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1 Introduction: sums of two squares

Which prime numbers p can be expressed in the form p = x2 + y2 for x,
y ∈ Z? Try it yourself before reading further: we have 2 = 12 + 12, 3 cannot
be written this way, we have 5 = 12 + 22, ... Check all primes up to, say,
p = 61. Can you see a pattern?

The following theorem was first proved by Fermat.

Theorem 1.1. Let p be a prime number. Then there exist x, y ∈ Z such
that p = x2 + y2 if and only if p ≡ 1 or 2 (mod 4).

One of the directions is easy: every square is either 0 or 1 (mod 4), so the
only possible values for the sum of two squares are 0, 1, and 2 (mod 4). Of
these, 0 (mod 4) can never be a prime number, so one direction of the above
equivalence follows. It is the other direction that is the real content of the
theorem, namely that for every prime number that satisfies the “obvious”
necessary condition, there really exist suitable x and y.

Over the centuries, many different proofs of this result have been discov-
ered. The following “one-sentence-proof”, which we present in an expanded
version, is due to Zagier, building on ideas of Heath-Brown who, in turn,
credits Liouville with some of the ideas. None of the ideas in this proof will
be used in the rest of the course, we only show it as what chess players call
a study, a little gem of mathematical magic.

Proof. Let p = 4k+ 1 be a prime number, where k ∈ Z>0. Consider the set
S = {(x, y, z) ∈ Z3

≥0 : x2 + 4yz = p}. Then we can define two involutions
on S, meaning maps ι : S → S such that ι ◦ ι = id. The first one stares one
in the face:

ι1 : (x, y, z) 7→ (x, z, y).

The second one, umm . . . , not exactly:

ι2 : (x, y, z) 7→


(x+ 2z, z, y − x− z) if x < y − z,
(2y − x, y, x− y + z) if y − z < x < 2y,

(x− 2y, x− y + z, y) if x > 2y.
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The involution ι2 has exactly one fixed point, namely (x, y, z) = (1, 1, k), so
#S must be odd, hence ι1 must also have at least one fixed point, (x, y, y).
But (x, y, y) ∈ S means that we have x2 + (2y)2 = p, as required.

More generally, one can completely determine which natural numbers
are sums of two squares.

Theorem 1.2. Let n =
∏
p p

ep ∈ Z≥1, where the product runs over distinct
prime numbers, and ep ∈ Z≥0 for all p. Then there exist x, y ∈ Z with
n = x2 + y2 if and only if for all p ≡ 3 (mod 4) the exponent ep is even.

Proof. This will eventually follow from the theory we will develop, but for
now you can think about the “if” direction. Hint: for all x, y, z, w ∈ Z one
has (x2 + y2)(z2 + w2) = (xz − yw)2 + (xw + yz)2.

Lagrange obtained several variants of Fermat’s result.

Theorem 1.3 (Lagrange). Let p be a prime number. Then

� there exist x, y ∈ Z such that p = x2 + 2y2 if and only if either p = 2
or p ≡ 1 or 3 (mod 8),

� there exist x, y ∈ Z such that p = x2 + 3y2 if and only if either p = 3
or p ≡ 1 (mod 3),

� there exist x, y ∈ Z such that p = x2 + 5y2 if and only if either p = 5
or p ≡ 1 or 9 (mod 20),

� there exist x, y ∈ Z such that 2p = x2 + 5y2 if and only if p ≡ 3 or 7
(mod 20).

2 Binary quadratic forms

Definition 2.1. A binary quadratic form (over Z) is a polynomial in x, y
of the form ax2 + bxy + cy2 for some a, b, c ∈ Z. We will often abbreviate
this to (a, b, c).

Definition 2.2. Let (a, b, c) be a binary quadratic form and let n ∈ Z. We
say that (a, b, c) represents n (properly) if there exist x, y ∈ Z satisfying
ax2 + bxy + cy2 = n (and gcd(x, y) = 1).

Question 2.3. Given a binary quadratic form, what is the set of integers
that it represents (properly)?

