤 ∼= C and 𝐿𝑤′ ∼= C that extend the same arbitrarily chosen
isomorphism 𝐹𝑣 ∼= C.

A Hecke quasi-character Ψ is called algebraic if for every real place 𝑣 we have
𝑠𝑣 ∈ Z and for every complex place 𝑣 we have 𝑠𝑣 + 𝑘𝑣/2 ∈ Z. If Ψ is an algebraic
Hecke character, then for every embedding 𝜏 : 𝐹 → C there exists a uniquely de-
termined 𝑞𝜏 ∈ Z such that for all 𝛼 ∈ 𝐹× that are positive at all real places we
have ∏︁

𝑣|∞

Ψ𝑣(𝛼) =
∏︁

𝜏 : 𝐹→C
(𝜏(𝛼))𝑞𝜏 ,
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and the products run over all infinite places 𝑣, respectively embeddings 𝜏 : 𝐹 → C.
We refer to the collection (𝑞𝜏 )𝜏∈Hom(𝐹,C) as the type of an algebraic Hecke character.

5.2. Representations of GL2 over local fields. Throughout this subsection,
let 𝐸 be a local field. We will fix the required notation and briefly recall the
relevant facts for irreducible representations of GL2(𝐸). General references for this
subsection are [22, Appendix B] and [28, §5-6, 14-15].

If 𝐿 is a quadratic étale 𝐸-algebra, i.e. either a quadratic field extension of 𝐸
or a direct product 𝐸 × 𝐸, then there is an automorphic induction functor AI𝐿𝐸
from the category of irreducible representations of GL1(𝐿) to that of irreducible
representations of GL2(𝐸). If 𝜎 is the non-trivial 𝐸-linear automorphism of 𝐿,

then for all characters Ψ of 𝐿× we have AI𝐿𝐸(Ψ
𝜎) = AI𝐿𝐸(Ψ).

If 𝐴 is a quaternion algebra over 𝐸, then the local Jacquet–Langlands correspon-
dence [28] attaches to every irreducible representation Π of 𝐴× a representation
JL𝐴(Π) of GL2(𝐸), well-defined up to isomorphism, sometimes referred to as the
Jacquet-Langlands transfer of Π from 𝐴× to GL2. If 𝐴 is split, then JL𝐴(Π) is
isomorphic to Π. We will say more about the properties of JL𝐴(Π) in some special
cases below.

5.2.1. Archimedean fields. In this subsection, assume that 𝐸 is Archimedean.
Given an irreducible representation Π of GL2(𝐸) on a vector space 𝑉 , its central

character is the group homomorphism 𝜁Π : 𝐸× → C× characterised by the property
that for all 𝑥 ∈ 𝐸× and all 𝑣 ∈ 𝑉 one has Π(𝑥)(𝑣) = 𝜁Π(𝑥)𝑣.

Let 𝐾 be a compact subgroup of GL2(𝐸). The restriction of every representa-
tion of GL2(𝐸) to 𝐾 is semisimple. Fix a full set of representatives 𝑢 of isomor-
phism classes of irreducible representations of 𝐾. The 𝐾-type of a representation Π
of GL2(𝐸) is the multiset of representatives 𝑢 with multiplicities dimHom𝐾(𝑢,Π).

Given an irreducible representation Π of GL2(𝐸) or of H×, the Casimir operator,
which we take to be the negation of [9, Chapters 1 and 2] (see also [10, Theorem
2.2.1] in the case of GL2(R)), acts as a scalar on a dense subspace of the underlying
vector space. We call this scalar the Casimir eigenvalue of Π. Note that the
definition of the Casimir operator depends on a choice of scalar multiple of the
Killing form, and we choose the normalisation for which, in the case of GL2(𝐸),
the quotient by a maximal compact subgroup has constant curvature −1, and in
the case of H×, the form agrees with that for GL2(R) after complexification.

Isomorphism classes of irreducible representations of SO2(R) have dimension 1
and are parametrised by integers, with 𝑘 ∈ Z corresponding to

𝑟(𝑘) :

(︂
cos 𝜃 sin 𝜃
− sin 𝜃 cos 𝜃

)︂
↦→ 𝑒𝑖𝑘𝜃.

Isomorphism classes of irreducible representations of SU2(C) are parametrised
by nonnegative integers, with 𝑘 ∈ Z≥0 corresponding to the representation

𝑠(𝑘) = Sym𝑘 C2,

which has dimension 𝑘+1, where C2 is equipped with the standard action of SU2(C).
Isomorphism classes of irreducible representations of H× are parametrised by

elements of Z≥2 × C, with (𝑘, 𝜇) ∈ Z≥2 × C corresponding to the representation

𝑡(𝑘, 𝜇) = Sym𝑘−2 C2 ⊗ nrd𝜇/2,

which has dimension 𝑘 − 1, where C2 is equipped with the action of H× induced
by the map H× → SL2(C) defined by ℎ ↦→ nrd(ℎ)−1/2𝜄(ℎ) for some isomor-
phism 𝜄 : C ⊗R H ∼= M2(C). The eigenvalue of the Casimir operator on 𝑡(𝑘, 𝜇)
is 𝑘

2 (1−
𝑘
2 ) and the central character of 𝑡(𝑘, 𝜇) is ΨR(𝑘, 𝜇).
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Every irreducible representation of GL2(R) is isomorphic to one from exactly
one of the following families.

∙ Irreducible principal series PSR(Ψ1,Ψ2), where Ψ1,Ψ2 are quasi-characters Ψ𝑖 =
ΨR(𝑘𝑖, 𝑠𝑖) : R× → C×, 𝑥 ↦→ sign(𝑥)𝑘𝑖 |𝑥|𝑠𝑖 such that 𝑠 = 1

2 (𝑠1 − 𝑠2 + 1) and 𝑘 =
𝑘1 − 𝑘2 satisfy 2𝑠 /∈ 𝑘 + 2Z.

∙ Discrete series and limits of discrete series DS(𝑘, 𝜇), where 𝑘 ≥ 1 is an integer
and 𝜇 ∈ C.

∙ Finite-dimensional representations FR(𝑘,Ψ) = Sym𝑘−2 C2⊗(Ψ∘det), where 𝑘 ≥ 2
is an integer and Ψ is a quasi-character of R×.

Representation SO2(R)-type Casimir central
eigenvalue character

PSR(Ψ1,Ψ2) {𝑟(𝑚) : 𝑚 ∈ 𝑘 + 2Z} 𝑠(1− 𝑠) Ψ1Ψ2

DS(𝑘, 𝜇) {𝑟(𝑚) : 𝑚 ∈ 𝑘 + 2Z, |𝑚| ≥ 𝑘} 𝑘
2 (1−

𝑘
2 ) ΨR(𝑘, 𝜇)

FR(𝑘,Ψ) {𝑟(𝑚) : 𝑚 ∈ 𝑘 + 2Z, |𝑚| < 𝑘} 𝑘
2 (1−

𝑘
2 ) ΨR(𝑘, 𝑘 − 2)Ψ2

Every irreducible representation of GL2(C) is isomorphic to one from exactly
one of the following families.

∙ Irreducible principal series PSC(Ψ1,Ψ2), whereΨ1,Ψ2 are quasi-charactersΨ𝑖 : C× →
C×, 𝑧 ↦→

(︀
𝑧
|𝑧|
)︀𝑘𝑖 |𝑥|2𝑠𝑖 such that 𝑠 = 𝑠1 − 𝑠2 and 𝑘 = 𝑘1 − 𝑘2 satisfy 2𝑠 /∈ 𝑘 + 2Z

or |𝑠| < 1 + |𝑘|
2 .

∙ Finite-dimensional representations FC(𝑘, 𝑘
′,Ψ) = Sym𝑘−2 C2⊗Sym𝑘′−2 C̄2⊗(Ψ∘

det), where 𝑘, 𝑘′ ≥ 2 are integers, Ψ is a quasi-character of C×, and C2 denotes
the standard representation of GL2(C), while C̄2 denotes its composition with
complex conjugation.

Representation SU2(C)-type Casimir central
eigenvalue character

PSC(Ψ1,Ψ2) {𝑠(𝑚) : 𝑚 ∈ 𝑘 + 2Z,𝑚 ≥ |𝑘|} 1− 𝑘2

4 − 𝑠2 Ψ1Ψ2

FC(𝑘, 𝑘
′,Ψ) {𝑠(𝑚) : 𝑚 ∈ 𝑘 + 𝑘′ + 2Z, 𝑘(1− 𝑘

2 ) + 𝑘′(1− 𝑘′

2 ) ΨC(𝑘 − 𝑘′, 𝑘+𝑘
′−4
2 )Ψ2

|𝑘 − 𝑘′| ≤ 𝑚 ≤ 𝑘 + 𝑘′ − 4}

Lemma 5.1. Let 𝑉 be a finite-dimensional representation of 𝐾∞. Then there
exists 𝜅∞ > 0 such that for every irreducible representation Π∞ of 𝐺∞ one has

dimHom𝐾∞(𝑉,Π∞) ≤ 𝜅∞.

Proof. The assertion follows by inspection of the above lists of the irreducible rep-
resentations of GL2(𝐸) for 𝐸 = R and 𝐸 = C. □

The automorphic inductions AI from GL1 to GL2 are as follows.

∙ Extension R ⊂ C: AICR(ΨC(𝑘, 𝑠)) = DS(1 + |𝑘|, 2𝑠).
∙ Extension R ⊂ R×R: letΨ𝑖 = ΨR(𝑘𝑖, 𝑠𝑖) for 𝑖 = 1, 2 be ordered such that Re(𝑠1) ≥

Re(𝑠2). Then:

– AIR×R
R (Ψ2,Ψ1) = AIR×R

R (Ψ1,Ψ2) = PSR(Ψ1,Ψ2) if 𝑠1 − 𝑠2 + 1 /∈ 𝑘1 + 𝑘2 + 2Z;
– AIR×R

R (Ψ2,Ψ1) = AIR×R
R (Ψ1,Ψ2) = FR(𝑘,ΨR(𝑘2, 𝑠2+

1
2 )), where 𝑘 = 𝑠1−𝑠2+1,

if 𝑘 ∈ 𝑘1 + 𝑘2 + 2Z and 𝑘 ̸= 1;
– AIR×R

R (Ψ2,Ψ1) = AIR×R
R (Ψ1,Ψ2) = DS(1, 2𝑠1) = DS(1, 2𝑠2) if 𝑠1 = 𝑠2 and 𝑘1 ̸≡

𝑘2 mod 2.
∙ Extension C ⊂ C×C: letΨ𝑖 = ΨC(𝑘𝑖, 𝑠𝑖) for 𝑖 = 1, 2 be ordered such that Re(𝑠1) ≥

Re(𝑠2), 𝑠 = 𝑠1 − 𝑠2, and 𝑘 = 𝑘1 − 𝑘2. Then:

– AIC×C
C (Ψ2,Ψ1) = AIC×C

C (Ψ1,Ψ2) = PSC(Ψ1,Ψ2) if 2𝑠 /∈ 𝑘+2Z or |𝑠| < |𝑘|
2 +1;

– AIC×C
C (Ψ2,Ψ1) = AIC×C

C (Ψ1,Ψ2) = FC(𝑠 +
𝑘
2 + 1, 𝑠 − 𝑘

2 + 1,ΨC(𝑘2, 𝑠2 + 1
2 ))

otherwise.
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The Jacquet–Langlands transfer JLH from H× to GL2(R) is

JLH(𝑡(𝑘, 𝜇)) = DS(𝑘, 𝜇) for (𝑘, 𝜇) ∈ Z≥2 × C.

We now record the isomorphism classes of some representations of various com-
pact groups.

Let so2(R) and gl2(R) be the Lie algebras of SO2(R), respectively of GL2(R),
both equipped with the adjoint action of SO2(R). We have the following isomor-
phisms of SO2(R)-representations.

𝑖 C⊗R Λ𝑖(gl2(R)/so2(R))
0 𝑟(0)
1 𝑟(−2)⊕ 𝑟(2)
2 𝑟(0)

Now, let su2(C) and gl2(C) be the Lie algebras of SU2(C), respectively ofGL2(C),
both equipped with the adjoint action of SU2(C). We have the following isomor-
phisms of SU2(C)-representations.

𝑖 C⊗R Λ𝑖(gl2(C)/su2(C))
0 𝑠(0)
1 𝑠(2)
2 𝑠(2)
3 𝑠(0)

5.2.2. Non-archimedean fields. An additional general reference for this subsection
is [11], particularly Chapters 8 and 13.

Let 𝐸 be a 𝑝-adic field, let p be its maximal ideal. Let 𝐴 be the unique quaternion
division algebra over 𝐸. A representation of 𝐴× or of GL2(𝐸) is called smooth if
every vector in the underlying vector space is fixed by some compact open subgroup.
We will assume that all our representations are smooth without repeating it.

Every irreducible representation of 𝐴× is finite-dimensional. Every irreducible
representation of GL2(𝐸) is of exactly one of the following types:

∙ finite-dimensional representations: they are all of the form 𝑔 ↦→ 𝜑 ∘ det for a
quasi-character 𝜑 : 𝐸× → C×,

∙ irreducible principal series PS𝐸(Ψ1,Ψ2), where Ψ1,Ψ2 : 𝐸
× → C× are quasi-

characters such that Ψ1Ψ
−1
2 /∈ {| · |±1},

∙ special representations,
∙ supercuspidal representations.

The automorphic induction AI from GL1 to GL2 satisfies the following.

∙ An automorphic induction is never a special representation.
∙ Extension 𝐸 ⊂ 𝐸 × 𝐸: let Ψ1,Ψ2 : 𝐸

× → C× be quasi-characters.
– AI𝐸×𝐸

𝐸 (Ψ1,Ψ2) = PS𝐸(Ψ1,Ψ2) if Ψ1Ψ
−1
2 /∈ {| · |±1}.

– AI𝐸×𝐸
𝐸 (Ψ1,Ψ2) = 𝜑 ∘ det for some quasi-character 𝜑 : 𝐸× → C× otherwise.

∙ Quadratic field extension 𝐸 ⊂ 𝐿: let 𝜎 ∈ Gal(𝐿/𝐸) be the non-trivial element,
let 𝜒 : Gal(𝐿/𝐸) → C× be the non-trivial quadratic character, and let Ψ: 𝐿× →
C× be a quasi-character.
– AI𝐿𝐸(Ψ) is supercuspidal if Ψ ̸= Ψ𝜎.

– AI𝐿𝐸(Ψ) = PS𝐸(𝜑, 𝜑𝜒) for some quasi-character 𝜑 : 𝐸× → C× otherwise.

For 𝑟 ∈ Z≥0, let

𝐾0(p
𝑟) =

{︀(︀
𝑎 𝑏
𝑐 𝑑

)︀
: 𝑐 ≡ 0 mod p𝑟

}︀
⊂ GL2(Z𝐸)
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and

𝐾1(p
𝑟) =

{︀(︀
𝑎 𝑏
𝑐 𝑑

)︀
: 𝑑 ≡ 1 mod p𝑟, 𝑐 ≡ 0 mod p𝑟

}︀
⊂ 𝐾0(p

𝑟).

If Π is an irreducible representation of GL2(𝐸), then its conductor is p𝑛 where
𝑛 ∈ Z≥0 ∪ {∞} is minimal subject to the condition Π𝐾1(p

𝑛) ̸= 0. Let Π be an
irreducible representation, let p𝑛 be its conductor, and let 𝑖 ∈ Z≥𝑛. Then by [15]

the space Π𝐾1(p
𝑖) of fixed points has dimension 𝑛− 𝑖+ 1.

In 𝐴×, we define 𝐾0(p
0) to be the unit group of the unique maximal order in 𝐴×.

When we use the notation 𝐾0(p
0), it will be clear from the context whether it refers

to the subgroup of 𝐴× or GL2(Z𝐸).

Lemma 5.2. Let 𝐿/𝐸 be an étale quadratic extension, let 𝛿 be its discriminant,

let Ψ: 𝐿× → C× be a quasi-character such that AI𝐿𝐸(Ψ) is infinite-dimensional, and

let F be the conductor of Ψ. Then the conductor of AI𝐿𝐸(Ψ) is 𝛿 ·N𝐿/𝐸(F).

Proof. See [51, Table at the end of §1]. □

The Jacquet–Langlands transfer JL𝐴 from 𝐴× to GL2(𝐸) has the following prop-
erty: an irreducible representation Π of GL2(𝐸) is in the image of JL𝐴 if and only
if Π is special or supercuspidal.

Lemma 5.3. There exists 𝜅𝑓 > 0 such that for every irreducible representation Π𝑓
of G(A𝐹,𝑓 ) we have

dimΠ
𝐾𝑓

𝑓 ≤ 𝜅𝑓 .

Proof. Recall that𝐾(N) ⊂ 𝐾𝑓 , so that we have dimΠ
𝐾𝑓

𝑓 ≤ dimΠ
𝐾(N)
𝑓 . Write𝐾(N) =∏︀

p𝐾(p𝑚p) and Π𝑓 = ⊗′
pΠp, where ⊗′ denotes a restricted tensor product. Note

that for every p we have dimΠ
𝐾(p0)
p ≤ 1, and we have dimΠ

𝐾(N)
𝑓 =

∏︀
p dimΠ

𝐾(p𝑚p )
p .

