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Combinatorial Classes

Definition

A combinatorial class is a set C equipped with a size function
|| · || : C −→ Zn≥0, such that Cn := {c ∈ C | |c| = n} is finite ∀n.

• C : configuration space (e.g., finite graphs)

• Cn : macrostate (e.g., finite graphs with 4 vertices)

• c ∈ Cn : microstate (e.g., chain graph of 4 vertices)

Important: combinatorial class T of planar rooted trees
|tree|=#(vertices)
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Rooted Trees (T ∗) & Planar Rooted Trees (T )

Definition

A rooted n-tree t is a connected finite graph with n vertices, no cycles,
and a distinguished vertex r called the root. It is called planar if it is
endowed with an ordering on vertices (to the children at each vertex).

• parent of v: unique vertex u adjacent to v, closer to the root.
• children of u: all vertices (if any) with u as parent.
• leaf: a vertex ℓ with no children.
• subtree tv rooted at v: tree consisting of v and its descendants.
• I: empty tree (size 0)
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(a) rooted tree t ∈ T∗
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(b) class T4 of planar rooted 4-trees t ∈ T
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Antichain in the Set V (t) of Vertices

Definition

An antichain in the set V (t) of vertices of a rooted tree t is any subset
C ⊆ V (t) consisting of vertices that cannot be compared.

i.e., no two vertices in C have an ancestor-descendant relationship.

Examples: siblings or the set of all children in the same generation.

•b

•
a

•c

•d • e

• f

Antichains: {d, e, f}
{d, e}, {b, f}, {c, f}, {d, f}, {e, f}
{a}, {b}, {c}, {d}, {e}, {f}
∅
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Algebra of Planar Rooted Trees k[T ]

k : field of characteristic 0

Definition

The algebra of planar rooted trees is the polynomial algebra k[T ]
generated by the elements of T , with formal addition as addition and
disjoint union as multiplication. The empty tree is identified with 1 ∈ k.

Definition

forest (n,m) of size n =
m∑
i=1

ni (vertices) with m trees:

Multiplication of m ni-trees (i = 1, . . . ,m).

•
•
•

•
•

(a) forest (5, 2)

2

•
•
•
− 3

•
• •

(b) element in k[T ]
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Augmented Generating Function

Definition

Given a combinatorial class C, the augmented generating function of
C is the formal power series

C(x) =
∑
c∈C

cx|c| ∈ (k[C])[[x]]

T ∗(x) = I+ • x+ •
• x2 +

(
•
•
•

+ •
• •

)
x3 +


•
•
•
•

+
•
• •
•

+ •
• •
•

+ •
• ••

x4

+O(x5)

Denote: GF=generating function

AGF=augmented generating function
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Evaluation Maps

Definition

An evaluation map is a map ϕ : k[C] −→ Zn≥0.
• ordinary: or(c) = 1
• exponential: ex(c) = 1

|c|!

Note: defined on elements c ∈ C, extended to k[C] as an algebra homomorphism.

• ordinary GF: or(C(x)) =
∑
c∈C

x|c|

or(T ∗(x)) = 1 + x+ x2 + 2x3 + 4x4 +O(x5) (coef(xn)=# n-trees)

• exponential GF: ex(C(x)) =
∑
c∈C

x|c|

|c|!

ex(T ∗(x)) = 1+x+
1

2!
x2 +

2

3!
x3 +

4

4!
x4 +O(x5)

(
coef(xn) =

# n-trees

# n-labels

)
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Combinatorial Hopf Algebras: Main Idea

• Combinatorial objects

• Combine objects −→ product

• Decompose objects −→ coproduct

• “inverse” transformation −→ antipode
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Connes-Kreimer Hopf Algebra of Rooted Trees

H = k[T ∗] : the space of forests of rooted trees

I : the empty forest (empty monomial)

Definition

The Connes-Kreimer Hopf algebra of rooted trees is the following
combinatorial (commutative) Hopf algebra:

grading on H: number of vertices of a forest

connected: since span(H0) = kI ∼= k

unit: I
counit: ε(t) = 0, ε(I) = 1

product: disjoint union of rooted trees

coproduct: ∆(t) =
∑

C⊆V (t)
C antichain

( ∏
v∈C

tv

)
⊗
(
t−

∏
v∈C

tv

) splitting:

“pruned”
&

“stump”


antipode: S(t) = −t−

∑
∅⊊C⊊V (t)
C antichain

S

( ∏
v∈C

tv

)(
t−

∏
v∈C

tv

) (
recursive
relation

)
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Hopf Structure Interpretation I

• Grading of forests: measures how ecologically matured/grown/complex
the forest is;

low grading: newly planted forest, young and sparse
high grading: thriving ecosystem of well-established, sprawling woodland

• H connected: empty forest has meaning; land that can be planted

• Product: plants trees one next to the other in a forest

• Unit: empty land

• Counit: probability P of absence of tree structure;

empty forest: P (I) = 1 = ε(I)
any other tree: P (t) = 0 = ε(t)

answers the question: “Can I plant here?” 1 = YES, 0 = NO.
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Hopf Structure Interpretation II

Coproduct ∆: • encodes all different ways to decompose trees
• cuts edges under vertices in antichain
• results in a “pruned” part and the remaining “stump”

•
• •
•

a

b c

d

Figure: Antichains: ∅, {a}, {b}, {c}, {d}, {b, c}, {d, c}.