Definition 2.4. A binary quadratic form (a, b, c) is called primitive if it
satisfies gcd(a, b, c) = 1.
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Notice that Question 2.3 can always be reduced to primitive binary
quadratic forms. From now on, we will tacitly assume all our forms to
be primitive.

Observe that, for example, 2x2 + 7y2 and 7x2 + 2y2 clearly represent
the same integers. Less clearly, the form 2x2 + 4xy + 9y2 also represents
the same integers as the other two. Indeed, (2, 4, 9) can be obtained from
(2, 0, 7) via the substitution x = X + Y , y = Y , with inverse X = x − y,
Y = y. As x, y run through all integers, so do X, Y , and one has 2x2+7y2 =
2X2 + 4XY + 9Y 2.

How does this generalise? Consider an affine change of variable X =
rx + sy, Y = tx + uy. We want to choose r, s, t, u such that as x, y run
through all integers, so do X, Y , and conversely. Note: if (x, y) = (1, 0),
then (X,Y ) = (r, t); and if (x, y) = (0, 1), then (X,Y ) = (s, u). Thus, we
certainly need r, s, t, u ∈ Z. Conversely, this is sufficient to ensure that
(x, y) ∈ Z2 ⇒ (X,Y ) ∈ Z2. For the converse, solve for x, y: we get

x =
u

ur − st
X − s

ur − st
Y,

y =
−t

ur − st
X +

r

ur − st
Y.

By the same argument as before, we need u
ur−st , . . . ∈ Z. It is not hard to see

that this forces ur − st ∈ {±1}; and conversely, this additional requirement
is sufficient to guarantee that (x, y) 7→ (X,Y ) defines a bijection between
Z2 and Z2.

Here is a better, more conceptual, explanation: the above conditions are
equivalent to the condition that ( r ts u ) ∈ GL2(Z), i.e. that r, s, t, u ∈ Z and
det ( r ts u ) ∈ {±1}. This makes sense, since performing a change of coordi-
nates as above corresponding to ( r ts u ), and then another one corresponding
to
(
r′ t′

s′ u′

)
, then this corresponds to a change of coordinates by(

rr′ + ts′ rt′ + tu′

· · · · · ·

)
=

(
r t
s u

)
·
(
r′ t′

s′ u′

)
.

Therefore, such a change of variables can be reversed if and only if the
corresponding matrix is invertible.

Summary. The group GL2(Z) acts on the set of binary quadratic forms
via (

r t
s u

)
· f(x, y) = f ((x, y) · ( r ts u )) .

The set of integers that a binary quadratic form represents (properly) de-
pends merely on the orbit of the form under this action, not really on the
form itself.

It will turn out to be more convenient to restrict to matrices with de-
terminant 1. In particular, we will not allow the matrix ( 0 1

1 0 ), which would
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swap x and y, and transform ax2 + cy2 to cx2 + ay2. We can still transform
(a, 0, c) to (c, 0, a) by using the matrix

(
0 1
−1 0

)
, which generally transforms

(a, b, c) to (c,−b, a).

Definition 2.5. We define two binary quadratic forms f and g to be
equivalent, and write f ∼ g, if there exists ( r ts u ) ∈ SL2(Z) such that
g(x, y) = f ((x, y) · ( r ts u )).

The set of integers that a form represents (properly) only depends on
the equivalence class of a form. For example by Fermat’s theorem, a prime
number p can be written as p = 10x2 + 14xy + 5y2 if and only if p ≡ 1 or 2
(mod 4). Indeed, we have 10x2 + 14xy + 5y2 = (3x+ 2y)2 + (x+ y)2, or in
the notation above, (10, 14, 5) = ( 3 1

2 1 ) · (1, 0, 1), so that we have (10, 14, 5) ∼
(1, 0, 1).

Question 2.6. How do we (quickly) tell whether or not two given forms
are equivalent?

Definition 2.7. The discriminant of (a, b, c) is defined by ∆(a, b, c) = b2 −
4ac.

Proposition 2.8. Suppose that we have (a, b, c) ∼ (a′, b′, c′). Then we have
b2 − 4ac = b′2 − 4a′c′.