Let p be such that 𝑚p > 0.

∙ If p is split in 𝐷, then by [15] (see also [51, Theorem 1.2.1 (ii)]) we have

dimΠ
𝐾(p𝑚p )
p ≤ dimΠ

𝐾1(p
2𝑚p )

p ≤ 2𝑚p + 1, which depends only on 𝐾𝑓 .

∙ If p is ramified in 𝐷, then consider the finite group 𝐺 = 𝐷×
p /(𝐹

×
p 𝐾(p𝑚p)),

and let 𝑑(𝐺) be the maximal dimension of an irreducible representation of 𝐺.

Since Πp is irreducible, 𝐹×
p acts via a character 𝜁 on Πp. Therefore Π

𝐾(p𝑚p )
p 𝜁−1

is an irreducible representation of 𝐺, hence of dimension at most 𝑑(𝐺), which
also depends only on 𝐾𝑓 .

This proves the existence of 𝜅𝑓 . □

5.3. Automorphic representations of GL2. For the duration of the subsection,
let G be one of the algebraic groups G or GL2 over 𝐹 .

For a general definition of an automorphic representation of G(A𝐹 ) and of cus-
pidality see [23, Definitions 6.3.5 and 6.5.1]. For our purposes, simpler definitions
in special cases will be sufficient.

A discrete automorphic representation of G(A𝐹 ) is an irreducible subrepresen-
tation of L2(G(𝐹 )∖G(A𝐹 )/R>0), where R>0 ⊂ Z(G(𝐹R)) =

∏︀
𝑣|∞ Z(G(𝐹𝑣)) is em-

bedded diagonally. For the relation with automorphic representations in the usual
sense see [23, Theorem 6.6.4]. Every automorphic representation of G(A𝐹 ) is dis-
crete and cuspidal, and every cuspidal automorphic representation of GL2(A𝐹 ) can
be identified with a discrete automorphic representation, see [23, Theorem 6.5.3].

Let Π be a discrete automorphic representation of G(A𝐹 ). Then Π can be
written as a restricted tensor product Π∞ ⊗ Π𝑓 =

⨂︀′
𝑣 Π𝑣 over the places 𝑣 of 𝐹 ,

where Π∞ is a representation of G(𝐹R), Π𝑓 is a representation of G(A𝐹,𝑓 ), and for
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each place 𝑣, the factor Π𝑣 is a representation of G(𝐹𝑣). The fixed point space(︁ ⨂︁′

p∤𝛿𝐷N

Πp

)︁𝐾𝑓

=
⨂︁

p∤𝛿𝐷N

Π
𝐾1(p

0)
p

is 1-dimensional, and admits an action of T, thus giving rise to a Hecke eigenvalue
system.

If Π is a discrete automorphic representation ofG(A𝐹 ) and 𝜒 is a Hecke character
of 𝐹 , we write Π⊗𝜒 as shorthand for the automorphic representation Π⊗C (𝜒∘nrd).

Theorem 5.4 (Strong Multiplicity 1 Theorem). Every cuspidal automorphic repre-

sentation occurs with multiplicity 1 in L2(G(𝐹 )∖G(A𝐹 )/R>0). Moreover, if Π and
Π′ are two cuspidal automorphic representations of G such that Π𝑣 is isomorphic
to Π′

𝑣 for all but finitely many places 𝑣 of 𝐹 , then Π and Π′ are isomorphic.

Proof. See [28], [3, Theorem 5.1 (b), (c)], see also [23, Theorems 11.4.3 and 11.7.2].
□

Theorem 5.5 (Automorphic induction). Let 𝐿/𝐹 be a quadratic extension of num-
ber fields and let 𝜎 be the generator of its Galois group, and let 𝜒 be the quadratic
Hecke character corresponding to the extension 𝐿/𝐹 by class field theory. Let Ψ be

a Hecke character of 𝐿. The automorphic induction AI𝐿𝐹 (Ψ) = ⊗′
𝑣 AI𝐹𝑣⊗𝐹𝐿

𝐹𝑣
(Ψ𝑣) is

an automorphic representation of GL2(A𝐹 ). The representation AI𝐿𝐹 (Ψ) is cuspidal
if and only if Ψ𝜎 ̸= Ψ. A cuspidal automorphic representation Π of GL2(A𝐹 ) is
the automorphic induction of a Hecke character of 𝐿 if and only if Π⊗ 𝜒 ∼= Π.

Proof. See [34], see also [23, Theorem 13.4.2]. □

Theorem 5.6 (Jacquet–Langlands correspondence). There exists a unique in-
jection JL𝐷 from the set of isomorphism classes of automorphic representations
of G(A𝐹 ) to the set of isomorphism classes of discrete automorphic representations
of GL2(A𝐹 ) satisfying JL𝐷𝑣 (Π𝑣) = JL𝐷(Π)𝑣 for all places 𝑣. The representation
JL𝐷(Π) is cuspidal if and only if Π is infinite-dimensional. When restricted to the
set of infinite-dimensional representations, the image consists of cuspidal automor-
phic representations Π such that for all places 𝑣, the local representation Π𝑣 is in
the image of JL𝐷𝑣 .

Proof. See [28], see also [23, Theorem 19.4.3]. □

Corollary 5.7. Keep the notation as in Theorem 5.5. Let Π be an automorphic
representation of G such that Π⊗𝜒 ∼= Π. Then Π is infinite-dimensional, and there
exists a Hecke character Ψ of 𝐿 such that JL𝐷(Π) = AI𝐿𝐹 (Ψ).

Proof. If Π is finite-dimensional, then it is 1-dimensional, and the hypothesis is
never satisfied, therefore Π is infinite-dimensional. By Multiplicity 1, Theorem
5.4, the Jacquet–Langlands correspondence, being local-global compatible, is also
compatible with twisting. Applying Theorems 5.5 and 5.6 therefore gives the state-
ment. □

Let g and k denote the Lie algebras of 𝐺∞ and 𝐾∞, respectively, both equipped
with the adjoint action of 𝐾+

∞.

Theorem 5.8 (Matsushima’s formula). We have

Ω𝑖(𝒴)C ∼=
⨁︁
Π

Hom𝐾+
∞
(C⊗R Λ𝑖(g/k),Π∞)⊗C Π

𝐾𝑓

𝑓 ,

where the sum ranges over automorphic representations Π of G(A𝐹 ) such that Π∞
is trivial on 𝑍∞. Moreover, the isomorphism is equivariant with respect to:
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∙ the Laplace operator on the left hand side and the Casimir operator acting on Π∞
on the right hand side, and

∙ the action of Hecke operators, acting on Π
𝐾𝑓

𝑓 on the right hand side.

Proof. This is a well-known adelic reformulation of the classical Matsushima for-
mula, see [8, §1.2]. The equivariance with respect to Hecke operators follows from
the canonicity of the correspondence in ibid. Note that the statement simplifies in
our situation due to Multiplicity 1, Theorem 5.4. □

Definition 5.9. Given a collection 𝑖 = (𝑖𝑣)𝑣 of non-negative integers indexed by
the infinite places 𝑣 of 𝐹 , we define

Ω𝑖(𝒴)C =
⨁︁
Π

Hom𝐾+
∞

(︁⨂︁
𝑣

C⊗R Λ𝑖𝑣 (g𝑣/k𝑣),Π∞

)︁
⊗C Π

𝐾𝑓

𝑓 .

Moreover, given a collection 𝜆 = (𝜆𝑣)𝑣 or real numbers indexed by the infinite

places 𝑣 of 𝐹 , define Ω
𝑖
Δ=𝜆(𝒴)C ⊂ Ω𝑖(𝒴)C to be the subspace consisting of dif-

ferential eigenforms under the Laplace operator on which the Laplace operator at

each infinite place 𝑣 has eigenvalue 𝜆𝑣. Let ℋ𝑖(𝒴)C = Ω
𝑖
Δ=0(𝒴)C be the space of

harmonic forms in Ω𝑖(𝒴)C, where 0 denotes the zero vector.

Corollary 5.10. For every 𝑖 ∈ Z≥0 and 𝜆 ∈ R, we have

Ω𝑖Δ=𝜆(𝒴)C =
⨁︁
𝜆

⨁︁
𝑖

Ω
𝑖
Δ=𝜆(𝒴)C, and ℋ𝑖(𝒴)C =

⨁︁
𝑖

ℋ𝑖(𝒴)C,

where the sums run over all collections 𝜆 = (𝜆𝑣)𝑣 satisfying
∑︀
𝑣 𝜆𝑣 = 𝜆, respectively

all collections 𝑖 = (𝑖𝑣)𝑣 satisfying
∑︀
𝑣 𝑖𝑣 = 𝑖.

5.4. Self-twist conditions. In this subsection we prove Theorem D for represen-
tation equivalence, Ω∙-, Ω0-, and ℋ∙-isospectrality.

5.4.1. Representation equivalence.

Proposition 5.11. Let 𝜒 be an order 2 Hecke character, let 𝐿/𝐹 be the cor-
responding quadratic extension, and let 𝜎 denote the non-trivial automorphism
of 𝐿/𝐹 . Let 𝑉 be a 𝐾+

∞-representation. Then every Hecke eigensystem over C
in the module 𝑀 = Hom𝐾+

∞
(𝑉,L2(G(𝐹 )∖G(A𝐹 )/𝑍∞𝐾𝑓 )) that admits a self-twist

by 𝜒 is attached to some automorphic representation Π = Π∞ ⊗Π𝑓 of G(A𝐹 ) such
that JL𝐷(Π) = AI𝐿𝐹 (Ψ) for a unitary Hecke character Ψ of 𝐿 satisfying all of the
following:

(1) for every place 𝑣 of 𝐹 that ramifies in 𝐷, there is a single place 𝑤 of 𝐿 above 𝑣,
and we have Ψ𝜎𝑤 ̸= Ψ𝑤;

(2) the parameters (𝑘𝑤, 𝑠𝑤) of the character Ψ satisfy the following conditions:
∙ for every real place 𝑣 of 𝐹 that extends to a complex place 𝑤 of 𝐿, we
have 𝑠𝑤 = 0 and 𝑘𝑤 is odd;

∙ for every real place 𝑣 of 𝐹 that extends to two real places 𝑤,𝑤′ of 𝐿, we
have 𝑠𝑤 + 𝑠𝑤′ = 0 and 𝑘𝑤 + 𝑘𝑤′ = 0 mod 2;

∙ for every complex place 𝑣 of 𝐹 that extends to two complex places 𝑤,𝑤′ of 𝐿,
we have 𝑠𝑤 + 𝑠𝑤′ = 0 and 𝑘𝑤 + 𝑘𝑤′ = 0.

Each such Hecke eigensystem has multiplicity dimΠ
𝐾𝑓

𝑓 ·dimHom𝐾+
∞
(𝑉,Π∞) (which

may be 0).

Proof. Hecke eigensystems over C in 𝑀 are attached to automorphic representa-
tions Π = Π∞⊗Π𝑓 of G(A𝐹 ) such that the central character of Π∞ vanishes on 𝑍∞,

and each such eigensystem has multiplicity dimΠ
𝐾𝑓

𝑓 · dimHom𝐾+
∞
(𝑉,Π∞). Hecke

eigensystems over C in L2(G(𝐹 )∖G(A𝐹 )/𝑍∞𝐾𝑓 ) that admit a self-twist by 𝜒 are
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exactly those attached to automorphic representations Π = Π∞⊗Π𝑓 of G(A𝐹 ) such
that Π⊗𝜒 ∼= Π and the central character of Π∞ vanishes on 𝑍∞. By Corollary 5.7,
such Π are exactly the ones satisfying

∙ Π is infinite-dimensional;
∙ JL𝐷(Π) = AI𝐿/𝐹 (Ψ) for some Hecke character Ψ of 𝐿;
∙ the central character of Π∞ vanishes on 𝑍∞.

By Theorem 5.6 and Theorem 5.5, the first two conditions are equivalent to JL𝐷(Π) =

AI𝐿𝐹 (Ψ) with Ψ𝜎 ̸= Ψ. Let Ψ be a Hecke character of 𝐿 such that Ψ𝜎 ̸= Ψ. By

Theorem 5.6 there exists Π such that AI𝐿𝐹 (Ψ) = JL𝐷(Π) if and only if AI𝐿𝐹 (Ψ) is
discrete series at the infinite places that are ramified in 𝐷, and special or supercus-
pidal at the finite places that are ramified in 𝐷. Let 𝑣 be a place of 𝐹 that ramifies
in 𝐷. If 𝑣 is an infinite place: by Subsection 5.2.1, the local component AI𝐿𝐹 (Ψ)𝑣 is
a discrete series representation if and only if 𝑣 extends to a complex place 𝑤 in 𝐿
and 𝑘𝑤 ̸= 0, equivalently there is a single place 𝑤 of 𝐿 above 𝑣 and Ψ𝜎𝑤 ̸= Ψ𝑤.

If 𝑣 is a finite place: by Subsection 5.2.2, the local component AI𝐿𝐹 (Ψ)𝑣 is special
or supercuspidal if and only there is a single place 𝑤 of 𝐿 above 𝑣 and Ψ𝜎𝑤 ̸= Ψ𝑤.
This proves that condition (1) of the conclusion of the proposition holds. By Sub-

section 5.2.1, the central character of AI𝐿𝐹 (Ψ) vanishing on 𝑍∞ is equivalent to
condition (2) in the conclusion. Since Ψ is trivial on 𝐿×, all the 𝑠𝑤 have the same
real part. Therefore condition (2) implies that this real part is 0, so that Ψ is
unitary. □

Definition 5.12. If 𝐿/𝐹 is a quadratic extension, then an L2-shady character of
𝐿 is a unitary Hecke character Ψ of 𝐿 such that 𝐿 and Ψ have all of the following
properties:

∙ the field 𝐿 and the character Ψ satisfy the conditions (1) and (2) in Proposi-
tion 5.11, so that in particular, by Theorems 5.5 and 5.6, there exists a unique
automorphic representation Π = Π∞⊗Π𝑓 ofG(A𝐹 ) satisfying JL𝐷(Π) = AI𝐿𝐹 (Ψ);

∙ we have Π
𝐾𝑓

𝑓 ̸= 0.

Theorem 5.13. Let 𝑐 ∈ 𝐶. Then at least one of the following two statements is
true:

(i) there exist a character 𝜒 ∈ ̂︀𝐶iso ∖ 𝑐⊥, with corresponding quadratic exten-

sion 𝐿/𝐹 , and an L2-shady character of 𝐿;
(ii) for all 𝑏 ∈ 𝐶 the groups Γ𝑏 and Γ𝑐𝑏 are representation equivalent.

Proof. This is an immediate consequence of Theorem 4.10 and Proposition 5.11. □

Remark 5.14. In Proposition 5.11, condition (1) at a real place 𝑣 of 𝐹 is equivalent
to the following: if 𝑣 ramifies in 𝐷, then 𝑣 extends to a complex place 𝑤 of 𝐿 and
we have 𝑘𝑤 ̸= 0.

It will sometimes be useful to reformulate the conditions of Proposition 5.11 as
follows.

Lemma 5.15. Let 𝐿/𝐹 be a quadratic extension, let 𝜎 denote the non-trivial au-
tomorphism of 𝐿/𝐹 , and let Ψ be a Hecke character of 𝐿. Then Ψ𝜎Ψ has finite
order if and only if all of the following conditions hold:

∙ for every real place 𝑣 of 𝐹 that extends to a complex place 𝑤 of 𝐿, we have 𝑠𝑤 = 0;
∙ for every real place 𝑣 of 𝐹 that extends to two real places 𝑤,𝑤′ of 𝐿, we have 𝑠𝑤+
𝑠𝑤′ = 0;

∙ for every complex place 𝑣 of 𝐹 that extends to two complex places 𝑤,𝑤′ of 𝐿, we
have 𝑠𝑤 + 𝑠𝑤′ = 0 and 𝑘𝑤 + 𝑘𝑤′ = 0.
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Proof. At a place of 𝐹 that extends to two places of 𝐿, the action of 𝜎 on Ψ swaps
the parameters (𝑘, 𝑠). At a real place 𝑣 of 𝐹 that extends to a complex place 𝑤
of 𝐿, the action of 𝜎 on Ψ negates 𝑘𝑤 and leaves 𝑠𝑤 unchanged. Finally, a Hecke
character of 𝐿 has finite order if and only if all its 𝑠 parameters are 0 and all its 𝑘
parameters at complex places are 0. Putting these together gives the lemma. □

Remark 5.16. When at least one real place of 𝐹 ramifies in 𝐿, the Hecke characters
appearing in Theorem 5.13 are partially algebraic Hecke characters in the sense
of [40, Section 5.5]. In fact, they must come from the construction given in the
proof of ibid., Proposition 41.

By omitting conditions from Theorem 5.13, we recover previously known results.

Corollary 5.17. Let 𝑐 ∈ 𝐶. Then at least one of the following two statements is
true:

(i) there exists a character 𝜒 ∈ ̂︀𝐶iso, with corresponding quadratic extension 𝐿/𝐹 ,
such that
(a) 𝜒(𝑐) = −1, i.e. 𝜒 ̸∈ 𝑐⊥, and
(b) for every place 𝑣 of 𝐹 that ramifies in 𝐷, there is a single place of 𝐿

above 𝑣;
(ii) for all 𝑏 ∈ 𝐶 the groups Γ𝑏 and Γ𝑐𝑏 are representation equivalent.

