LMS Undergraduate Summer School Binary quadratic forms Exercise sheet 2

Alex Bartel

25–26 August 2022

- 1. For each of the following forms (a, b, c), find a reduced form equivalent to it:
 - (a) (12, -14, 9);
 - (b) (30, -25, 6);
 - (c) (21, -11, 3).
- 2. For each of the following d find all reduced positive definite binary quadratic forms of discriminant d:
 - (a) -3;
 - (b) -7;
 - (c) -11;
 - (d) -20;
 - (e) -23;
 - (f) -24.
- 3. For each of the following forms f and g, decide whether f and g are equivalent:
 - (a) $f(x,y) = 4x^2 + 3xy + y^2$, $g(x,y) = 2x^2 + 5xy + 4y^2$;
 - (b) $f(x,y) = 7x^2 5xy + 2y^2$, $g(x,y) = 5x^2 + 7xy + 4y^2$.
- 4. Suppose that $d = -4 \prod_{i=1}^{s} p_i$ is an even fundamental discriminant, where p_i are distinct prime numbers. Show that there exist at least 2^{s-1} distinct equivalence classes of binary quadratic forms of discriminant d. Hint: count the reduced forms with b = 0.
- 5. If you know how to manipulate Legendre symbols, then classify all prime numbers that are representable by the quadratic form $3x^2 + 3xy + y^2$.