Proof. The proof is a direct calculation: write f = (a, b, c), and let ( r ts u ) ∈
SL2(Z). Then we have

f ((x, y) · ( r ts u ))

= a(rx+ sy)2 + b(rx+ sy)(tx+ uy) + c(tx+ uy)2

= (ar2 + brt+ ct2)x2 + · · · , (2.1)

so if the matrix ( r ts u ) takes (a, b, c) to (a′, b′, c′), then we have a′ = ar2 +
brt + ct2, etc. Expressing b′ and c′ this way, substituting into the formula
for the discriminant, and simplifying gives the result.

Example 2.9. If b 6= ±b′, then (a, b, c) 6∼ (a, b′, c), since then b2 − 4ac 6=
b′2 − 4a′c′.

But caution: the implication goes in only one direction, in other words,
there exist non-equivalent forms with the same discriminant. For example
let f1 = 2x2 + 3y2, f2 = x2 − 2xy + 7y2. The discriminants of both forms
are −4 · 2 · 3 = −24 = 22 − 4 · 7, but we claim that the two forms are not
equivalent. Indeed, f2 represents 1 (take x = 1, y = 0), but it is easy to see
that f1 does not represent 1, since if x 6= 0 or y 6= 0, then f1(x, y) > 1.

The sign of the discriminant tightly controls the behaviour of the binary
quadratic form: given f = ax2 + bxy+ cy2, multiply by 4a and complete the
square to obtain

4a2x2 + 4abxy + 4acy2 = (2ax+ by)2 − (b2 − 4ac)y2.
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Case 0: b2 − 4ac = 0. Then 4a · f is the square of a linear form – not
interesting.
Case 1: b2 − 4ac < 0. Then for all x, y ∈ Z we have 4a · f(x, y) ≥ 0. If
a > 0, then for all x, y ∈ Z we have f(x, y) ≥ 0, and we call such an f
positive definite. If a < 0, then for all x, y ∈ Z we have f(x, y) ≤ 0, and we
call such an f negative definite.
Case 2: b2 − 4ac > 0. If a = 0, then f = y(bx + cy) is a product of two
distinct linear forms, also not as interesting. If, on the other hand, a 6= 0,
then 4a · f , and hence also f , represent both positive and negative integers.
We call such an f indefinite.

In this course we will eventually focus on positive definite forms, but
first we prove some results that are valid for all binary quadratic forms.

Proposition 2.10. Let (a, b, c) be a binary quadratic form, and let n ∈ Z.
Then (a, b, c) properly represents n if and only if (a, b, c) is equivalent to a
form (n, k, l) for some k, l ∈ Z.

Proof. One direction is easy: if (a, b, c) is equivalent to a form (n, k, l) for
some k, l ∈ Z, then these two forms properly represent the same integers;
and the latter represents n by setting x = 1, y = 0.

Let us prove the converse: suppose that there exist r, t ∈ Z such that
n = ar2 + brt+ ct2 and such that gcd(r, t) = 1. By Bézout’s identity, there
exist s, u ∈ Z such that ru − st = 1. Thus, the matrix ( r ts u ) is in SL2(Z),
and by Equation (2.1) it transforms the form (a, b, c) to a form (n, . . .), as
claimed.

The proposition shows that Question 2.3 can be essentially reduced to a
suitable version of Question 2.6.

Proposition 2.11. Let d, n ∈ Z, and suppose that either

� d ≡ 1 (mod 4) and d is square-free, or

� d ≡ 0 (mod 4) and d/4 ≡ 2 or 3 (mod 4) and is square-free.

Then n is properly representable by some form of discriminant d if and only
if d is a square modulo 4|n|.