Remark 5.18. Corollary 5.17 seems much weaker than Theorem 5.13, but is suf-
ficient to recover previously known results. It would be interesting to know how
much weaker it actually is, specifically whether, given 𝐿/𝐹 as in Corollary 5.17,
there always exists a Ψ as in Theorem 5.13.

Corollary 5.19. Let N be an ideal of Z𝐹 coprime to 𝛿𝐷, and let 𝐾𝑓 =
∏︀

p𝑖‖N𝐾0(p
𝑖).

Let 𝑐 ∈ 𝐶. Then at least one of the following two statements is true:

(i) we have that
(a) 𝐷 is unramified at all finite places of 𝐹 , and
(b) there exists a quadratic extension 𝐿/𝐹 that is ramified at exactly the

same set of real places of 𝐹 as 𝐷 such that all primes of 𝐹 dividing N
with odd exponent are split in 𝐿, and such that all primes of 𝐹 whose
class in 𝐶iso is 𝑐 are inert in 𝐿;

(ii) for all 𝑏 ∈ 𝐶 the groups Γ𝑏 and Γ𝑐𝑏 are representation equivalent.

Proof. By Equation (4.3) and a local computation [58, eqns. (23.2.4) and (23.2.8),
Proposition 23.4.14], we have 𝐶iso = Cl𝐹 (𝒱H(𝐷))/⟨a2, p ramified in 𝐷, p𝑒‖N⟩. As-
sume that for some 𝑏 ∈ 𝐶 the groups Γ𝑏 and Γ𝑐𝑏 are not representation equivalent.
Let p be a finite place of 𝐹 that ramifies in 𝐷. Then the class of p is trivial in 𝐶iso,
so p splits in 𝐿; but this contradicts Corollary 5.17 (b). Therefore, no finite place
ramifies in 𝐷. Let 𝜒 and 𝐿/𝐹 be as in Corollary 5.17. By the expression of 𝐶iso as
a class group, 𝐿/𝐹 is unramified at all finite places of 𝐹 , split at all primes ideals
dividing N with odd exponent, and the set of real places of 𝐹 that ramify in 𝐿
is a subset of those that ramify in 𝐷. Corollary 5.17 (b) gives the other inclusion
between those sets of ramified real places. Let p be a finite place of 𝐹 whose class
in 𝐶iso equals 𝑐. Then 𝜒(p) ̸= 1 by Corollary 5.17 (a), so that p is inert in 𝐿. □

Remark 5.20. The groups of the form Γ𝑐 are exactly the ones of the form 𝒪×,
where 𝒪 is an Eichler order of level N. Corollary 5.19 is essentially the criterion
used in [38] to investigate isospectrality of a large number of pairs of hyperbolic
orbifolds of dimension 2 and 3, using [38, Theorem 2.17 and Theorem 2.19].

Corollary 5.21. Assume that there is a prime ideal p of Z𝐹 that is ramified in 𝐷,
and that there exists an element 𝑔 ∈ N(𝐾𝑓 ) such that the valuation 𝑣q(nrd(𝑔))
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is even for every finite place q ̸= p and such that 𝑣p(nrd(𝑔)) is odd. Then for
all 𝑐1, 𝑐2 ∈ 𝐶 the groups Γ𝑐1 and Γ𝑐2 are representation equivalent.

Proof. Let 𝑐1, 𝑐2 ∈ 𝐶 and assume that Γ𝑐1 and Γ𝑐2 are not representation equiva-
lent, and let 𝐿/𝐹 be as in Corollary 5.17. By definition of 𝐶iso, the class of nrd(𝑔)
in 𝐶iso is trivial. On the other hand, since 𝐶iso has exponent dividing 2, the valua-
tion assumptions imply that the class of nrd(𝑔) equals the class of p. This implies
that p splits in 𝐿, contradicting Corollary 5.17 (b). Therefore, the groups Γ𝑐1
and Γ𝑐2 are representation equivalent. □

Remark 5.22. Corollary 5.21 is essentially the same criterion as in [47, Section 3]:
the condition (H3) in that paper (with 𝑣0 = p) implies that we can take 𝑔 to be a
uniformiser of 𝐷p at 𝑣0 and 𝑔𝑣 = 1 for 𝑣 ̸= 𝑣0. One superficial difference is that
the representation equivalent groups in [47] are arithmetic subgroups of SL1(𝐷),
whereas ours are subgroups of GL1(𝐷); by choosing appropriate levels 𝐾𝑓 , our
method can be adapted to the SL1(𝐷) setting, but we chose to stick to GL1(𝐷)
for simplicity of the exposition. The similarity is not surprising: our Hecke eigen-
value systems with a self-twist exactly correspond to the endoscopic representations
studied in [31] and playing an important role in [47]. However, our method proves
representation equivalence without an analysis of the Labesse–Langlands multiplic-
ity formula.

5.4.2. Differential forms.

Proposition 5.23. Let 𝜒 be an order 2 Hecke character, with corresponding qua-
dratic extension 𝐿/𝐹 , let 𝜎 denote the non-trivial automorphism of 𝐿/𝐹 , and let
𝑖 = (𝑖𝑣)𝑣 and 𝜆 = (𝜆𝑣)𝑣 be as in Definition 5.9. Then the Hecke eigensystems

over C in Ω
𝑖
Δ=𝜆(𝒴)C that admit a self-twist by 𝜒 are the Hecke eigenvalue sys-

tems attached to an automorphic representation Π = Π∞ ⊗Π𝑓 of G(A𝐹 ) such that

JL𝐷(Π) = AI𝐿𝐹 (Ψ) for some unitary Hecke character Ψ of 𝐿 satisfying all of the
following conditions:

(1) for every place 𝑣 of 𝐹 that ramifies in 𝐷, there is a single place 𝑤 of 𝐿 above 𝑣,
and we have Ψ𝜎𝑤 ̸= Ψ𝑤;

(2) for every real place 𝑣 of 𝐹 that extends to a complex place 𝑤 of 𝐿 we have
∙ 𝑖𝑣 = 0 if 𝑣 is ramified in 𝐷;
∙ 𝑖𝑣 = 1 otherwise;

𝜆𝑣 = 0, and Ψ𝑤 = ΨC(𝑘, 0) with 𝑘 ∈ {±1};
(3) for every real place of 𝐹 that extends to two real places 𝑤, 𝑤′ of 𝐿 we have

𝑖𝑣 ∈ {0, 1, 2}, Ψ𝑤 = ΨR(𝑘, 𝑠) and Ψ𝑤′ = ΨR(𝑘
′, 𝑠′) where 𝑘 ≡ 𝑘′ mod 2, and

𝑠 = 𝑖𝑡 = −𝑠′ for 𝑡 ∈ R satisfying 1
4 + 𝑡2 = 𝜆𝑣;

(4) for every complex place 𝑣 of 𝐹 , extending to places 𝑤 and 𝑤′ of 𝐿, we have
Ψ𝑤 = ΨC(𝑘, 𝑠) and Ψ𝑤′ = ΨC(𝑘

′, 𝑠′) where either
∙ 𝑖𝑣 ∈ {0, 1, 2, 3}, 𝑘 = 𝑘′ = 0, and 𝑠 = 𝑖𝑡 = −𝑠′ with 𝑡 ∈ R satisfying
1 + 4𝑡2 = 𝜆𝑣; or

∙ 𝑖𝑣 ∈ {1, 2}, 𝑘 = −𝑘′ ∈ {±1}, and 𝑠 = 𝑖𝑡 = −𝑠′ with 𝑡 ∈ R satisfying
4𝑡2 = 𝜆𝑣;

each such Hecke eigenvalue system occurring with multiplicity 2𝑟 dimΠ
𝐾𝑓

𝑓 , where 𝑟
is the number of real places 𝑣 of 𝐹 for which one has 𝑖𝑣 = 1.

Proof. We apply Proposition 5.11 with 𝑉 = Ω
𝑖
Δ=𝜆(𝒴)C. Let Ψ and Π be as in

Proposition 5.11. For every infinite place 𝑤 of 𝐿, write 𝑠𝑤 = 𝑖𝑡𝑤.
Write 𝐾+

∞ =
∏︀
𝑣𝐾𝑣, with the product running over the infinite places of 𝐹 , and

for each such place 𝑣, let 𝐻𝑣 = Hom𝐾𝑣
(Λ𝑖𝑣 (g𝑣/k𝑣),Π𝑣).
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Let 𝑣 be a real place of 𝐹 that extends to a complex place 𝑤 of 𝐿. Then we have
AI𝐿𝐹 (Ψ)𝑣 = DS(1+ |𝑘𝑤|, 0). By the local computation in Section 5.2.1 the space 𝐻𝑣

is non-trivial if and only if either

∙ the place 𝑣 is unramified in 𝐷, 𝑖𝑣 = 1, 𝑘𝑤 ∈ {±1}, and 𝜆𝑣 = 0, in which
case dim𝐻𝑣 = 2; or

∙ the place 𝑣 is ramified in 𝐷, 𝑖𝑣 = 0, 𝑘𝑤 ∈ {±1}, and 𝜆𝑣 = 0, in which case
dim𝐻𝑣 = 1.

Let 𝑣 be a real place of 𝐹 that extends to two real places 𝑤, 𝑤′ of 𝐿. Then we
necessarily have AI𝐿𝐹 (Ψ)𝑣 = PS(Ψ𝑤,Ψ𝑤′). Moreover, the space 𝐻𝑣 is non-trivial if
and only if 𝑖𝑣 ∈ {0, 1, 2} and 𝜆𝑣 = 1

4 + 𝑡2𝑤. In this case, dim𝐻𝑣 = 2 if 𝑖𝑣 = 1, and
dim𝐻𝑣 = 1 otherwise.

Let 𝑣 be a complex place of 𝐹 , extending to two places 𝑤 and 𝑤′ of 𝐿. Then we
necessarily have AI𝐿𝐹 (Ψ)𝑣 = PS(Ψ𝑤,Ψ𝑤′). Moreover, the space 𝐻𝑣 is non-trivial if
and only if one of the following holds:

∙ 𝑘𝑤 = 0, 𝑖𝑣 ∈ {0, 1, 2, 3}, 𝜆𝑣 = 1 + 4𝑡2𝑤;
∙ 𝑘𝑤 ∈ {±1}, 𝑖𝑣 ∈ {1, 2}, 𝜆𝑣 = 4𝑡2𝑤.

When 𝐻𝑣 is non-trivial, we have dim𝐻𝑣 = 1.
Taking the tensor product of the spaces 𝐻𝑣 over all places 𝑣 gives the result. □

Definition 5.24. If 𝐿/𝐹 is a quadratic extension, and 𝑖 and 𝜆 are as in Proposi-

tion 5.23, then an (Ω
𝑖
Δ=𝜆)-shady character of 𝐿 is a unitary Hecke character Ψ of

𝐿 such that 𝐿 and Ψ have all of the following properties:

∙ the field 𝐿 and the character Ψ satisfy the conditions (1)–(4) in Proposition 5.23,
so that in particular, by Theorems 5.5 and 5.6, there exists a unique automorphic
representation Π = Π∞ ⊗Π𝑓 of G(A𝐹 ) satisfying JL𝐷(Π) = AI𝐿𝐹 (Ψ);

∙ we have Π
𝐾𝑓

𝑓 ̸= 0.

Theorem 5.25. Let 𝑐 ∈ 𝐶, let 𝑖 ∈ Z≥0, and let 𝜆 ∈ R≥0. Then exactly one of the
following two statements is true:

(i) there exist a character 𝜒 ∈ ̂︀𝐶iso ∖ 𝑐⊥, with corresponding quadratic exten-
sion 𝐿/𝐹 , collections 𝜆 = (𝜆𝑣)𝑣 and 𝑖 = (𝑖𝑣)𝑣 of real numbers, respectively
non-negative integers, indexed by the infinite places 𝑣 of 𝐹 , such that

∑︀
𝑣 𝜆𝑣 =

𝜆 and
∑︀
𝑣 𝑖𝑣 = 𝑖, and an (Ω

𝑖
Δ=𝜆)-shady character of 𝐿;

(ii) there exists 𝑇 ∈ T[𝑊 ]𝑐 inducing, for all 𝑏 ∈ 𝐶, an isomorphism of R ⊗T1-
modules

𝑇 : Ω𝑖Δ=𝜆(𝑌𝑏) → Ω𝑖Δ=𝜆(𝑌𝑐𝑏).

Proof. This is an immediate consequence of Theorem 4.7 (1), Corollary 5.10, and
Proposition 5.23. □

Definition 5.26. If 𝐿/𝐹 is a quadratic extension, with non-trivial automorphism 𝜎,
then an Ω*-shady character of 𝐿 is a unitary Hecke character Ψ of 𝐿 such that 𝐿
and Ψ have all of the following properties:

(1) for every place 𝑣 of 𝐹 that ramifies in 𝐷, there is a single place 𝑤 of 𝐿 above 𝑣,
and we have Ψ𝜎𝑤 ̸= Ψ𝑤;

(2) for every real place 𝑣 of 𝐹 that extends to a complex place 𝑤 of 𝐿 we have Ψ𝑤 =
ΨC(𝑘, 0) with 𝑘 ∈ {±1};

(3) for every real place of 𝐹 that extends to two real places 𝑤, 𝑤′ of 𝐿 we have
Ψ𝑤 = ΨR(𝑘, 𝑠) and Ψ𝑤′ = ΨR(𝑘

′, 𝑠′) where 𝑘 ≡ 𝑘′ mod 2 and 𝑠 = −𝑠′ ∈ 𝑖R;
(4) for every complex place 𝑣 of 𝐹 , extending to places 𝑤 and 𝑤′ of 𝐿, we have

Ψ𝑤 = ΨC(𝑘, 𝑠) and Ψ𝑤′ = ΨC(𝑘
′, 𝑠′) where 𝑘 = −𝑘′ ∈ {−1, 0, 1} and 𝑠 = −𝑠′ ∈

𝑖R;
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(5) the unique automorphic representationΠ ofG(A𝐹 ) such that JL𝐷(Π) = AI𝐿𝐹 (Ψ)

satisfies Π
𝐾𝑓

𝑓 ̸= 0.

Corollary 5.27. Let 𝑐 ∈ 𝐶. Then at least one of the following two statements is
true:

(i) there exist a character 𝜒 ∈ ̂︀𝐶iso ∖ 𝑐⊥, with corresponding quadratic exten-
sion 𝐿/𝐹 with non-trivial automorphism 𝜎, and an Ω∙-shady character of 𝐿;

(ii) for all 𝑏 ∈ 𝐶 the manifolds 𝑌𝑏 and 𝑌𝑐𝑏 are 𝑖-isospectral for all 𝑖 ≥ 0.

Proof. Suppose that part (i) does not hold. Then nor does part (i) of Theorem 5.25
for any 𝑖 and 𝜆. Thus part (ii) of Theorem 5.25 holds for every 𝑖 and 𝜆, whence we
deduce that part (ii) of the corollary holds. □

Definition 5.28. If 𝐿/𝐹 is a quadratic extension, with non-trivial automorphism
𝜎, then an Ω0-shady character of 𝐿 is a unitary Hecke character Ψ of 𝐿 such that
𝐿 and Ψ have all of the following properties:

(1) for every place 𝑣 of 𝐹 that ramifies in 𝐷, there is a single place 𝑤 of 𝐿 above 𝑣,
and we have Ψ𝜎𝑤 ̸= Ψ𝑤;

(2) for every real place 𝑣 of 𝐹 that extends to a complex place 𝑤 of 𝐿, the algebra 𝐷
is ramified at 𝑣 and Ψ𝑤 = ΨC(𝑘, 0) with 𝑘 ∈ {±1};

(3) for every real place of 𝐹 that extends to two real places 𝑤, 𝑤′ of 𝐿 we have
Ψ𝑤 = ΨR(𝑘, 𝑠) and Ψ𝑤′ = ΨR(𝑘

′, 𝑠′) where 𝑘 ≡ 𝑘′ mod 2 and 𝑠 = −𝑠′ ∈ 𝑖R;
(4) for every complex place 𝑣 of 𝐹 , extending to places 𝑤 and 𝑤′ of 𝐿, we have

Ψ𝑤 = ΨC(0, 𝑠) and Ψ𝑤′ = ΨC(0, 𝑠
′) where 𝑠 = −𝑠′ ∈ 𝑖R;

(5) the unique automorphic representationΠ ofG(A𝐹 ) such that JL𝐷(Π) = AI𝐿𝐹 (Ψ)

satisfies Π
𝐾𝑓

𝑓 ̸= 0.

Corollary 5.29. Let 𝑐 ∈ 𝐶. Then at least one of the following two statements is
true:

(i) there exist a character 𝜒 ∈ ̂︀𝐶iso ∖ 𝑐⊥, with corresponding quadratic exten-
sion 𝐿/𝐹 , and an Ω0-shady character Ψ of 𝐿;

(ii) for all 𝑏 ∈ 𝐶 the manifolds 𝑌𝑏 and 𝑌𝑐𝑏 are 0-isospectral.

