LMS Undergraduate Summer School Binary quadratic forms Exercise sheet 1

Alex Bartel

25–26 August 2022

- 1. Show that if x is any integer, then one has $x^2 \equiv 0$ or 1 or 4 (mod 8), and in particular $x^2 \equiv 0$ or 1 (mod 4). Show also that if x is an integer, then $x^2 \equiv 0$ or 1 (mod 3) and $x^2 \equiv 0$ or 1 or $-1 \pmod{5}$.
- 2. Generalising the previous exercise, show that if p is an odd prime number, then half of all non-zero remainders modulo p are realised by a square of an integer, and half are not. How many remainders modulo p are cubes? **Hint:** You may use without proof the fact that the group $(\mathbb{Z}/p\mathbb{Z})^{\times}$ of non-zero remainders modulo p under multiplication is cyclic.
- 3. Fill in all details in Zagier's proof of Fermat's sum-of-two-squares theorem.
- 4. Prove one direction in each of Lagrange's theorems, Theorem 1.3.
- 5. Let B be the set of binary quadratic forms. Show that the function $\operatorname{SL}_2(\mathbb{Z}) \times B \to B$,

$$\begin{pmatrix} r & t \\ s & u \end{pmatrix} \cdot f(x, y) \mapsto \begin{pmatrix} r & t \\ s & u \end{pmatrix} \cdot f(x, y) = f\left((x, y) \cdot \begin{pmatrix} r & t \\ s & u \end{pmatrix}\right)$$

defines a left group action of $SL_2(\mathbb{Z})$ on B, i.e. for all $M, N \in SL_2(\mathbb{Z})$ and all $f \in B$ we have $M \cdot (N \cdot f) = (M \cdot N) \cdot f$.

- 6. For each of the following pairs f, g of binary quadratic forms, determine whether they are equivalent:
 - (a) $f(x,y) = x^2 + xy + 3y^2$, $g(x,y) = x^2 + xy + y^2$;
 - (b) $f(x,y) = x^2 + 7y^2$, $g(x,y) = x^2 + 2xy + 8y^2$;

(c)
$$f(x,y) = x^2 + 5y^2$$
, $g(x,y) = 2x^2 + 2xy + 3y^2$.

7. Complete the proof of Proposition 2.8.

- 8. An integer d is called a *fundamental discriminant* if either
 - $d \equiv 1 \pmod{4}$ and d is square-free (i.e. not divisible by the square of any integer > 1), or
 - $d \equiv 0 \pmod{4}$ and $d/4 \equiv 2 \text{ or } 3 \pmod{4}$ and is square-free.

Show that if d is a fundamental discriminant, then every binary quadratic form of discriminant d is primitive. (This was a missing step in the proof of Proposition 2.11.)