Proof. By Proposition 2.10, n is properly representable by some form of
discriminant d if and only if there exists a form (n, k, l) of discriminant d,
i.e. satisfying k2 − 4nl = d. The existence of k, l satisfying k2 − 4nl = d
is clearly equivalent to d being a square modulo 4|n|. We leave it as an
exercise to show that the specific conditions on d ensure that for all k, l
satisfying k2 − 4nl = d we have gcd(n, k, l) = 1, so that the form (n, k, l) is
automatically primitive.
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Example 2.12. Let f = x2 + y2. The discriminant is −4. We will soon
show that all forms of discriminant −4 are equivalent to each other, so by
Proposition 2.11, f properly represents a given integer n > 0 if and only if
−4 is a square modulo 4n. This, in turn, is equivalent to −1 being a square
modulo n. If we write n =

∏
p p

ep , where the product runs over distinct
primes, and ep are non-negative integers, then by the Chinese Remainder
Theorem, −1 is a square modulo n if and only if for all p, −1 is a square
modulo pep . Now, −1 is a square modulo 2, but not modulo 4; next, if p ≡ 3
(mod 4), then −1 is not a square modulo p, so also not a square modulo pep

for any ep ≥ 1; while if p ≡ 1 (mod 4), then −1 is a square modulo pep for
all ep ≥ 1 (this is typically proven in an elementary number theory course;
here we will omit the proof). In summary, x2 + y2 properly represents n if
and only if

n = 2δ
∏

p≡1 (mod 4)

pep

with δ ∈ {0, 1} and with ep ∈ Z≥0 for all p ≡ 1 (mod 4).

3 Reduction theory of positive definite forms

We will describe an algorithm that, given a positive definite binary quadratic
form, “reduces” it to an equivalent form with smaller coefficients. Repeating
the reduction step, the algorithm will terminate in a so-called “reduced”
form. It will allow us to prove that for every d ∈ Z<0 there are only finitely
many equivalence classes of forms with discriminant d, and will give us a
quick algorithm to decide whether two given forms are equivalent.

The reduction algorithm. Let (a, b, c) be a positive definite binary
quadratic form. In particular, we have a, c > 0. Apply one of the following
operations if possible:

(A) if c < a, apply the matrix
(
0 −1
1 0

)
to obtain the equivalent form (c,−b, a).

(B) if |b| > a, apply the matrix ( 1 0
s 1 ) for suitable s ∈ Z to obtain the

equivalent form (a, b′, c′), where b′ = b+ 2as. Choose s such that |b′| ≤ a.

Step (A) preserves b and decreases a, while step (B) preserves a and decreases
|b|, so if we keep applying these steps, eventually we must reach a form to
which we can apply neither step, i.e. a form (a, b, c) satisfying c ≥ a and
|b| ≤ a.

Example 3.1. Start with the form (10, 13, 5). Notice that both the condi-
tions of steps (A) and (B) are satisfied, so we may apply either of the two
steps. If we start with (A) we get the chain

(10, 13, 5)
(A) // (5,−13, 10)

(B)

s=1
// (5,−3, 2)

(A) // (2, 3, 5)
(B)

s=−1
// (2,−1, 4).
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If, instead, we start with (B), we get

(10, 13, 5)
(B)

s=−1
// (10,−7, 2)

(A) // (2, 7, 10)
(B)

s=−2
// (2,−1, 4).

Even if neither condition applies, we can use the operations (A) and (B)
for further disambiguation:

� if b = −a, then use operation (B) with s = 1 to preserve a and change
b to +a;

� if a = c, then use operation (A), if necessary, to ensure that b ≥ 0.

Definition 3.2. A positive definite binary quadratic form (a, b, c) is called
reduced if

� either c > a and −a < b ≤ a,

� or c = a and 0 ≤ b ≤ a.

Theorem 3.3. Every positive definite binary quadratic form is equivalent
to a unique reduced form.

Proof. As noted above, applying the steps of the reduction algorithm repeat-
edly either decreases a while preserving b, or decreases |b| while preserving
a. Since we have a, |b| ≥ 0, this must terminate; and by definition, applying
applying the final disambiguation if necessary, the final form is reduced.