Proof. The proof is completely analogous to that of Corollary 5.27. □

5.4.3. Cohomology.

Proposition 5.30. Let 𝜒 be an order 2 Hecke character, with corresponding qua-
dratic extension 𝐿/𝐹 , let 𝜎 denote the non-trivial automorphism of 𝐿/𝐹 , and let
𝑖 = (𝑖𝑣)𝑣 be as in Definition 5.9. Then the Hecke eigensystems over C in ℋ𝑖(𝒴)C
that admit a self-twist by 𝜒 are the Hecke eigenvalue systems attached to an auto-
morphic representation Π = Π∞ ⊗ Π𝑓 of G(A𝐹 ) such that JL𝐷(Π) = AI𝐿𝐹 (Ψ) for
some unitary Hecke character Ψ of 𝐿 satisfying all of the following:

(1) for every place 𝑣 of 𝐹 that ramifies in 𝐷, there is a single place 𝑤 of 𝐿 above 𝑣,
and we have Ψ𝜎𝑤 ̸= Ψ𝑤;

(2) every real place 𝑣 of 𝐹 extends to a complex place 𝑤 of 𝐿, and for all such
places we have

∙ 𝑖𝑣 = 0 if 𝑣 is ramified in 𝐷;
∙ 𝑖𝑣 = 1 otherwise;

and Ψ𝑤 = ΨC(𝑘, 0) with 𝑘 ∈ {±1};
(3) for every complex place 𝑣 of 𝐹 , extending to places 𝑤 and 𝑤′ of 𝐿, we have

Ψ𝑤 = ΨC(𝑘, 0) and Ψ𝑤′ = ΨC(𝑘
′, 0), where 𝑖𝑣 ∈ {1, 2}, 𝑘 = −𝑘′ ∈ {±1};

each such Hecke eigenvalue system occurring with multiplicity 2𝑟 dimΠ
𝐾𝑓

𝑓 , where 𝑟
is the number of real places 𝑣 of 𝐹 for which one has 𝑖𝑣 = 1.
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Proof. The result is obtained by specialising Proposition 5.23 to 𝜆 = 0. □

Definition 5.31. If 𝐿/𝐹 is a quadratic extension, with non-trivial automorphism
𝜎, then an ℋ∙-shady character of 𝐿 is a unitary Hecke character Ψ of 𝐿 such that
𝐿 and Ψ have all of the following properties:

(1) for every place 𝑣 of 𝐹 that ramifies in 𝐷, there is a single place 𝑤 of 𝐿 above 𝑣,
and we have Ψ𝜎𝑤 ̸= Ψ𝑤;

(2) every real place 𝑣 of 𝐹 extends to a complex place 𝑤 of 𝐿, and for all such
places we have Ψ𝑤 = ΨC(𝑘, 0) with 𝑘 ∈ {±1};

(3) for every complex place 𝑣 of 𝐹 , extending to places 𝑤 and 𝑤′ of 𝐿, we have
Ψ𝑤 = ΨC(𝑘, 0) and Ψ𝑤′ = ΨC(𝑘

′, 0), where 𝑘 = −𝑘′ ∈ {±1};
(4) the unique automorphic representationΠ ofG(A𝐹 ) such that JL𝐷(Π) = AI𝐿𝐹 (Ψ)

satisfies Π
𝐾𝑓

𝑓 ̸= 0.

Theorem 5.32. Let 𝑐 ∈ 𝐶, and let 𝑖 ∈ Z≥0. Then exactly one of the following two
statements is true:

(i) we have #𝒱R+#𝒱C ≤ 𝑖 ≤ #𝒱R+2#𝒱C and there exist a character 𝜒 ∈ ̂︀𝐶iso ∖
𝑐⊥, with corresponding quadratic extension 𝐿/𝐹 , and an ℋ∙-shady character
of 𝐿;

(ii) for all 𝑏 ∈ 𝐶 the graded pieces 𝐻𝑖(𝑌𝑏,Z)free and 𝐻𝑖(𝑌𝑐𝑏,Z)free are linked in
the sense of Definition 3.1, and we have

Reg𝑖(𝑌𝑏)
2

Reg𝑖(𝑌𝑐𝑏)
2
∈ Q×.

Proof. This is an immediate consequence of Theorem 4.13, Corollary 5.10, Propo-
sition 5.30, and Lemma 4.12. □

Remark 5.33. The range of 𝑖 appearing in Theorem 5.32 is sometimes called the
cuspidal range or the tempered range. Outside that range, the only automorphic
representations contributing to harmonic forms are non-cuspidal, and moreover by
Theorem 5.32 we get automatic rationality for the regulator quotient.

Definition 5.34. Let Ю and Я be fields and Э/Ю a quadratic étale algebra. A
collection (𝑞𝜏 )𝜏 ∈ {0, 1}Hom(Э,Я ) is balanced if for every 𝜏 ̸= 𝜏 ′ ∈ Hom(Э ,Я ) such
that 𝜏 |Ю = 𝜏 ′|Ю , we have {𝑞𝜏 , 𝑞𝜏 ′} = {0, 1}.

Proposition 5.35. Let 𝐿/𝐹 be a quadratic extension with 𝐿 totally complex, let Ψ
be a Hecke character of 𝐿, and let Ψalg = Ψ‖ · ‖−1/2. Then Ψ satisfies (2) and (3)
of Definition 5.31 if and only if Ψalg is an algebraic Hecke character whose type is
balanced.

Proof. This is well-known (see for instance [40, Lemma 4]). The type (𝑞𝜏 )𝜏 of Ψalg

is related to the parameters (𝑘𝑤)𝑤 of Ψ by the relations 𝑞𝜏 + 𝑞𝜏 = 1 and 𝑞𝜏 − 𝑞𝜏 =
𝑘𝜏 . □

Remark 5.36. The conditions on Ψalg also imply that for every complex embed-
ding 𝜏 of 𝐿 we have {𝑞𝜏 , 𝑞𝜏} = {0, 1}.

Corollary 5.37. Let 𝑐 ∈ 𝐶, and let 𝑖 ∈ Z≥0. Then at least one of the following
two statements is true:

(i) there exist a character 𝜒 ∈ ̂︀𝐶iso ∖ 𝑐⊥ corresponding to a quadratic exten-
sion 𝐿/𝐹 such that 𝐿 contains a CM subfield not contained in 𝐹 ;

(ii) for all 𝑏 ∈ 𝐶 we have

Reg𝑖(𝑌𝑐1)
2

Reg𝑖(𝑌𝑐2)
2
∈ Q×.
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Proof. Assume that the second statement does not hold, and apply Theorem 5.32
and Proposition 5.35 to get corresponding characters Ψ and Ψalg. By the Artin–
Weil theorem (see [59] for the statement and, for example, [43, Lemma 2.3.4] for
several proofs), the existence of an algebraic Hecke character of non-parallel type
forces 𝐿 to contain a CM subfield, and therefore a maximal one, 𝑀 , say. The type
of Ψalg descends to 𝑀 but not to 𝐹 , so that 𝐹 cannot contain 𝑀 . □

Remark 5.38. As we consider weaker and weaker notions of isospectrality, there
are fewer and fewer Hecke characters that can obstruct the respective isospectrality.
We find it instructive to list the conditions on the shady characters incrementally,
as follows.

The shady characters Ψ appearing in Corollary 5.27 (𝑖-isospectrality for all 𝑖)
are exactly the characters appearing in Theorem 5.13 (representation equivalence)
that satisfy the additional conditions:

∙ for every real place 𝑣 of 𝐹 that extends to a complex place 𝑤 of 𝐿 we have 𝑘𝑤 ∈
{±1}, and

∙ for every complex place 𝑣 of 𝐹 , extending to places 𝑤 and 𝑤′ of 𝐿, we have
𝑘𝑤 ∈ {−1, 0, 1}.
Assuming that 𝐿 and 𝐷 are ramified at the same set of real places of 𝐹 , the

shady characters Ψ appearing in Corollary 5.29 (0-isospectrality) are exactly the
characters appearing in Corollary 5.27 (𝑖-isospectrality for all 𝑖) that satisfy the
additional condition:

∙ for every complex place 𝑣 of 𝐹 , extending to places 𝑤 and 𝑤′ of 𝐿, we have 𝑘𝑤 = 0.

Assuming that 𝐿 is totally complex, the shady characters Ψ appearing in The-
orem 5.32 (rationality of regulator quotients) are exactly the characters appearing
in Corollary 5.27 (𝑖-isospectrality for all 𝑖) that satisfy the additional condition:

∙ for every complex place 𝑣 of 𝐹 , extending to places 𝑤 and 𝑤′ of 𝐿, we have 𝑘𝑤 ∈
{±1} and 𝑠𝑤 = 0.

5.5. Sparsity of non-matching Laplace eigenvalues. In this subsection we
show that Vignéras pairs of manifolds are always “almost isospectral”. The main
result is Theorem 5.43, which in particular implies Theorem C from the Introduc-
tion.

Notation 5.39. Let 𝑉 be a finite-dimensional representation of 𝐾∞ and Γ a dis-
crete cocompact subgroup of 𝐺∞. Then we set

Ω(𝑉,Γ) = Hom𝐾∞(𝑉,L2(Γ∖𝐺∞/𝑍∞)).

By ∆ we denote the operator on Ω(𝑉,Γ) induced by the Casimir operator on the
L2-space. If 𝑅 is a commutative ring, 𝑎 : 𝑅 → C is a ring homomorphism, and Ω
is an 𝑅C-module, we write Ω𝑅=𝑎 for the subspace of Ω consisting of all elements
𝜔 ∈ Ω such that one has 𝑟𝜔 = 𝑎(𝑟)𝜔 for all 𝑟 ∈ 𝑅.

Lemma 5.40. Let 𝑉 be a finite-dimensional representation of 𝐾∞. Then there
exists 𝜅 > 0 such that for every ring homomorphism 𝑎 : T1 → C, we have∑︁

𝑐∈𝐶
dimΩ(𝑉,Γ𝑐)T1=𝑎 ≤ 𝜅.

Proof. Let 𝑀 = Hom𝐾∞(𝑉,L2(G(𝐹 )+∖G(A𝐹 )/𝑍∞𝐾𝑓 ))T1=𝑎, which is a T-module
that is finite-dimensional over C, and satisfies

dim𝑀 =
∑︁
𝑐∈𝐶

dimΩ(𝑉,Γ𝑐)T1=𝑎.

The conclusion of the lemma is trivial if𝑀 = 0, so assume otherwise. Let A be the
image of TC in EndC(𝑀), which inherits the grading from T. Then A1 is a field,
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and A is a finite étale algebra over A1 of dimension at most #𝐶, so there are at
most #𝐶 Hecke eigensystems in 𝑀 . We have

dim𝑀 =
∑︁
𝑏

dim𝑀T=𝑏,

where 𝑏 ranges over Hecke eigensystems in 𝑀 . Let 𝑏 = (𝑏𝒟)𝒟 be a Hecke eigensys-
tem in 𝑀 . By Strong Multiplicity 1, Theorem 5.4, there exists a unique automor-
phic representation Π = Π∞ ⊗Π𝑓 of G(A𝐹 ) such that Π𝑓 corresponds to 𝑏, and Π

has multiplicity 1 in L2(G(𝐹 )+∖G(A𝐹 )/𝑍∞). We have

dim𝑀T=𝑏 = dimHom𝐾∞(𝑉,Π∞) · dimΠ
𝐾𝑓

𝑓 ≤ 𝜅∞ · 𝜅𝑓 ,
where 𝜅∞ and 𝜅𝑓 are as in Lemmas 5.1 and 5.3. Putting everything together, we
see that 𝜅 = (#𝐶) · 𝜅∞ · 𝜅𝑓 satisfies the conclusion of the lemma. □

Lemma 5.41. Let 𝑉 be a finite-dimensional representation of 𝐾∞. Let 𝜆 ≥ 0 and
let 𝑎 : T1 → C be a ring homomorphism. Then at least one of the following two
statements holds:

(i) there exist a character 𝜒 ∈ ̂︀𝐶iso, with corresponding quadratic extension 𝐿/𝐹 ,
and an L2-shady character of 𝐿, such that the automorphic representation Π =
Π∞ ⊗Π𝑓 of G(A𝐹 ) with JL𝐷(Π) = AI𝐿/𝐹 (Ψ) satisfies

∙ Hom𝐾∞(𝑉,Π∞) ̸= 0,
∙ the Casimir eigenvalue of Π∞ is 𝜆, and
∙ T1 acts on Π𝑓 as 𝑎;

(ii) all spaces Ω(𝑉,Γ𝑐)Δ=𝜆,T1=𝑎 for 𝑐 ∈ 𝐶 have the same dimension.

Proof. Apply Proposition 3.7, analogously to e.g. the proof of Theorem 4.7, and
then apply Proposition 5.11. □

Lemma 5.42. Let 𝜒 ∈ ̂︀𝐶iso, let 𝐿/𝐹 be the corresponding quadratic extension, and

assume that there exists an L2-shady character of 𝐿. Let Λ be the group of unitary
Hecke characters Ψ of 𝐿 such that

∙ for every real place 𝑣 of 𝐹 that extends to a complex place 𝑤 of 𝐿, we have 𝑠𝑤 = 0
and 𝑘𝑤 = 0;

∙ for every real place 𝑣 of 𝐹 that extends to two real places 𝑤,𝑤′ of 𝐿, we have 𝑠𝑤+
𝑠𝑤′ = 0;

∙ for every complex place 𝑣 of 𝐹 , extending to two complex places 𝑤,𝑤′ of 𝐿, we
have 𝑠𝑤 + 𝑠𝑤′ = 0 and 𝑘𝑤 = 𝑘𝑤′ = 0;

For a Hecke character Ψ of 𝐿, if there exists an automorphic representation Π =
Π∞ ⊗Π𝑓 of G(A𝐹 ) such that JL𝐷(Π) = AI𝐿/𝐹 (Ψ), let 𝜆(Ψ) be the Casimir eigen-
value of Π∞; otherwise let 𝜆(Ψ) = ∞.

Let Ψ0 be a unitary Hecke character of 𝐿. Then as 𝑇 → ∞, we have

#{Ψ ∈ Λ: 𝜆(Ψ0Ψ) ≤ 𝑇} = 𝑂(𝑇 𝑟/2),

where 𝑟 = #𝒱R(𝐷) + #𝒱C(𝐷).

Proof. By Lemma 5.15, a Hecke character Ψ of 𝐿 is in Λ if and only if Ψ𝜎Ψ has
finite order and one has 𝑘𝑤 = 0 for all complex places 𝑤 of 𝐿. Therefore the rank
of Λ is rkZ×

𝐿 − rkZ×
𝐹 , which is equal to 𝑟, since the assumption on the existence

of L2-shady characters implies that 𝐿 and 𝐷 are ramified at the same real places
of 𝐹 .

Let Ψ0 be a unitary Hecke character of 𝐿. By the formulas in Section 5.2.1, there
exists a quadratic form 𝑄 : Λ → R that gives Λ/Λtors the structure of a Euclidean
lattice and such that for all Ψ ∈ Λ, either 𝜆(Ψ0Ψ) = ∞ or

𝜆(Ψ0Ψ) = 𝑄(Ψ) +𝑂(𝑄(Ψ)1/2).
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In particular, since Λtors is finite, we have

#{Ψ ∈ Λ: 𝑄(Ψ) ≤ 𝑇} = 𝑂(𝑇 𝑟/2)

in the limit as 𝑇 → ∞. This proves the lemma. □

Theorem 5.43. Let 𝑉 be a finite-dimensional representation of 𝐾∞, and let 𝑐1, 𝑐2 ∈
𝐶. Then as 𝑇 → ∞, we have∑︁

𝜆≤𝑇

⃒⃒
dimΩ(𝑉,Γ𝑐1)Δ=𝜆 − dimΩ(𝑉,Γ𝑐2)Δ=𝜆

⃒⃒
= 𝑂(𝑇 𝑟/2),

where 𝑟 = #𝒱R(𝐷) + #𝒱C(𝐷).

Proof. Let 𝜅 be as in Lemma 5.40. Then by Lemma 5.41 we have∑︁
𝜆≤𝑇

⃒⃒
dimΩ(𝑉,Γ𝑐1)Δ=𝜆 − dimΩ(𝑉,Γ𝑐2)Δ=𝜆

⃒⃒
=
∑︁
𝜆≤𝑇

∑︁
𝑎 : T1→C

⃒⃒
dimΩ(𝑉,Γ𝑐1)Δ=𝜆,T1=𝑎 − dimΩ(𝑉,Γ𝑐2)Δ=𝜆,T1=𝑎

⃒⃒
≤

∑︁
𝜒∈ ̂︀𝐶iso

∑︁
Ψ

𝜅,(5.44)

where for each 𝜒 ∈ ̂︀𝐶iso, with corresponding quadratic extension 𝐿/𝐹 , the last sum
runs over L2-shady characters Ψ of 𝐿 such that the automorphic representation Π =
Π∞ ⊗Π𝑓 of G(A𝐹 ) with JL𝐷(Π) = AI𝐿/𝐹 (Ψ) satisfies

∙ Hom𝐾∞(𝑉,Π∞) ̸= 0 and
∙ the Casimir eigenvalue of Π∞ is at most 𝑇 .