∆
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•
• •
•

)
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∅ •
• •
•

+
•
• •
•
⊗
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I+ •
• ⊗

b
•
• + • ⊗

c •
•
•
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•
• • + •

•
• ⊗
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•

+ •• ⊗
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•
•

∆
(
•
•
•
)
= ∆

(
•
•
)
∆
(
•
)
=
(
I⊗ •
• + •

• ⊗ I+ • ⊗ •
) (

I⊗ • + • ⊗ I
)

= I⊗ •
•
• + • ⊗ •

• + •
• ⊗ • + •

•
• ⊗ I+ • ⊗ •• + •• ⊗ •
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Hopf Structure Interpretation III

Antipode S: • recursively dismantles trees; flips sign at each step
• coproduct splits tree; antipode compensates for splitting

S

(
•
• •
•

)
= −

∅,a •
• •
•
−
b
S
(
•
•
)
•
• −

c
S
(
•
)
•
•
•
−
d
S
(
•
)
•
• • −

b,c
S
(
•
•
•
)
•

−
d,c

S
(
••
)
•
•

= −
•
• •
•

+ •
•
•
• − 2 •

•
•• +

•
•
•
•

+ •
• •
• + ••••

S
(
•
)
= − •

S
(
•
•
)
= − •

• − S
(
•
)
• = − •

• + ••

S
(
••
)
= − •• − 2 S

(
•
)
• = − •• + 2 •• = ••

S
(
•
•
•
)
= − •

•
• − S

(
•
)
•• − S

(
•
)
•
• − S

(
••
)
• − S

(
••
)
•

= − •
•
• + ••• + •

•
• − 2 ••• = − •••
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Hide & Seek: A Tale of QFT

scattering amplitude A = probability of this outcome
(
|A|2

)

−→

particles sent in −→ collide & interact −→ detect what comes out−−−−−→What happened? NO IDEA

perturbative expansion = take weighted sum over all possibilities−→

Particular scenario: graph in spacetime
edges = propagating particles & vertices = interactions−−−−−−→

forget spacetime embedding
(when & where)

combine all possibilities
reduced to same abstract graph

1 possibility = 1 Feynman Graph
(which particles interacted & how)−→

weight = Feynman Integral
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Cake Interpretation

Cake interpretation of previous diagram:

scattering amplitude = finished cake

perturbative expansion = recipe

sum = mixing ingredients & cooking

graphs in spacetime = packaged ingredients (we know label & position)

forgetting spacetime embedding = unpacking the ingredients

possibilities = ingredients (= Feynman graphs)

weight = quantity of ingredient (= Feynman Integral)
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4 Important Observations

Feynman Integrals:

• Coupling Constants:

⋆ capture strength of each interaction
⋆ contribute to Feynman integral
⋆ can be interpreted as counting variables

• Feynman Rules:

⋆ how to read Feynman integrand expression off the graph
⋆ each edge & each vertex contribute a factor

• Renormalization:

⋆ extracting physically meaningful quantities from divergent integrals

• Sums of Feynman Integrals:

⋆ expected to be divergent for all interesting cases.
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Half-Edge Feynman Graphs

Definition

A half-edge Feynman graph G is a set H of half edges along with

• a set V (G) of vertices: vertex=disjoint subset of half edges
• a set E(G) of internal edges: internal edge=disjoint pair of half edges.

External edges=half edges not in internal edges.

• •

•
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Half-Edge Labelled Feynman Graphs

Definition

A half-edge labelled Feynman graph GL is a half-edge graph along
with

• a labelling L: bijection H −→ {1, 2, . . . , |H|}.

• •

•

v1 v2

v3

e1

e2

e3

e4

e6

e5

e7

e8

e9 e10

V (G) = {v1, v2, v3}, E(G) = {i1, i2, i3}
i1 = {e3, e7}, i2 = {e4, e8}, i3 = {e9, e10}

v1 = {e1, e2, e3, e4}, v2 = {e5, e6, e7, e8}, v3 = {e4, e8, e9, e10}

Emmanouil Sfinarolakis Hopf Algebras & Feynman Graphs



Labelled & Unlabelled Feynman Graphs: Interplay

Theorem

Let G be a connected graph with n half edges. Let m be the number of
half-edge labelled graphs giving G upon forgetting the labelling. Then:

m

n!
=

1

|Aut(G)| (symmetry factor)

Why do we care?

L(x) = aug ( labelled ) & U(x) = aug ( unlabelled )

ϕ = “forgetful” evaluation map, ϕ(labelled) = ϕ(unlabelled)

ϕL(·) = 1
n!
ϕ(·) & ϕU (·) = 1

|Aut(·)|ϕ(·)

ϕL(L(x)) = ϕU (U(x))

or ( unlabelled; weighted )=ex ( labelled )

FACT: ex ( labelled ) = exp( ex ( connected ) )

A∑
all = exp

(
A∑

connected

)
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1PI Feynman Graphs

Definition

One-particle irreducible or 1PI Feynman graph:

connected

connected after removing any one internal edge.