It remains to prove uniqueness. Let (a, b, c) be reduced. First, we claim
that a is the smallest positive integer properly represented by (a, b, c). In-
deed, suppose that 0 6= n = ar2 + brt + ct2 for some r, t ∈ Z. If we have
|r| ≥ |t|, then r2 ≥ |rt|, and since the form is reduced, we deduce that
ar2 ≥ |brt|, so that ar2 + brt ≥ 0. Hence n ≥ ct2 ≥ at2. If t 6= 0, then this
is ≥ a, while if t = 0, then n = ar2 ≥ a. Similarly, if |r| < |t|, then we can
use c ≥ a ≥ |b| to show that brt+ ct2 ≥ 0, and hence n ≥ ar2 ≥ a.

Next, we claim that b is the unique integer satisfying |b| ≤ a and (b ≥ 0
if a = c) that appears as the xy-coefficient among all forms (a, . . .) that
are equivalent to (a, b, c). Indeed, suppose that the matrix ( r ts u ) transforsm
(a, b, c) to (a, b′, c′) for some b′, c′ ∈ Z. Then by equation 2.1 we have
a = ar2 + brt + ct2. Carefully inspecting the argument in the previous
paragraph, one finds that this is only possible if either r = 1, t = 0, or
(a = c, r = 0, t = 1). In the former case the matrix is of the form ( 1 0

s 1 ), and
we saw above that such a matrix changes b by multiples of 2a, which proves
the claim. The parenthetical case is left as an exercise to the reader.

Lemma 3.4. Let (a, b, c) be a reduced binary quadratic form, and let d < 0
be its discriminant. Then we have |b| ≤ a ≤

√
|d|/3.

7



Proof. Since we have |b| ≤ a ≤ c, we deduce that d = b2− 4ac ≤ a2− 4a2 =
−3a2, so that |b| ≤ a ≤

√
|d|/3, as claimed.

Theorem 3.5. Let d < 0. Then there exist only finitely many equivalence
classes of binary quadratic forms with discriminant d.

Proof. By Theorem 3.3, the assertion is equivalent to the claim that there
exist only finitely many reduced forms with discriminant d. By Lemma 3.4,
there exist only finitely many a and b (and therefore c) such that (a, b, c) is
a reduced form with discriminant d, whence the result follows.

Example 3.6. Let us classify positive definite reduced binary quadratic
forms of discriminant −4. If (a, b, c) is such a form, then by Lemma 3.4 we
have |b| ≤ a ≤

√
4/3, so we have a = 1, and b ∈ {−1, 0, 1}. Since the parity

of b is the same as that of d, we must, in fact, have b = 0, so the only reduced
positive definite form of discriminant −4 is x2 + y2. This is the missing step
in Example 2.12, so that we have now proved (for a second time) Fermat’s
theorem.

Example 3.7. Let d = −8. If (a, b, c) is a positive definite reduced binary
quadratic form of discriminant d, then by Lemma 3.4 we have |b| ≤ a ≤√

8/3, so by the same argument as in the previous example we necessarily
have a = 1 and b = 0, hence c = 2. Thus, by Theorem 3.3 all binary
quadratic forms of discriminant −8 are equivalent to x2 +2y2, and therefore
the set of integers that a form of discriminant −8 properly represents does
not depend on the form, it is the same as the set of integers that are properly
represented by x2 + 2y2. By Proposition 2.11 a prime number p is properly
representable by x2 + 2y2 if and only if −8 is a square modulo 4p, which is
equivalent to −2 being a square modulo p. That condition can be shown
to be equivalent to p ≡ 1 or 3 (mod 8), which proves one of Lagrange’s
theorems.

Example 3.8. Let d = −15. If (a, b, c) is a positive definite reduced binary
quadratic form of discriminant d, then by Lemma 3.4 we have |b| ≤ a ≤√