Let 𝜒 and 𝐿/𝐹 be as above and let 𝜎 be the nontrivial automorphism of 𝐿/𝐹 ,
and assume that there exists an L2-shady character of 𝐿. By inspection of the
tables in Section 5.2.1, we see that the condition Hom𝐾∞(𝑉,Π∞) ̸= 0 implies that
the 𝑘𝑤 parameters at complex places 𝑤 of 𝐿 of all Ψ in the sum must belong to
a finite set depending only on 𝑉 . Let Λ be as in Lemma 5.42. The set of Hecke
characters Ψ of 𝐿 that appear in (5.44) is contained in a finite union of cosets of Λ,
so Lemma 5.42 gives the desired bound. □

Remark 5.45. Weyl’s law implies that for all 𝑐 ∈ 𝐶 there exists 𝑎 > 0 such that
as 𝑇 → ∞ we have ∑︁

𝜆≤𝑇

dimΩ(𝑉,Γ𝑐)Δ=𝜆 ∼ 𝑎𝑇 𝑑/2,

where 𝑑 = 2#𝒱R(𝐷) + 3#𝒱C(𝐷). In particular, it follows from Theorem 5.43 that
the eigenvalues in the Laplace spectra of any two Ω(𝑉,Γ𝑐1) and Ω(𝑉,Γ𝑐2) that do
not match up are sparse – have density 0 – among all eigenvalues.

Remark 5.46. It is instructive to compare Theorem 5.43 in the special case 𝑟 = 1
to the results of [30]. In this case, [30, Theorem 1(2)] shows that if Γ𝑐1 and Γ𝑐2 are
torsion-free, and for all finite-dimensional representations 𝑉 of 𝐾∞ one has∑︁

𝜆≤𝑇

⃒⃒
dimΩ(𝑉,Γ𝑐1)Δ=𝜆 − dimΩ(𝑉,Γ𝑐2)Δ=𝜆

⃒⃒
= 𝑜(𝑇 𝑟/2),

then Γ𝑐1 and Γ𝑐2 are representation equivalent. On the other hand, there do exist
torsion-free Γ𝑐1 and Γ𝑐2 arising from the Vignéras construction that are not repre-
sentation equivalent – see [38] for examples and further references. This shows that
the bound in [30, Theorem 1(2)] is sharp.
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6. Self-twists in characteristic 𝑝 and Galois representations

In this section we use conjectures on the existence of Galois representations with
prescribed local behaviour attached to mod 𝑝 Hecke eigenvalue systems to pin down
the possible primes at which there can be a self-twist, and obtain an a priori finite
list of eigenvalue systems with a self-twist that could possibly appear.

We will keep the notation of Section 5. We assume, in addition, that𝐾𝑓 = 𝐾0(N)
for some ideal N coprime to 𝛿𝐷, where 𝐾0(N) =

∏︀
p𝑖‖N𝐾0(p

𝑖).

If 𝐿 is a perfect field, then 𝐿 denotes a fixed algebraic closure, 𝐺𝐿 denotes the
Galois group of 𝐿/𝐿, and, if 𝑝 is a prime number, 𝜀𝐿,𝑝 denotes the mod 𝑝 cyclotomic
character 𝜀𝐿,𝑝 : 𝐺𝐿 → F×

𝑝 .
All representations of Galois groups will be finite-dimensional and continuous

with respect to the discrete topology on the target.

Definition 6.1. If 𝐸 is a local field, we will write E for its residue field.
Let 𝐸 be a local field. We denote by Frob𝐸 an arbitrary choice of an element of

𝐺𝐸 that acts as 𝑥 ↦→ 𝑥#E on the residue fields of all extensions of 𝐸 in 𝐸, and call
such an element a Frobenius element.

Let 𝑝 be a prime number. We say that a representation (𝑉, 𝜌) of 𝐺𝐸 over F𝑝
is finite flat if there exists a finite flat group scheme 𝒢 over Z𝐸 such that one
has 𝑉 ∼= 𝒢(𝐸) as representations of 𝐺𝐸 .

Let 𝑞 be a power of 𝑝. We say that a representation (𝑉, 𝜌) of 𝐺𝐸 over F𝑞 is finite
flat if the restriction of scalars Res

F𝑞

F𝑝
𝑉 from F𝑞 to F𝑝, which is a representation of

𝐺𝐸 over F𝑝, is finite flat.
We say that a representation 𝜌 : 𝐺𝐸 → GL2(F𝑞) is ordinary if it has a non-zero

unramified quotient.

Definition 6.2. Let 𝐿 be a number field, let 𝑝 be a prime number, and p a prime
ideal of 𝐿. We abbreviate 𝐺𝐿p

to 𝐺p. We denote by Frobp a choice of Frobenius
element in 𝐺p, which, in turn, determines a well-defined conjugacy class in 𝐺𝐿.

Let 𝑞 be a power of 𝑝. We say that a representation (𝑉, 𝜌) of 𝐺𝐿 over F𝑞 is finite
flat at p if the restriction 𝜌|𝐺p

is finite flat.
We say that a representation 𝜌 : 𝐺𝐿 → GL2(F𝑞) is ordinary at p if its restriction

to 𝐺p is ordinary.
The prime-to-𝑝-conductor of a representation 𝜌 of 𝐺𝐿 is the largest divisor of

the Artin conductor that has no prime divisors lying above 𝑝.

Lemma 6.3. Let 𝜓 be a character of 𝐺𝐿, and let M be its prime-to-𝑝-conductor.
Then 𝜌 = Ind𝐺𝐹 /𝐺𝐿

𝜓 has prime-to-𝑝-conductor 𝛿𝐿/𝐹𝑁𝐿/𝐹 (M), where 𝛿𝐿/𝐹 de-
notes the relative discriminant of 𝐿/𝐹 .

Proof. See [54]. □

6.1. Self-twist conditions. The following is a variant on conjectures formulated
by Ash, Calegari–Venkatesh, and others on Galois representations attached to co-
homology classes [2], [13, Conjecture 2.2.5]. We claim no originality whatsoever.

Conjecture 6.4. Let 𝑖 ≥ 0 be an integer, let m be a maximal ideal of T, and let 𝑝
be the residue characteristic of m. If we have 𝐻𝑖(𝒴,Z)m ̸= 0, then there exists a
semisimple Galois representation

𝜌 : 𝐺𝐹 → GL2(T/m)

with the following properties:

(1) 𝜌 is unramified outside 𝑝𝛿𝐷N, and for all q ∤ 𝑝𝛿𝐷N we have

Tr 𝜌(Frobq) ≡ 𝑇q mod m;
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(2) det 𝜌 = 𝜀𝐹,𝑝;
(3) either 𝜌 is decomposable or for all q | 𝛿𝐷 with q ∤ 𝑝 we have

𝜌|𝐺q
∼=
(︂
𝜃𝜀𝐹,𝑝 *
0 𝜃

)︂
with 𝜃 unramified;

(4) for all p ∤ 𝛿𝐷N with p | 𝑝, either
∙ 𝜌 is finite flat at p, or
∙ 𝜌 is ordinary at p but not finite flat;

(5) the prime-to-𝑝-conductor of 𝜌 divides 𝛿𝐷N.

Note that we do not make any conjectures about the properties of 𝜌 at primes
that divide both 𝛿𝐷N and 𝑝, nor about the precise shape of 𝜌 at p | 𝛿𝐷 when 𝜌 is
decomposable. The conjecture as stated will be sufficient for our purposes.

Lemma 6.5. Let 𝐺 be a group and 𝐻 an index 2 subgroup. Let 𝜒 : 𝐺 → {±1}
be the corresponding quadratic character. Let 𝜌 : 𝐺 → GL2(F𝑝) be a semisimple
representation such that

𝜌⊗ 𝜒 ∼= 𝜌.

Then there exists 𝜓 : 𝐻 → F×
𝑝 such that

𝜌 ∼= Ind𝐺/𝐻 𝜓.

Proof. First suppose that 𝜌 is decomposable, so that 𝜌 ∼= 𝜃⊕𝜃𝜒 for some character 𝜃
of 𝐺. Since we have 𝑝 ̸= 2, we have F𝑝[𝐺/𝐻] ∼= 1⊕𝜒, and therefore Ind𝐺/𝐻(𝜃|𝐻) ∼=
𝜃 ⊗F𝑝

F𝑝[𝐺/𝐻] ∼= 𝜌, as claimed.

Now suppose that 𝜌 is irreducible. Then we have

Hom𝐻(𝜌|𝐻 , 𝜌|𝐻) ∼= Hom𝐺(𝜌, Ind𝐺/𝐻(𝜌|𝐻)) ∼= Hom𝐺(𝜌, 𝜌⊗F𝑝
F𝑝[𝐺/𝐻]).

Since 𝜌 is irreducible, we have dimHom𝐺(𝜌, 𝜌) = 1, and therefore

dimHom𝐻(𝜌|𝐻 , 𝜌|𝐻) = 2.

The restriction 𝜌|𝐻 is therefore reducible, so there exists a 1-dimensional subrepre-
sentation 𝜓 of 𝜌|𝐻 . We then have

Hom𝐺(Ind𝐺/𝐻 𝜓, 𝜌) ∼= Hom𝐻(𝜓, 𝜌|𝐻) ̸= 0,

so there exists a nonzero homomorphism 𝑓 : Ind𝐺/𝐻 𝜓 → 𝜌, which must be an
isomorphism by irreducibility of 𝜌 and dimension comparison. □

Lemma 6.6. Let 𝐿 be a number field, let 𝑝 be a prime number, let F be an ideal of
Z𝐿 supported at the primes above 𝑝, let M be an ideal of Z𝐿 coprime to 𝑝, and let

𝒱 be a set of real places of 𝐿. Then every Hecke character Ψ: Cl𝐿(FM𝒱) → F×
𝑝

has modulus dividing 𝑝M𝒱.

Proof. The character Ψ is at most tamely ramified at all primes of Z𝐿 above 𝑝,
hence the result follows. □

Definition 6.7. Let 𝐿/𝐹 be a quadratic extension. A Z𝑝-shady character of 𝐿 is
a Hecke character

Ψ: Cl𝐿(𝑝𝛿𝐷NZ𝐿∞) → F×
𝑝

such that 𝜌 = Ind𝐺𝐹 /𝐺𝐿
𝜓 satisfies conditions (2)–(5) from Conjecture 6.4, where

𝜓 : 𝐺𝐿 → F×
𝑝 is the corresponding Galois character.

Theorem 6.8. Let 𝑝 be a prime number. Assume that Conjecture 6.4 holds for all
𝑖 ≥ 0 and all maximal ideals m of T with residue characteristic 𝑝. Let 𝑐 ∈ 𝐶. Then
at least one of the following two statements is true:
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(i) there exist 𝜒 ∈ ̂︀𝐶iso ∖ 𝑐⊥ and a Z𝑝-shady character of the quadratic extension
determined by 𝜒;

(ii) there exists 𝑇 ∈ T[𝑊 ]𝑐 such that for every integer 𝑖 ≥ 0 and every 𝑏 ∈ 𝐶, all
of the following hold:
(a) 𝑇 induces an isomorphism of T1-modules

𝑇 : 𝐻𝑖(𝑌𝑏,Z(𝑝)) → 𝐻𝑖(𝑌𝑐𝑏,Z(𝑝));

(b) one has

Reg𝑖(𝑌𝑐𝑏)
2

Reg𝑖(𝑌𝑏)
2

∈ Z×
(𝑝).

Proof. Suppose that (ii) does not hold, so that at least one of (a), (b) does not
hold. Then by combining Theorem 4.7(3) and Theorem 4.14(2) we deduce that

there exists 𝜒 ∈ ̂︀𝐶iso ∖ 𝑐⊥ and a Hecke eigensystem 𝑎 = (𝑇𝒟 ↦→ 𝑎𝒟)𝒟 over F𝑝 in

F𝑝 ⊗𝐻𝑖(𝒴,Z) admitting a self-twist by 𝜒.
Let m𝑎 ⊂ T be as defined in Definition 4.4. Since the image of T under 𝑎 is

a subring of F𝑝, and hence a field, the ideal m𝑎 is maximal, and by assumption
we have 𝐻𝑖(𝒴,Z)m𝑎

̸= 0. Let 𝜌 be a Galois representation as in the conclusion of
Conjecture 6.4, applied with m = m𝑎. By property (1) and Chebotarev’s density
theorem we have 𝜌 ⊗ 𝜒 ∼= 𝜌. By Lemma 6.5 we have 𝜌 ∼= Ind𝐺𝐹 /𝐺𝐿

𝜓, where 𝐿/𝐹
is the quadratic extension cut out by 𝜒. By combining properties (1) and (5) of 𝜌
with Lemmas 6.3 and 6.6 we deduce that 𝜓 has conductor dividing 𝑝𝛿𝐷NZ𝐿∞, so
that by class field theory it corresponds to a Z𝑝-shady character of 𝐿. □

If 𝑝 is a prime number, n is a maximal ideal of Z𝑝 ⊗T1 and 𝐿/𝐹 is a quadratic
extension, then we say that n corresponds to a Z𝑝-shady character Ψ of 𝐿 if for
every prime ideal q of Z𝐹 that splits in 𝐿, we have 𝑇q mod n = Ψ(Q) + Ψ(Q′),
where qZ𝐿 = QQ′. We have the following local version of Theorem 6.8, proving
Theorem F and the last part of Theorem G.

Theorem 6.9. Let 𝑝 be a prime number, and let n be a maximal ideal of Z𝑝⊗T1.
Assume that Conjecture 6.4 holds for all 𝑖 ≥ 0 and all maximal ideals m of T above
n. Let 𝑐 ∈ 𝐶. Then at least one of the following two statements is true:

(i) there exists 𝜒 ∈ ̂︀𝐶iso ∖ 𝑐⊥, with corresponding quadratic extension 𝐿/𝐹 , such
that n corresponds to a Z𝑝-shady character Ψ of 𝐿;

(ii) there exists 𝑇 ∈ T[𝑊 ]𝑐 such that for every integer 𝑖 ≥ 0 and every 𝑏 ∈ 𝐶, all
of the following hold:
(a) 𝑇 induces an isomorphism of T1-modules

𝑇 : 𝐻𝑖(𝑌𝑏,Z)n → 𝐻𝑖(𝑌𝑐𝑏,Z)n;

(b) we have 𝒞𝑏,𝑐𝑏(𝐻𝑖(𝒴,Z)n) ∈ Z×
𝑝 .

Proof. The proof follows the same pattern as that of Theorem 6.8.
Suppose that (ii) does not hold. Then in particular 𝐻𝑖(𝒴,Z)n is non-zero, so

that n is lifted from a maximal ideal of the image of T1 in End𝐻𝑖(𝒴,Z𝑝). Since for
all 𝑇 ∈ T1, the endomorphisms 𝑇 and 𝜄(𝑇 ) of 𝐻𝑖(𝒴,Z𝑝) are the same, it follows
that 𝜄(n) = n.

By Theorem 4.7 (4) and Theorem 4.14 (1) there is a character 𝜒 ∈ ̂︀𝐶iso ∖ 𝑐⊥,
and a Hecke eigensystem 𝑎 with a self-twist by 𝜒. Let m ⊂ T be the maximal ideal
corresponding to 𝑎, let 𝐿/𝐹 be the field cut out by 𝜒, and 𝜌 = Ind𝐺𝐹 /𝐺𝐿

𝜓 be the
Galois representation attached by Conjecture 6.4. Then an easy calculation (see
also the proof of Theorem 6.18, specifically equation 6.21) shows that n corresponds
to the Hecke character Ψ attached to 𝜓 by class field theory. □
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6.2. Local representations. For the duration of this subsection, let 𝑝 > 2 be
a prime, let 𝐸 be a 𝑝-adic field, we write Z𝐸 for its ring of integers, 𝜋 for its
uniformiser, 𝑒 for its ramification index over Q𝑝, so that 𝑝 ∈ 𝜋𝑒Z×

𝐸 , 𝑓 for the

residue field degree [E : F𝑝], and we take E to be the residue field of the maximal

unramified extension 𝐸nr of 𝐸. For each 𝑛 ≥ 1, let E𝑛 be the subfield of E of
degree 𝑛 over F𝑝 (so that E = E𝑓 ).

Let 𝐼 ⊃ 𝑃 be the inertia group, respectively the wild inertia inside 𝐺𝐸 , and
let 𝐼t = 𝐼/𝑃 .

In this subsection we abbreviate 𝜀𝐸,𝑝 to 𝜀 and Frob𝐸 to Frob.
Let 𝑛 ∈ Z≥1, let 𝑞 = 𝑝𝑛 and 𝑑 | 𝑞 − 1. Define a character 𝜃𝑑 : 𝐼t → E×

𝑛 by

𝑠(𝜋1/𝑑)

𝜋1/𝑑
= 𝜃𝑑(𝑠) ∈ 𝜇𝑑(𝐸nr) ∼= 𝜇𝑑(E𝑛) for all 𝑠 ∈ 𝐼t.