• •

• • • •

• •
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Analogy

1PI
Legendre←−−−−−−−−−
Transform

connected graphs
exp−−−−→ graphs

Analogy:

connected graphs = walls

1PI graphs = bricks

non-1PI graphs = part of wall with multiple bricks
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Feynman Subgraphs

Definition

subgraph γ of graph G: subset of vertices of G
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Divergent & Primitive Feynman Graphs

Definition

A Feynman graph is divergent if it has a divergent Feynman integral. A
divergent Feynman graph with no divergent subgraphs is called primitive.

Definition

A subgraph γ is called subdivergence if its connected components are 1PI
and divergent.
Overlapping subdivergences: they share at least 1 vertex.
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Combinatorial Physical Theories

Definition

A combinatorial physical theory T is a set of of half edge types with

permissible edge types: set of types of edges (pairs of half edges)

permissible vertex types: set of types of vertices

power counting weight w: an integer for each type (edge & vertex)

dimension D of spacetime: a nonnegative integer

Note: edges here are internal !
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Renormalizable Combinatorial Physical Theories

Definition

superficial degree of divergence of G in T :

ω = Dℓ−
∑
e

w(e)−
∑
v

w(v)

ω ≥ 0 : G divergent

ω = 0 : G logarithmically divergent

Definition

external leg structure L(G): multiset of half edge types of external
edges of G

Definition

A combinatorial physical theory T is renormalizable if:
ω(G,T ) = f(L(G)), ∀G ∈ T
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Scalar Field Theories ϕk

ϕk :


1 half-edge type

1 edge type, w(e) = 2

1 k-valent vertex, w(v) = 0

ϕ4 : D = 4

ϕ3 : D = 6

Denote: ℓ = # loops, v = # vertices, e = # edges, x = # external legs

Euler characteristic: ℓ = e− v + 1

Regularity equation: kv = x+ 2e

Then: ω = Dℓ−
∑
e

w(e)−
∑
v

w(v)

= Dℓ− 2e

= D +

(
1− D

2

)
x+

(
Dk

2
−D − k

)
v

=⇒ D =
2k

k − 2
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Contraction of γ

Definition

Let G be a Feynman graph in a theory T . Let γ be a subgraph with each
connected component 1PI and divergent. The contraction G/γ of γ is the
Feynman graph in T constructed as follows:

start from G

identify subgraph γ

collapse vertices and internal edges into a single vertex

keep external edges attached to external vertices

this is G/γ.
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Contraction of γ: Example

•
•

•
•G =

•
•

•
γ =

• •G/γ =
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Renormalization Hopf Algebras

Definition

Fix a renormalizable theory T . Let G be the set of connected 1PI graphs in
T . The renormalization Hopf algebra H associated to T is the
polynomial algebra k[G ] with:

generators: divergent 1PI graphs of T

grading: loop order

unit: empty graph I
counit: ϵ(I) = 1, ϵ(G) = 0 if G nonempty

product: disjoint union of graphs

coproduct: ∆(G) =
∑

γ⊆G
γ=γp

γ ⊗G/γ

antipode: S(G) = −G−
∑

∅⊊γ⊊G
γ=γp

S(γ) G/γ

γp : product of divergent 1PI subgraphs
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Coproduct: Example (in ϕ3)

∆

( )

= I⊗ + ⊗ I

+ 2 ⊗

Note: γ with 1 or 2 vertices is NOT 1PI, so not taken into account!
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Insertion Trees: Rooted Trees Take The Stage!

•

• •

•
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The End

...or maybe Not

The slides are full of mathematical Easter Eggs ! Have Fun !!
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Appendix A: Feynman Diagrams in Mathematics & Physics

Algebraic Geometry:

Moduli Spaces
Intersection Theory

Geometric Topology:

Knot Invariants
3-Manifolds

Representation Theory:

of Quantum Groups
of Lie Algebras

Number Theory:

Prime Numbers
Riemann Zeta Function

Probability and Statistics:

Stochastic Processes
Random Walks

Combinatorics:

Graphical Representations
Generating & Partition Functions

Graph Theory:

Connectivity, cycles, paths

Graph Algorithms

Mathematical Physics:

Statistical Mechanics

Perturbative Expansions

Quantum Computing:

Quantum Circuits
Quantum Algorithms

Artificial Intelligence:

Neural Networks
AI Systems/Models
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Appendix B: Scalar Field Theories

ω = Dℓ−
∑
e

w(e)−
∑
v

w(v)

= Dℓ− 2e

= D(e− v + 1)− kv + x

= D

(
kv

2
− x

2
− v + 1

)
− kv + x

= D +

(
Dk

2
−D − k

)
v +

(
1− D

2

)
x

Euler characteristic: ℓ = e− v + 1

regularity equation: kv = x+ 2e
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