15/3 < 3. Moreover, since d is odd, so is b, so we have b = 1, and a = 1
or 2. Therefore, there are exactly two equivalence classes of positive definite
binary quadratic forms of discriminant −15, represented by (1, 1, 4) and
(2, 1, 2). Proposition 2.11 implies that an integer n is properly representable
by one of these forms if and only if −15 is a square modulo 4n. This
condition can be made explicit, like in the previous examples, but which
integers are representable by x2+xy+4y2, and which ones by 2x2+xy+2y2?
Notice that if we have n = r2 + rt + 4t2 for some r, t ∈ Z, then we have
4n = (2r + t)2 + 15t2 ≡ (2r + t)2 (mod 15), so if 15 - n, then this forces
n to be a square modulo 15, i.e. n ≡ 1, 4, 6, 9, or 10 (mod 15); while if
n = 2r2 + rt+ 2t2, then 8n = (4r + t)2 + 15t2, which implies that if 15 - n,
then we have n ≡ 2, 3, 5, 8, or 12 (mod 15).
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We see that when d = −15, the set

{n 6≡ 0 (mod 15) : n is representable by a given form of discr. d}

is describable by congruence conditions. This is an instance of Gauss’s genus
theory. The |d| for which this property holds are called idoneal numbers.
There are many equivalent definitions, and these numbers crop up in rather
unexpected places in number theory.

Gauss conjectured that there are only finitely many idoneal numbers,
and wrote down a conjecturally complete list. Chowla proved the finiteness
conjecture in 1934. Weinberger proved in 1973 that Gauss’s list is missing
at most one number. Actual completeness of Gauss’s list is still open!

4 Class numbers

This and the next section are only intended to sketch where the theory goes
next, and link it up with modern developments.

For d ∈ Z, the class number h(d) is the number of equivalence classes of
binary quadratic forms of discriminant d. This number is always finite, even
when d > 0. Let us restrict attention to those d that satisfy the hypotheses
of Proposition 2.11, the so-called fundamental discriminants. As we men-
tioned in the proof of that proposition, all such d have the property that
every binary quadratic form of discriminant d is primitive. Gauss compiled
extensive tables of all reduced forms of discriminant d for hundreds, if not
thousands, of values of d, and based on these computations made several
conjectures:

(A) For every n ∈ Z≥1 there are only finitely many fundamental discrim-
inants d < 0 such that h(d) = n. In other words, we have h(d) → ∞
as d→ −∞.

(B) The complete list of all fundamental d < 0 with h(d) = 1 is

{−3,−4,−7,−8,−11,−19,−43,−67,−163}.

(C) There exist infinitely many fundamental discriminants d > 0 such that
h(d) = 1.

Part (A) was proven by Heilbronn in 1934.
Part (B) is known as Gauss’s class number 1 problem. Heilbronn and

Linfoot proved in 1934 that Gauss’s list is missing at most one other value.
Heegner, an amateur mathematician, submitted in 1952 a proof of complete-
ness of Gauss’s list, but the paper was poorly written und contained some
small mistakes (some of which could be traced back to mistakes in Weber’s
“Algebra”, the standard text at the time). Heegner died without receiving
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recognition for his solution. In 1967, Stark and Birch showed that Heegner’s
proof had been essentially correct, all mistakes being easily fixable. Today,
so-called “Heegner points” are one of the most important techniques for
studying elliptic curves.

Part (C) is still open!

5 Class groups

The next major step taken by Gauss was to define a binary operation, so-
called composition, on the set of equivalence classes of forms of given dis-
criminant. Gauss showed that this operation gave the set of equivalence
classes of binary quadratic forms of a given discriminant d the structure of a
finite abelian group, the so-called “class group” Cl(d). Thus, one can refine
Gauss’s conjectures by asking questions about the group structure of Cl(d):
as d varies, how often is this group cyclic? How often does the 3-torsion
have size at least 9? What is the average size of the 5-torsion of Cl(d)? Etc.

In 1984, Cohen and Lenstra proposed a unifying framework that predicts
answers to any such statistical questions about class group, the so-called
Cohen–Lenstra heuristics. In 2014 Bhargava received a Fields Medal, to a
large degree for proving special cases of (generalisations of) these conjec-
tures. In 2020, jointly with Lenstra, we have disproved the Cohen–Lenstra
heuristics, and proposed a corrected version in a somewhat restricted set-
ting. In a recent preprint with Johnston and Lenstra we have proposed a
correction to the heuristics in their “unrestricted” original scope.

Essentially all instances of the Cohen–Lenstra heuristics are wide-open.
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