A fundamental character of level 𝑛 is a character 𝐼t → F×
𝑝 of the form

𝜔𝜏 = 𝜏 ∘ 𝜃𝑞−1

for some 𝜏 ∈ Hom(E𝑛,F𝑝). Let 𝜙 be the absolute Frobenius automorphism 𝑥 ↦→ 𝑥𝑝

of F𝑝. If one chooses a 𝜏0 ∈ Hom(E𝑛,F𝑞), then every character 𝜒 : 𝐼t → F×
𝑞 is of

the form

𝜒 = 𝜔𝑎𝜏0
for some 𝑎 ∈ Z.

Remark 6.10. If we have an equality

𝜔𝑎𝜏0 =
∏︁

𝜏∈Hom(E𝑛,F𝑞)

𝜔ℎ𝜏
𝜏

for ℎ𝜏 ∈ Z, then the exponents satisfy 𝑎 ≡
∑︀𝑛−1
𝑖=0 ℎ𝜙𝑖∘𝜏0𝑝

𝑖 mod (𝑞 − 1). Since 𝜔𝜏0
has order 𝑞−1, we may always choose 𝑎 ∈ {0, . . . , 𝑞−2} and the ℎ𝜏 ∈ {0, . . . , 𝑝−1},
in which case the ℎ𝜏 are uniquely determined by 𝜒, except that (0, . . . , 0) and (𝑝−
1, . . . , 𝑝− 1) both represent the trivial character.

If 𝑛, 𝑚 ∈ Z≥1 are such that 𝑛 | 𝑚, and 𝜏 ∈ Hom(E𝑛,F𝑝), then

𝜔𝜏 =
∏︁

𝜏 ′∈Hom(E𝑚,F𝑝),𝜏 ′|E𝑛=𝜏

𝜔𝜏 ′ .

By abuse of notation, whenever 𝜒 is a character of 𝐼t = 𝐼/𝑃 , we will also denote
by 𝜒 its inflation to 𝐼 that is trivial on 𝑃 .

Let 𝑛 ∈ Z≥1, set 𝑞 = 𝑝𝑛, and let 𝜓 : 𝐺𝐸 → F×
𝑞 be a character. Then 𝜓 is tamely

ramified since the order of F×
𝑞 is coprime to 𝑝, and for every choice Frob ∈ 𝐺𝐸 of

Frobenius element and for every 𝑠 ∈ 𝐼 we have

𝜓(𝑠) = 𝜓(Frob ·𝑠 · Frob−1) = 𝜓(𝑠)#E.

Thus, we may always assume that 𝑛 | 𝑓 . In particular, we can write

𝜓|𝐼 =
∏︁

𝜏∈Hom(E,F
𝑝𝑓

)

𝜔ℎ𝜏
𝜏 .

In other words, we can decompose 𝜓|𝐼 using only fundamental characters of level 𝑓 .
This also implies that

(𝜔𝜏 )
𝜎 = 𝜔𝜏∘𝜎

for every 𝜏 ∈ Hom(E,F𝑝) and all 𝜎 ∈ 𝐺𝐸 .

Proposition 6.11. The mod 𝑝 cyclotomic character satisfies 𝜀|𝐼 = 𝜃𝑒𝑝−1.

Proof. See [52, Proposition 8]. □
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We will typically use this proposition in the following form: for every 𝑛 ∈ Z≥1

we have 𝜀|𝐼 =
∏︀
𝜏 𝜔

𝑒
𝜏 where the product is over 𝜏 ∈ Hom(E𝑛,F𝑝𝑛).

Theorem 6.12 (Raynaud). Let 𝜌 : 𝐺𝐸 → GL𝑛(F𝑝) be a representation. If 𝜌 is
finite flat, then so is its semisimplification. If 𝜌 is semisimple, then it is finite flat
if and only if each of its irreducible factors is finite flat. If 𝜌 is irreducible, then
it is finite flat if and only if there exists a character 𝜓 : 𝐺𝐸 → F×

𝑞 , where 𝑞 = 𝑝𝑛,
satisfying

𝜓|𝐼 =
∏︁

𝜏∈Hom(E𝑛,F𝑞)

𝜔ℎ𝜏
𝜏

with 0 ≤ ℎ𝜏 ≤ 𝑒, such that

𝜌 ∼= Res
F𝑞

F𝑝
𝜓.

Proof. [Raynaud, Corollaire 3.3.7 and Théorème 3.4.3] □

Lemma 6.13. Let 𝜌 : 𝐺𝐸 → GL2(F𝑝) be an ordinary representation such that
det 𝜌 = 𝜀 and such that 𝜌 is either induced from a 1-dimensional character or
decomposable. Then 𝜌 is finite flat.

Proof. If 𝜌 is induced from a 1-dimensional character, then it is semisimple. Since
it is also ordinary, it has a stable line, and therefore is decomposable into a direct
sum of 1-dimensional characters. The proof thus reduces to the case that 𝜌 is
decomposable.

Assume that 𝜌 is a direct sum of two 1-dimensional characters. Since 𝜌 is ordi-
nary, one of these characters is unramified. Due to the determinant assumption,
the other one is of the form 𝜃𝜀, where 𝜃 is an unramified character. By Theorem
6.12 and Proposition 6.11 𝜌 is finite flat. □

Lemma 6.14. Suppose there exists a finite flat character 𝜃 : 𝐺𝐸 → F×
𝑝 and an

unramified character 𝜒 : 𝐺𝐸 → F×
𝑝 such that 𝜃2𝜒 = 𝜀. Then we have 𝑒 > 1.

Proof. Suppose that 𝑒 = 1. Let 𝑛 ∈ Z≥1 be such that 𝜃 takes values in F×
𝑝𝑛 . By

Theorem 6.12 we may write

𝜃|𝐼 =
∏︁

𝜏∈Hom(E𝑛,F𝑝)

𝜔ℎ𝜏
𝜏

with ℎ𝜏 ∈ {0, 1}. By assumption and by Proposition 6.11 we have∏︁
𝜏∈Hom(E𝑛,F𝑝)

𝜔2ℎ𝜏
𝜏 = (𝜃2𝜒)|𝐼 = 𝜀|𝐼 =

∏︁
𝜏∈Hom(E𝑛,F𝑝)

𝜔𝜏 .

All exponents of 𝜔𝜏 appearing in the equality are in {0, 1, . . . , 𝑝 − 1}, and 1 ̸∈
{0, 𝑝 − 1}, so Remark 6.10 implies that these exponents are uniquely determined.
Thus, we have 2ℎ𝜏 = 1 for all 𝜏 , which is impossible. □

6.3. Global representations. If 𝐿 is a number field and P is a prime ideal of
Z𝐿, then we denote by FP the residue field Z𝐿/P, and by 𝐼P ⊂ 𝐺P the inertia
subgroup at P.

In this subsection we prove the main result of the section, Theorem 6.18, which
is a precise version of Theorem H from the introduction.

Lemma 6.15. Let 𝐿/𝐹 be a quadratic extension of number fields, let 𝑝 > 2 be a

prime number that is unramified in 𝐿, let 𝜌 : 𝐺𝐹 → GL2(F𝑝) be a Galois represen-

tation of the form 𝜌 = Ind𝐺𝐹 /𝐺𝐿
𝜓, where 𝜓 : 𝐺𝐿 → F×

𝑝 is a character, and let p | 𝑝.



50 ALEX BARTEL AND AUREL PAGE

Assume that 𝜌 is finite flat at p and that det 𝜌 = 𝜀𝐹,𝑝. Then for every prime P | p
of 𝐿 we have

𝜓|𝐼P =
∏︁

𝜏∈Hom(FP,F𝑝)

𝜔ℎ𝜏
𝜏

for some collection (ℎ𝜏 )𝜏 ∈ {0, 1}Hom(Z𝐿/pZ𝐿,F𝑝) =
∏︀

P|p{0, 1}Hom(FP,F𝑝) that is

balanced, as in Definition 5.34.

Proof. Let 𝜎 be the non-trivial element of the Galois group. Fixing an extension of
the discrete p-adic valuation on 𝐹 to 𝐹 identifies 𝐺p with a subgroup of 𝐺𝐹 . Let
P = p ∩ 𝐿. Then we have the inclusions

𝐼p 𝐺p 𝐺𝐹

𝐼P 𝐺P 𝐺𝐿.

⊂ ⊂
⊂

⊂
⊂

⊂

⊂

Of the vertical inclusions, the right hand one has index 2, so that 𝐺𝐿 is a normal
subgroup of 𝐺𝐹 , while the left one is an equality, since 𝐿/𝐹 is unramified at p.
These inclusions also induce inclusions Fp ⊂ FP

∼= FP𝜎 ⊂ F𝑝, of which the first one
is either an equality or an inclusion of index 2, and where the middle isomorphism
is induced by 𝜎.

Since p is unramified in 𝐿/𝐹 , a full set of double coset representatives for
𝐼p∖𝐺𝐹 /𝐺𝐿 is given by {1, 𝜎}, and we have 𝐼p = 𝐼P = 𝐼p ∩𝐺𝐿 = 𝐼p ∩𝐺𝜎𝐿. Mackey’s
formula therefore implies that we have

𝜌|𝐼p ∼= 𝜓|𝐼P ⊕ 𝜓𝜎|𝐼P .
Theorem 6.12 implies that 𝜓|𝐼P is of the form

𝜓|𝐼P =
∏︁

𝜏∈Hom(FP,F𝑝)

𝜔ℎ𝜏
𝜏

with ℎ𝜏 ∈ {0, 1} for all 𝜏 .
Since we have det 𝜌 = 𝜀𝐹,𝑝, we obtain, using Proposition 6.11

𝜀𝐹,𝑝|𝐼p =
∏︁
𝜏

𝜔𝜏 =
∏︁
𝜏

𝜔ℎ𝜏
𝜏

∏︁
𝜏

(𝜔𝜎𝜏 )
ℎ𝜏 =

∏︁
𝜏

𝜔ℎ𝜏
𝜏 𝜔ℎ𝜏

𝜏∘𝜎 =
∏︁
𝜏

𝜔ℎ𝜏+ℎ𝜏∘𝜎
𝜏 ,

where the products run over 𝜏 ∈ Hom(FP,F𝑝). Since 𝑝 − 1 ≥ 2, Remark 6.10
implies that ℎ𝜏 + ℎ𝜏∘𝜎 = 1 for all 𝜏 , i.e. the collection (ℎ𝜏 )𝜏 is balanced. □

Proposition 6.16. Let 𝐿 be a number field, 𝑝 a prime number unramified in 𝐿,
and M an ideal of Z𝐿. Let (ℎ𝜏 )𝜏 be a collection of integers indexed by 𝜏 ∈
Hom(Z𝐿/𝑝,F𝑝) =

⨆︀
P|𝑝Hom(FP,F𝑝). Let 𝜓 : 𝐺𝐿 → F×

𝑝 be a character with prime-

to-𝑝-conductor dividing M and such that for all P | 𝑝 in 𝐿 we have

𝜓|𝐼P =
∏︁

𝜏∈Hom(FP,F𝑝)

𝜔ℎ𝜏
𝜏 .

Let 𝐿̃ be the Galois closure of 𝐿 over Q and let P̃ | 𝑝 be a prime of 𝐿̃, inducing a

bijection 𝛽 : Hom(𝐿, 𝐿̃) ∼= Hom(Z𝐿/𝑝,F𝑝). Then for all 𝑢 ∈ 𝑈𝐿(M∞), we have∏︁
𝜏∈Hom(𝐿,𝐿̃)

𝜏(𝑢)ℎ𝛽(𝜏) ≡ 1 mod P̃.

Proof. Without loss of generality, we may replace M by its coprime-to-𝑝 part. By
class field theory, 𝜓 corresponds to a character

Cl𝐿(FM∞) → F×
𝑝 ,
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where F is an ideal supported at the primes above 𝑝, and in fact by Lemma 6.6 it
corresponds to a character

Ψ: Cl𝐿(𝑝M∞) → F×
𝑝 .

Moreover, we have an exact sequence

(6.17) 1 →
(︁∏︁
P|𝑝

F×
P

)︁
/𝑈𝐿(M∞) → Cl𝐿(𝑝M∞) → Cl𝐿(M∞) → 1.

By [52, Section 1.5, Proposition 3], the restriction of Ψ to
∏︀

P|𝑝 F
×
P satisfies

Ψ|∏︀
P|𝑝 F×

P
=
∏︁
P|𝑝

∏︁
𝜏∈Hom(FP,F𝑝)

𝜏−ℎ𝜏 .

This forces
∏︀
𝜏∈Hom(Z𝐹 /𝑝,F𝑝)

𝜏−ℎ𝜏 to be trivial on the image of 𝑈𝐿(M∞), which is

equivalent to the claimed statement. □

Theorem 6.18. Let 𝜒 ∈ ̂︀𝐶iso, let 𝐿/𝐹 be the corresponding quadratic extension,

let 𝐿̃ denote the Galois closure of 𝐿 over Q. Let 𝑆 be the union of the following
sets of prime numbers: the primes that are ramified in 𝐿; the prime numbers that
divide 2N𝐹/Q(𝛿𝐷N); and the prime numbers 𝑝 for which there exists an ideal M of

Z𝐿 such that N𝐿/𝐹 M divides 𝛿𝐷N, and a balanced collection (ℎ𝜏 )𝜏 ∈ {0, 1}Hom(𝐿,𝐿̃)

such that all of the following hold:

(a) for all units 𝑢 ∈ 𝑈𝐿(M∞), the prime 𝑝 divides

(6.19) N𝐿̃/Q

⎛⎝ ∏︁
𝜏∈Hom(𝐿,𝐿̃)

𝜏(𝑢)ℎ𝜏 − 1

⎞⎠ ;

(b) for every prime ideal q of Z𝐹 dividing 𝛿𝐷, let Q be a prime of Z𝐿 above q,
let 𝑘 be the order of Q in Cl𝐿(NZ𝐿∞), and let 𝛼 ∈ Z𝐿 be a totally positive
generator of Q𝑘 congruent to 1 mod NZ𝐿; then 𝑝 divides

(6.20) N𝐿̃/Q

(︃(︁∏︁
𝜏

𝜏(𝛼)2ℎ𝜏 −N𝐿/Q(Q)2𝑘
)︁(︁∏︁

𝜏

𝜏(𝛼)2ℎ𝜏 − 1
)︁)︃

.

Then:

(1) every prime number 𝑝 such that there exists a Z𝑝-shady character of 𝐿 is con-
tained in 𝑆;

(2) the set 𝑆 is infinite if and only if there exists an ℋ*-shady character of 𝐿.

Proof. Let 𝜎 be the nontrivial automorphism of 𝐿/𝐹 . We first prove (1). Let 𝑝 be
a prime number such that there exists a Z𝑝-shady character Ψ. If 𝑝|2N𝐹/Q(𝛿𝐷N),
then it is in 𝑆. Assume otherwise.

Let 𝜓 : 𝐺𝐿 → F×
𝑝 be the corresponding Galois character, and let 𝜌 = Ind𝐺𝐹 /𝐺𝐿

𝜓,
which, in particular, satisfies the properties of Conjecture 6.4. By property (2) we
have det 𝜌 = 𝜀𝐹,𝑝. Let p be any prime of Z𝐹 above 𝑝. By Mackey’s formula the
restriction 𝜌|𝐺p

is either also induced from a 1-dimensional character or decompos-
able. By property (4) and Lemma 6.13 the representation 𝜌 is finite flat at p. Now
consider two cases.

First suppose that 𝜌 is decomposable. Since we have 𝑝 ̸= 2, we have 𝜌 ∼= 𝜃 ⊕ 𝜃𝜒

for some character 𝜃 : 𝐺𝐹 → F×
𝑝 that is finite flat at p. By Lemma 6.14 the prime

p is ramified in 𝐹 , so that we have 𝑝 ∈ 𝑆.
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Next suppose that 𝜌 is irreducible. If 𝑝 ramifies in 𝐿, then we are done. Assume
otherwise. By Lemma 6.15 we may write, for every prime ideal P of Z𝐿 above p,

𝜓|𝐼P =
∏︁

𝜏∈Hom(FP,F𝑝)

𝜔
ℎ′
𝜏
𝜏 ,

where the collection (ℎ′𝜏 )𝜏 ∈ {0, 1}Hom(Z𝐿/pZ𝐿,F𝑝) =
∏︀

P|p{0, 1}Hom(FP,F𝑝) is bal-

anced. Let M be the prime-to-𝑝-conductor of Ψ. Note that by Lemma 6.3 and
property (5) of 𝜌 we have (N𝐿/𝐹 M)|𝛿𝐷N. Since p was arbitrary, we may apply

Proposition 6.16 to obtain 𝐿̃, P̃ and 𝛽 be as in Proposition 6.16 such that for every
𝑢 ∈ 𝑈𝐿(M∞) we have ∏︁

𝜏∈Hom(𝐿,𝐿̃)

𝜏(𝑢)ℎ
′
𝛽(𝜏) ≡ 1 mod P̃.

