LMS Undergraduate Summer School Binary quadratic forms
 Exercise sheet 1

Alex Bartel

25-26 August 2022

1. Show that if x is any integer, then one has $x^{2} \equiv 0$ or 1 or $4(\bmod 8)$, and in particular $x^{2} \equiv 0$ or $1(\bmod 4)$. Show also that if x is an integer, then $x^{2} \equiv 0$ or $1(\bmod 3)$ and $x^{2} \equiv 0$ or 1 or $-1(\bmod 5)$.
2. Generalising the previous exercise, show that if p is an odd prime number, then half of all non-zero remainders modulo p are realised by a square of an integer, and half are not. How many remainders modulo p are cubes? Hint: You may use without proof the fact that the $\operatorname{group}(\mathbb{Z} / p \mathbb{Z})^{\times}$of non-zero remainders modulo p under multiplication is cyclic.
3. Fill in all details in Zagier's proof of Fermat's sum-of-two-squares theorem.
4. Prove one direction in each of Lagrange's theorems, Theorem 1.3.
5. Let B be the set of binary quadratic forms. Show that the function $\mathrm{SL}_{2}(\mathbb{Z}) \times B \rightarrow B$,

$$
\left(\begin{array}{cc}
r & t \\
s & u
\end{array}\right) \cdot f(x, y) \mapsto\left(\begin{array}{cc}
r & t \\
s & u
\end{array}\right) \cdot f(x, y)=f\left((x, y) \cdot\left(\begin{array}{cc}
r & t \\
s & u
\end{array}\right)\right)
$$

defines a left group action of $\mathrm{SL}_{2}(\mathbb{Z})$ on B, i.e. for all $M, N \in \mathrm{SL}_{2}(\mathbb{Z})$ and all $f \in B$ we have $M \cdot(N \cdot f)=(M \cdot N) \cdot f$.
6. For each of the following pairs f, g of binary quadratic forms, determine whether they are equivalent:
(a) $f(x, y)=x^{2}+x y+3 y^{2}, g(x, y)=x^{2}+x y+y^{2}$;
(b) $f(x, y)=x^{2}+7 y^{2}, g(x, y)=x^{2}+2 x y+8 y^{2}$;
(c) $f(x, y)=x^{2}+5 y^{2}, g(x, y)=2 x^{2}+2 x y+3 y^{2}$.
7. Complete the proof of Proposition 2.8.
8. An integer d is called a fundamental discriminant if either

- $d \equiv 1(\bmod 4)$ and d is square-free (i.e. not divisible by the square of any integer >1), or
- $d \equiv 0(\bmod 4)$ and $d / 4 \equiv 2$ or $3(\bmod 4)$ and is square-free.

Show that if d is a fundamental discriminant, then every binary quadratic form of discriminant d is primitive. (This was a missing step in the proof of Proposition 2.11.)