Reduction mod P̃ also induces a bijection 𝛽𝐹 : Hom(𝐹, 𝐿̃) ∼= Hom(Z𝐹 /𝑝,F𝑝),
and 𝛽 and 𝛽𝐹 commute with the restriction maps Hom(𝐿, 𝐿̃) → Hom(𝐹, 𝐿̃) and
Hom(Z𝐿/𝑝,F𝑝) → Hom(Z𝐹 /𝑝,F𝑝), therefore the collection (ℎ𝜏 = ℎ′𝛽(𝜏))𝜏 indexed

by 𝜏 ∈ Hom(𝐿, 𝐿̃) is balanced, and for all 𝑢 ∈ 𝑈𝐿(M∞) the prime 𝑝 divides

N𝐿̃/Q

⎛⎝ ∏︁
𝜏∈Hom(𝐿,𝐿̃)

𝜏(𝑢)ℎ𝜏 − 1

⎞⎠ .

This proves divisibility (a), and it remains to prove divisibility (b).
Let q be a prime ideal of Z𝐹 dividing 𝛿𝐷. Since we have

𝐶iso = Cl𝐹 (𝒱H(𝐷))/⟨a2, p ramified in 𝐷, p𝑒‖N⟩,

the prime q splits in 𝐿. Let Q be a prime ideal of Z𝐿 above q. By Mackey’s formula,
we have

(6.21) 𝜌|𝐺q
∼= 𝜓|𝐺Q

⊕ 𝜓𝜎|𝐺Q
.

Since q does not divide 𝑝 and 𝜌 is irreducible, property (3) of 𝜌 says

𝜌|𝐺q
∼=
(︂
𝜃𝜀𝐹,𝑝 *
0 𝜃

)︂
with 𝜃 unramified. But 𝜌|𝐺q

is semisimple, so

(6.22) 𝜌|𝐺q
∼= 𝜃𝜀𝐹,𝑝 ⊕ 𝜃.

In particular 𝜌 is unramified at q, and therefore 𝜓 is unramified at Q. Since q|𝛿𝐷
and Q|q were arbitrary, the conductor of Ψ divides 𝑝NZ𝐿∞. By property (2) of 𝜌,
we have 𝜃2 = 1, and by equations (6.21) and (6.22) we get

{𝜓(FrobQ)2, 𝜓𝜎(FrobQ)2} = {𝜀𝐿,𝑝(FrobQ)2, 1},

in other words,

(6.23) {Ψ(Q)2,Ψ𝜎(Q)2} = {N𝐿/Q(Q)2, 1}.

Let 𝑘 and 𝛼 be as in (b). By the exact sequence (6.17), we have∏︁
𝜏∈Hom(Z𝐿/𝑝,F𝑝)

𝜏(𝛼)ℎ
′
𝜏 = Ψ(Q𝑘).
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Combining this with equation (6.23) we deduce that one of the following congru-
ences holds: ∏︁

𝜏∈Hom(𝐿,𝐿̃)

𝜏(𝛼)2ℎ𝜏 ≡ N𝐿/Q(Q)2𝑘 mod P̃, or

∏︁
𝜏∈Hom(𝐿,𝐿̃)

𝜏(𝛼)2ℎ𝜏 ≡ 1 mod P̃,

which proves (b).
Now we prove (2). First suppose that there exists an ℋ*-shady character Ψ

of 𝐿. By Corollary 5.19 this implies that we have 𝛿𝐷 = Z𝐹 , so that condition (b)
on 𝑝 is empty. By Proposition 5.35 the character Ψalg = Ψ‖ · ‖−1/2 is an algebraic
Hecke character whose type (ℎ𝜏 )𝜏∈Hom(𝐿,𝐿̃) is balanced. This implies that we have

(Ψalg)𝜎 ̸= Ψalg, so by Theorem 5.5 the automorphic induction AI(Ψalg) is infinite-
dimensional. By Lemma 5.2 the conductor M of Ψalg satisfies N𝐿/𝐹 (M)|N. This

implies that for all 𝑢 ∈ 𝑈𝐿(M∞) the infinity-component of Ψalg satisfies∏︁
𝑣|∞

Ψalg
𝑣 (𝑢) = 1,

so that all prime numbers 𝑝 satisfy divisibility (a). This shows that the set 𝑆 is
infinite.

Conversely, suppose that 𝑆 if infinite. There are only finitely many distinct

balanced collections (ℎ𝜏 )𝜏 ∈ {0, 1}Hom(𝐿,𝐿̃), and only finitely many ideals M of Z𝐿
such that N𝐿/𝐹 M divides 𝛿𝐷N. Pick a collection (ℎ𝜏 )𝜏 and an ideal M for which
infinitely many primes satisfy the divisibilities (a) and (b). Suppose that there
exists a prime ideal q|𝛿𝐷, and let Q, 𝛼, and 𝑘 be as in (b). Since the collection
(ℎ𝜏 )𝜏 is balanced, we have(︁∏︁

𝜏

(𝜏(𝛼)𝜏(𝛼)𝜎)ℎ𝜏

)︁2
=
(︀
N𝐿/Q 𝛼

)︀2
= N𝐿/Q(Q

2𝑘).

Since 𝛼 generates a non-trivial ideal, we have
∏︀
𝜏 (𝜏(𝛼)

2ℎ𝜏 ) ̸= 1, and similarly for
𝛼𝜎 in place of 𝛼, so that the expression in (6.20) is non-zero. This contradicts that
it is divisible by infinitely many primes. Hence we have 𝛿𝐷 = Z𝐹 .

Next, for every 𝑢 ∈ 𝑈𝐿(M∞), infinitely many primes dividing the expression
(6.19) forces it to be 0. This implies that there exists an algebraic Hecke character
Ψalg of 𝐿 with conductor dividing M and with type (ℎ𝜏 )𝜏 . By Proposition 5.35 and
Lemma 5.2 this implies that the Hecke character Ψ = Ψalg‖ · ‖1/2 is an ℋ*-shady
character of 𝐿, as required. □

7. Curiosity cabinet

We continue to use the notation of Section 5. Also recall the notation 𝐾0(N)
from Section 6, where N is an ideal of Z𝐹 coprime to 𝛿𝐷. In this section we always
take 𝐾𝑓 = 𝐾0(N) for ideals N. If Γ is a subgroup of 𝐷×, let 𝑃Γ denote the image
of Γ in 𝐷×/𝐹×.

7.1. Toolkit.

Definition 7.1. Let 𝐿/𝐹 be a quadratic extension, let 𝑖 ∈ Z≥0, and 𝜆 ∈ R. Then
an Ω𝑖Δ=𝜆-shady character of 𝐿 is a (Ω

𝑖
Δ=𝜆)-shady character of 𝐿 for some 𝑖 = (𝑖𝑣)𝑣,

𝜆 = (𝜆𝑣)𝑣 satisfying
∑︀
𝑣 𝑖𝑣 = 𝑖 and

∑︀
𝑣 𝜆𝑣 = 𝜆, with both sums running over the

infinite places 𝑣 of 𝐹 .

The following result will be used to prove non-𝑖-isospectrality.
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Lemma 7.2. Assume that 𝒱R(𝐷) = ∅, that 𝛿𝐷 = 1, and that 𝐶 has order 2, let
𝑐 ∈ 𝐶 be the non-trivial element, and 𝐿/𝐹 the corresponding quadratic extension.
Let 𝑖 ∈ Z≥0 and 𝜆 ∈ R. Suppose that there exists a unique pair {Ψ,Ψ−1} of Ω𝑖Δ=𝜆-
shady characters of 𝐿. Suppose in addition that the conductor F of Ψ satisfies that
N/N𝐿/𝐹 (F) is the square of an ideal of Z𝐹 . Then the orbifolds 𝑌1 and 𝑌𝑐 are not
𝑖-isospectral.

Proof. It suffices to show that the multiplicity of 𝜆 in the ∆-spectrum on Ω𝑖(𝒴) is

odd. Let 𝜒 ∈ ̂︀𝐶 be the unique non-trivial character.
First let Π = Π∞ ⊗ Π𝑓 be an automorphic representation of G(A𝐹 ) such that

Π ⊗ 𝜒 ̸∼= Π. Then Π and Π ⊗ 𝜒 have the same Casimir eigenvalue. Moreover,

since the Hecke character 𝜒 is trivial on nrd(𝐾𝑓 ), the dimensions of Π
𝐾𝑓

𝑓 and of

(Π𝑓 ⊗ 𝜒)𝐾𝑓 are equal. Thus, the contribution from Π and from its twist by 𝜒 to
the 𝜆-eigenspace under the isomorphism of Corollary 5.10 is even-dimensional.

By assumption, there exists a unique automorphic representation Π of G(A𝐹 )
such that Π

𝐾𝑓

𝑓 is non-trivial. We now apply Proposition 5.23 in conjunction with

Corollary 5.10. The hypothesis on 𝒱R(𝐷) ensures that, in the notation of Propo-
sition 5.23, we have 𝑟 = 0. Moreover, by Lemma 5.2 and [15] the assumption
on the conductor of Ψ implies that the contribution from Π to multiplicity of the
𝜆-eigenspace is odd-dimensional. □

7.2. Collection.

Example 7.3. We reproduce the example [38, Example 6.1] with our method.
Let 𝐹 = Q(𝛼) where 𝛼6 − 2𝛼5 − 𝛼4 + 4𝛼3 − 4𝛼2 + 1 = 0. The field 𝐹 is
the unique number field of discriminant −974528 and signature (4, 1) (LMFDB
6.4.974528.1). Let 𝐷 be the unique quaternion division algebra ramified at ev-
ery real place and no finite place of 𝐹 . Let N = (1). We have 𝐶 ∼= 𝐶iso

∼= 𝐶2,
which therefore has a single nontrivial character 𝜒, corresponding to the quadratic
extension 𝐿 = 𝐹 (

√
2𝛼− 1).

Let 𝐶 = {1, 𝑐}. We have

vol(𝑌1) = vol(𝑌𝑐) =
9745283/2𝜁𝐹 (2)

212𝜋10
= 2.834032 . . .

The extension 𝐿/𝐹 is ramified at exactly 2 of the 4 real places of 𝐹 . By Corol-
lary 5.19, the groups Γ1 and Γ𝑐 are representation equivalent.

The following example proves Theorem A.

Example 7.4. The following is the smallest example we could find of a pair of hy-
perbolic 3-orbifolds that are 𝑖-isospectral for all 𝑖 but not representation equivalent.

Let 𝐹 = Q(𝛼) where 𝛼4−𝛼3+𝛼2+4𝛼− 4 = 0, which is also Q(
√︀

−10− 14
√
5).

The field 𝐹 is the unique number field of discriminant −1375 and signature (2, 1)
(LMFDB 4.2.1375.1). Let 𝐷 be the unique quaternion division algebra ramified
at every real place and no finite place of 𝐹 . Let N = (1). We have 𝐶 ∼= 𝐶iso

∼= 𝐶2,
which therefore has a single nontrivial character 𝜒, corresponding to the quadratic
extension 𝐿 = 𝐹 (𝜁10). Let 𝜎 be the nontrivial automorphism of 𝐿/𝐹 . Let 𝐶 =
{1, 𝑐}. We have

vol(𝑌1) = vol(𝑌𝑐) =
13753/2𝜁𝐹 (2)

28𝜋6
= 0.2510654 . . . .

http://www.lmfdb.org/NumberField/6.4.974528.1
http://www.lmfdb.org/NumberField/6.4.974528.1
http://www.lmfdb.org/NumberField/4.2.1375.1
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According to [38, Theorem C], the groups Γ1 and Γ𝑐 are not representation equiva-
lent. We choose representatives 𝜏1, . . . , 𝜏4 of Hom(𝐿,C) modulo complex conjuga-
tion, such that

(𝜏𝑘(𝜁10))𝑘 = (𝑒−
2𝜋
10 𝑖, 𝑒

2𝜋
10 𝑖, 𝑒3

2𝜋
10 𝑖, 𝑒−3 2𝜋

10 𝑖)

(𝜏𝑘(𝛼))𝑘 ≈ (0.809− 1.607𝑖, 0.809− 1.607𝑖, 0.845,−1.463).

We compute the group HC𝐿,(1) of unitary Hecke characters. It is isomorphic

to Z7 ×R. Let Ψ1, . . . ,Ψ7 denote the computed basis of the canonical complement
of ‖ · ‖𝑖R (see for instance [40, Section 3.5]). For each character Ψ and complex
embedding 𝜏 , we display an approximation of the pair (𝑘, 𝑡) ∈ Z×R such that Ψ𝜏 =
ΨC(𝑘, 𝑖𝑡).

Ψ1 Ψ2 Ψ3 Ψ4 Ψ5 Ψ6 Ψ7

𝜏1 (2, 0) (−2, 0) (0, 0.) (−3,−0.898) (1,−0.367) (1,−0.367) (−2, 1.149)

𝜏2 (−2, 0) (2, 0) (2, 0.) (3, 0.898) (−2,−1.265) (0,−1.265) (0,−1.149)

𝜏3 (4, 0) (−9, 0) (−2,−0.611) (−10, 0.) (5,−0.015) (3, 1.647) (−1,−0.525)

𝜏4 (−4, 0) (9, 0) (2, 0.611) (12, 0.) (−6, 1.647) (−4,−0.015) (3, 0.525)

We then compute the subgroup HC−
𝐿,(1) of unitary Hecke characters Ψ such

that Ψ𝜎Ψ has finite order. It admits a basis Ψ′
1, . . . ,Ψ

′
4, where

Ψ′
1 = Ψ1,Ψ

′
2 = Ψ2,Ψ

′
3 = Ψ4,Ψ

′
4 = Ψ−1

3 Ψ5Ψ
−1
6 Ψ−2

7 .

We display the Ψ′
𝑗 as above.

Ψ′
1 Ψ′

2 Ψ′
3 Ψ′

4

𝜏1 (2, 0) (−2, 0) (−3,−0.898) (4,−2.298)
𝜏2 (−2, 0) (2, 0) (3, 0.898) (−4, 2.298)
𝜏3 (4, 0) (−9, 0) (−10, 0) (6, 0)
𝜏4 (−4, 0) (9, 0) (12, 0) (−10, 0)

Projecting on the values (𝑘𝜏1 , 𝑘𝜏3 , 𝑘𝜏4), we obtain a lattice generated by the
columns of the matrix ⎛⎝ 2 −2 −3 4

4 −9 −10 6
−4 9 12 −10

⎞⎠ ,

which has an LLL-reduced basis with matrix⎛⎝ 2 0 −1
−1 2 −1
1 2 3

⎞⎠ ,

from which it is clear that there is no Ω∙-shady character of 𝐿, as such a character
would have to satisfy 𝑘𝜏1 ∈ {−1, 0, 1} and 𝑘𝜏3 , 𝑘𝜏4 ∈ {±1}. By Corollary 5.27, the
orbifolds 𝑌1 and 𝑌𝑐 are therefore 𝑖-isospectral for all 𝑖 ≥ 0.

The maximal cyclic subgroups of 𝑃Γ1 have order 2, 3 or 5, the maximal cyclic
subgroups of 𝑃Γ𝑐 have order 2, 3 or 10, and we have

𝐻1(𝑃Γ1,Z) ∼= (Z/2Z)2 and 𝐻1(𝑃Γ𝑐,Z) ∼= (Z/2Z)2.

The following example proves Theorem B.

Example 7.5. The following is the smallest example we could find of a pair of
hyperbolic 3-orbifolds that are 0-isospectral but not not 1-isospectral.

Let 𝐹 = Q(𝛼) where 𝛼4 − 3𝛼2 − 2𝛼 + 1 = 0. The field 𝐹 is the unique number
field of discriminant −1328 and signature (2, 1) (LMFDB 4.2.1328.1). Let 𝐷 be
the unique quaternion division algebra ramified at every real place and no finite
place of 𝐹 . Let N = (1). We have 𝐶 ∼= 𝐶iso

∼= 𝐶2, which therefore has a single

http://www.lmfdb.org/NumberField/4.2.1328.1
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Figure 1. Isospectral and 1-isospectral but not representation
equivalent 3-orbifolds (volume ≈ 0.251)

nontrivial character 𝜒, corresponding to the quadratic extension 𝐿 = 𝐹 (𝜁4). Let 𝜎
be the nontrivial automorphism of 𝐿/𝐹 . Let 𝐶 = {1, 𝑐}. We have

vol(𝑌1) = vol(𝑌𝑐) =
13283/2𝜁𝐹 (2)

28𝜋6
= 0.2461808 . . . .

We choose representatives 𝜏1, . . . , 𝜏4 of Hom(𝐿,C) modulo complex conjugation,
such that

(𝜏𝑘(𝜁4))𝑘 = (𝑖,−𝑖, 𝑖, 𝑖)
(𝜏𝑘(𝛼))𝑘 ≈ (−1.138 + 0.485𝑖,−1.138 + 0.485𝑖, 1.940, 0.337).

We compute the group HC𝐿,(1) of unitary Hecke characters. It is isomorphic

to Z7 ×R. Let Ψ1, . . . ,Ψ7 denote the computed basis of the canonical complement
of ‖ · ‖𝑖R. We display the Ψ𝑗 as in the previous example.

Ψ1 Ψ2 Ψ3 Ψ4 Ψ5 Ψ6 Ψ7

𝜏1 (4, 0) (−23,−0.651) (−31, 0.550) (2,−0.453) (−31, 0.531) (−6,−1.266) (19, 1.114)

𝜏2 (−4, 0) (21,−0.651) (30, 1.266) (−2,−0.453) (30,−1.634) (7,−0.550) (−20,−2.218)

𝜏3 (4, 0) (−22, 0.737) (−31,−0.568) (2,−1.120) (−32,−0.191) (−7, 0.568) (21,−0.191)

𝜏4 (4, 0) (−22, 0.564) (−32,−1.248) (2, 2.026) (−31, 1.295) (−8, 1.248) (20, 1.295)

We then compute the subgroup HC−
𝐿,(1) of unitary Hecke characters Ψ such

that Ψ𝜎Ψ has finite order. It admits a basis Ψ′
1, . . . ,Ψ

′
4, where

Ψ′
1 = Ψ1,Ψ

′
2 = Ψ3Ψ6,Ψ

′
3 = Ψ−1

5 Ψ7,Ψ
′
4 = Ψ−1

2 Ψ−1
4 Ψ5Ψ7.

We display the Ψ′
𝑗 as above.

Ψ′
1 Ψ′

2 Ψ′
3 Ψ′

4

𝜏1 (4, 0) (−37,−0.716) (50, 0.584) (9, 2.748)
𝜏2 (−4, 0) (37, 0.716) (−50,−0.584) (−9,−2.748)
𝜏3 (4, 0) (−38, 0) (53, 0) (9, 0)
𝜏4 (4, 0) (−40, 0) (51, 0) (9, 0)

Projecting on the values (𝑘𝜏1 , 𝑘𝜏3 , 𝑘𝜏4), we obtain a lattice generated by the
columns of the matrix ⎛⎝4 −37 50 9

4 −38 53 9
4 −40 51 9

⎞⎠ ,
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Figure 2. Isospectral but not 1-isospectral 3-orbifolds (volume ≈ 0.246)

which has an LLL-reduced basis with matrix⎛⎝1 −1 1
1 2 0
1 0 −2

⎞⎠ ,

from which it is clear that there is no Ω0-shady character of 𝐿, as such a character
would have to satisfy 𝑘𝜏1 = 0 and 𝑘𝜏3 , 𝑘𝜏4 ∈ {±1}. By Corollary 5.29, the orb-
ifolds 𝑌1 and 𝑌𝑐 are therefore 0-isospectral. However, there exists an Ω∙-shady char-
acter, namely Ψshady = (Ψ′

1)
−2Ψ′

4, and the set of Ω∙-shady characters is Ψ±1
shadyΨ

Z
0 ,

where Ψ0 = (Ψ′
1)

−9(Ψ′
4)

4:

Ψshady Ψ0

𝜏1 (1, 2.748) (0, 10.994)
𝜏2 (−1,−2.748) (0,−10.994)
𝜏3 (1, 0) (0, 0)
𝜏4 (1, 0) (0, 0)

For all 𝑛 ∈ Z, the character ΨshadyΨ
𝑛
0 contributes an eigenvalue 𝜆(𝑛) ≈ 4(2.748+

10.994𝑛)2 to the Laplace spectrum of Ω1(𝒴) by Proposition 5.23. The first few
corresponding eigenvalues are

30.2167 . . . , 271.9505 . . . , 755.4182 . . . , 1480.6196 . . . , 2447.5549 . . .

The quadratic growth of these eigenvalues is an example of the phenomenon
described in Theorem C. Only Ψ±1

shady contribute to the eigenvalue 𝜆(1), so by
Lemma 7.2, the orbifolds 𝑌1 and 𝑌𝑐 are not 1-isospectral.

For all 𝑐 ∈ 𝐶, the maximal cyclic subgroups of 𝑃Γ𝑐 have order 2, 3 or 4, and we
have

𝐻1(𝑃Γ𝑐,Z) ∼= (Z/2Z)2.

Example 7.6. The following is an example of 0-isospectral 3-orbifolds with distinct
Betti numbers (in particular, they are not 1-isospectral). Note that Tenie [55]
has constructed a pair of isospectral 3-manifolds that have nonisomorphic rational
cohomology rings.

Let 𝐹 = Q(𝛼) where 𝛼6 − 𝛼5 − 3𝛼4 + 2𝛼2 + 4𝛼 + 1 = 0. The field 𝐹 is
the unique number field of discriminant −958527 and signature (4, 1) (LMFDB
6.4.958527.1). Let 𝐷 be the unique quaternion division algebra ramified at ev-
ery real place and no finite place of 𝐹 . Let N = (1). We have 𝐶 ∼= 𝐶iso

∼= 𝐶2,
which therefore has a single nontrivial character 𝜒, corresponding to the quadratic
extension 𝐿 = 𝐹 (𝜁6). Let 𝜎 be the nontrivial automorphism of 𝐿/𝐹 .

http://www.lmfdb.org/NumberField/6.4.958527.1
http://www.lmfdb.org/NumberField/6.4.958527.1
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Let 𝐶 = {1, 𝑐}. We have

vol(𝑌1) = vol(𝑌𝑐) =
9585273/2𝜁𝐹 (2)

212𝜋10
= 3.397413 . . . .

We choose representatives 𝜏1, . . . , 𝜏6 of Hom(𝐿,C) modulo complex conjugation,
such that

(𝜏𝑘(𝜁6))𝑘 = (𝑒−
2𝜋
6 𝑖, 𝑒

2𝜋
6 𝑖, 𝑒

2𝜋
6 𝑖, 𝑒−

2𝜋
6 𝑖, 𝑒−

2𝜋
6 𝑖, 𝑒

2𝜋
6 𝑖)

(𝜏𝑘(𝛼))𝑘 ≈ (1.959,−0.411 + 0.835𝑖,−0.411− 0.835𝑖,−0.287, 1.511,−1.361).

We compute the group HC𝐿,(1) of unitary Hecke characters. It is isomorphic

to Z11×R. Let Ψ1, . . . ,Ψ11 denote the computed basis of the canonical complement
of ‖ · ‖𝑖R. We display the Ψ𝑗 as above.

Ψ1 Ψ2 Ψ3 Ψ4 Ψ5 Ψ6

𝜏1 (1, 0) (−1,−0.610) (−1, 0.610) (1, 0.242) (−1, 0.072) (2,−0.036)
𝜏2 (−1, 0) (0, 1.032) (0, 0.078) (0, 0.299) (0, 0.007) (−1,−0.421)
𝜏3 (−1, 0) (0,−0.078) (0,−1.032) (−2, 0.299) (2, 0.007) (−2, 0.414)
𝜏4 (1, 0) (0,−0.395) (0, 0.395) (1,−0.847) (−1,−1.271) (0, 0.635)
𝜏5 (1, 0) (1,−0.292) (1, 0.292) (1,−0.643) (−1, 0.259) (1,−0.130)
𝜏6 (−1, 0) (0, 0.344) (0,−0.344) (−1, 0.650) (1, 0.926) (0,−0.463)

Ψ7 Ψ8 Ψ9 Ψ10 Ψ11

𝜏1 (−1, 0.157) (−1, 0.261) (1,−0.356) (−2,−0.428) (1, 0.261)
𝜏2 (0,−0.762) (1, 0.282) (−1,−0.154) (2, 0.374) (−1, 1.0138)
𝜏3 (0, 1.068) (1, 1.014) (0, 0.381) (1,−0.160) (−1, 0.282)
𝜏4 (1,−1.059) (−2,−0.304) (2,−0.722) (−3, 0.549) (2,−0.304)
𝜏5 (0,−0.192) (−1,−0.721) (2, 1.013) (−3, 0.754) (1,−0.721)
𝜏6 (0, 0.788) (0,−0.532) (0,−0.162) (1,−1.088) (0,−0.532)

We then compute the subgroup HC−
𝐿,(1) of unitary Hecke characters Ψ such

that Ψ𝜎Ψ has finite order. It admits a basis Ψ′
1, . . . ,Ψ

′
6, where

Ψ′
1 = Ψ1,Ψ

′
2 = Ψ2Ψ3,Ψ

′
3 = Ψ−1

8 Ψ11,Ψ
′
4 = Ψ−1

5 Ψ9Ψ
−1
10 ,Ψ

′
5 = Ψ5Ψ

2
6,Ψ

′
6 = Ψ4Ψ5Ψ

−2
7 .

We display the Ψ′
𝑗 as above.

Ψ′
1 Ψ′

2 Ψ′
3 Ψ′

4 Ψ′
5 Ψ′

6

𝜏1 (1, 0) (−2, 0) (2, 0) (4, 0) (3, 0) (2, 0)
𝜏2 (−1, 0) (0, 1.110) (−2, 0.732) (−3,−0.534) (−2,−0.835) (0, 1.830)
𝜏3 (−1, 0) (0,−1.110) (−2,−0.732) (−3, 0.534) (−2, 0.835) (0,−1.830)
𝜏4 (1, 0) (0, 0) (4, 0) (6, 0) (−1, 0) (−2, 0)
𝜏5 (1, 0) (2, 0) (2, 0) (6, 0) (1, 0) (0, 0)
𝜏6 (−1, 0) (0, 0) (0, 0) (−2, 0) (1, 0) (0, 0)

Projecting on the values (𝑘𝜏1 , 𝑘𝜏2 , 𝑘𝜏4 , 𝑘𝜏5 , 𝑘𝜏6), we obtain a lattice generated by
the columns of the matrix ⎛⎜⎜⎜⎜⎝

1 −2 2 4 3 2
−1 0 −2 −3 −2 0
1 0 4 6 −1 −2
1 2 2 6 1 0
−1 0 0 −2 1 0

⎞⎟⎟⎟⎟⎠ ,
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Figure 3. Isospectral 3-orbifolds with distinct Betti numbers
(volume ≈ 3.397)

which has an LLL-reduced basis with matrix⎛⎜⎜⎜⎜⎝
1 0 −2 0 0
−1 1 −1 1 1
1 0 0 0 2
1 2 0 0 0
−1 0 0 −2 0

⎞⎟⎟⎟⎟⎠ ,

from which it is clear that there is no Ω0-shady character of 𝐿, as such a character
would have to satisfy 𝑘𝜏2 = 0 and 𝑘𝜏1 , 𝑘𝜏4 , 𝑘𝜏5 , 𝑘𝜏6 ∈ {±1}. However, there exists
an ℋ∙-shady character, namely Ψshady = Ψ1. Moreover, Ψ±1

shady are the only ℋ∙-
shady characters of 𝐿, so that the 1st Betti numbers of 𝑌1 and 𝑌𝑐 differ by 1. In
fact, we can independently compute the homology and see that we have

𝐻1(𝑃Γ1,Z) ∼= (Z/2Z)4 and 𝐻1(𝑃Γ𝑐,Z) ∼= (Z/2Z)3 ⊕ Z.

The maximal cyclic subgroups of 𝑃Γ1 have order 2 or 6, and the maximal cyclic
subgroups of 𝑃Γ𝑐 have order 2 or 3.

Example 7.7. The following is an example of non-isospectral 3-orbifolds forming
a Vignéras pair with no ℋ*-shady character and nonzero 1st Betti numbers; in
particular their regulator ratio is rational for a nontrivial reason.

Let 𝐹 = Q(𝛼) where 𝛼4 − 2𝛼3 +7𝛼2 − 6𝛼− 3 = 0. The field 𝐹 is a number field
of discriminant −10224 and signature (2, 1) (LMFDB 4.2.10224.2). Let 𝐷 be the
unique quaternion division algebra ramified at every real place and no finite place
of 𝐹 . Let N = (1). We have 𝐶 ∼= 𝐶iso

∼= 𝐶2, which therefore has a single nontrivial
character 𝜒, corresponding to the quadratic extension 𝐿 = 𝐹 (𝜁12). Let 𝜎 be the
nontrivial automorphism of 𝐿/𝐹 .

Let 𝐶 = {1, 𝑐}. We have

vol(𝑌1) = vol(𝑌𝑐) =
102243/2𝜁𝐹 (2)

28𝜋6
= 5.902455 . . . .

We choose representatives 𝜏1, . . . , 𝜏4 of Hom(𝐿,C) modulo complex conjugation,
such that

(𝜏𝑘(𝜁12))𝑘 = (𝑒−5 2𝜋
12 𝑖, 𝑒−5 2𝜋

12 𝑖, 𝑒
2𝜋
12 𝑖, 𝑒−

2𝜋
12 𝑖)

(𝜏𝑘(𝛼))𝑘 ≈ (1.345,−0.345, 0.500− 2.493𝑖, 0.500− 2.493𝑖).

http://www.lmfdb.org/NumberField/4.2.10224.2
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We compute the group HC𝐿,(1) of unitary Hecke characters. It is isomorphic

to Z7 ×R. Let Ψ1, . . . ,Ψ7 denote the computed basis of the canonical complement
of ‖ · ‖𝑖R. We display the Ψ𝑗 as above.

Ψ1 Ψ2 Ψ3 Ψ4 Ψ5 Ψ6 Ψ7

𝜏1 (1, 0) (3, 0) (−2, 0.) (−2, 0.714) (−3,−0.140) (0,−0.140) (0, 0.953)

𝜏2 (1, 0) (3, 0) (−2, 0.) (−2,−0.714) (−4, 0.140) (1, 0.140) (0, 0.239)

𝜏3 (−19, 0) (−33, 0) (26,−0.480) (26, 0.) (43,−0.215) (−9, 0.215) (−6,−0.356)

𝜏4 (19, 0) (33, 0) (−26, 0.480) (−26, 0.) (−42, 0.215) (10,−0.215) (6,−0.836)

We then compute the subgroup HC−
𝐿,(1) of unitary Hecke characters Ψ such

that Ψ𝜎Ψ has finite order. It admits a basis Ψ′
1, . . . ,Ψ

′
4, where

Ψ′
1 = Ψ1,Ψ

′
2 = Ψ2,Ψ

′
3 = Ψ3,Ψ

′
4 = Ψ−1

5 Ψ6.

We display the Ψ′
𝑗 as above.

Ψ′
1 Ψ′

2 Ψ′
3 Ψ′

4

𝜏1 (1, 0) (3, 0) (−2, 0) (3, 0)
𝜏2 (1, 0) (3, 0) (−2, 0) (5, 0)
𝜏3 (−19, 0) (−33, 0) (26,−0.480) (−52, 0.430)
𝜏4 (19, 0) (33, 0) (−26, 0.480) (52,−0.430)

Projecting on the values (𝑘𝜏1 , 𝑘𝜏2 , 𝑘𝜏3), we obtain a lattice generated by the
columns of the matrix ⎛⎝ 1 3 −2 3

1 3 −2 5
−19 −33 26 −52

⎞⎠ ,

which has an LLL-reduced basis with matrix⎛⎝−1 −2 1
1 −2 1
0 2 5

⎞⎠ ,

from which it is clear that there is no ℋ∙-shady character of 𝐿, as such a character
would have to satisfy 𝑘𝜏 ∈ {±1} for all 𝜏 ∈ Hom(𝐿,C). However, there exists
an Ω∙-shady character of 𝐿, namely Ψshady = (Ψ′

1)
−1(Ψ′

2)
−1Ψ′

4, and that the set

of Ω∙-shady characters is Ψ±1
shadyΨ

Z
0 , where Ψ0 = (Ψ′

1)
−1(Ψ′

2)
−1(Ψ′

3)
−2:

Ψshady Ψ0

𝜏1 (−1, 0) (0, 0)
𝜏2 (1, 0) (0, 0)
𝜏3 (0, 0.430) (0, 0.960)
𝜏4 (0,−0.430) (0,−0.960)

For all 𝑛 ∈ Z, the character ΨshadyΨ
𝑛
0 contributes an eigenvalue 𝜆(𝑛) ≈ 1 +

4(0.430+0.960𝑛)2 to the Laplace spectrum of Ω1(𝒴) by Proposition 5.23. The first
few corresponding eigenvalues are

1.741 . . . , 2.123 . . . , 8.735 . . . , 9.883 . . . , 23.107 . . . , 25.020 . . .

Only Ψ±1
shady contribute to the eigenvalue 𝜆(1), so by Lemma 7.2, the orbifolds 𝑌1

and 𝑌𝑐 are not 1-isospectral. Since they are also Ω0-shady, by the same argument
these orbifolds are also not 0-isospectral.

Since there is no ℋ∙-shady character of 𝐿, by Theorem 5.32, we have

Reg1(𝑌1)
2

Reg1(𝑌𝑐)
2
∈ Q×,

and the Betti numbers of 𝑌1 and 𝑌𝑐 are equal. In fact, we have

𝐻1(𝑃Γ1,Z) ∼= (Z/2Z)2 ⊕ Z and 𝐻1(𝑃Γ𝑐,Z) ∼= (Z/2Z)2 ⊕ Z,
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Figure 4. Non-isospectral 3-orbifolds with Betti number 1 and
rational regulator square quotient (volume ≈ 5.902)

and in particular both 1st Betti numbers are 1, so the rationality of the ratio of reg-
ulators is a nontrivial statement. Moreover, since the orbifolds are not isospectral,
the Cheeger–Müller theorem does not say anything about this rationality.

The maximal cyclic subgroups of 𝑃Γ1 have order 2, 3, 4 or 12, and the maximal
cyclic subgroups of 𝑃Γ𝑐 have order 2 or 3.
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