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Introduction

These notes are intended to cover some basic ideas and results on Hopf algebras over fields,

especially finite dimensional ones.

Throughout, k will be a field, although much of the theory works over a general commutative

ring provided due care is taken over flatness and finiteness conditions.

We will make use of basic category theory terminology some of which will be explained as

it arises. The books by Mac Lane and Riehl [ML98,Rie16] are good sources for this.

The References contain several books and expository articles that cover aspects of the the-

ory that will be covered in these notes. Radford’s book [Rad12] is probably the most complete

source for the general theory of Hopf algebras, while Montgomery [Mon93] is more terse but

extremely useful. The recent book by Cartier & Patras [CP21] covers examples from ar-

eas such as combinatorics and is a good introduction to the ‘classical’ theory. The lecture

notes by Brown & Goodearl [BG02] are wide ranging although their main focus is quantum

groups. Lorentz [Lor18] is an amazing book which contains a lot on Hopf algebras. Water-

house [Wat79] is a very accessible introduction to group schemes and the functorial viewpoint

in Algebraic Geometry, while Milne [Mil17] is more exhaustive and recent. The classic Milnor

& Moore [MM65] was one of the earliest accounts of the theory of Z-graded Hopf algebras and

is still an important source for topologists and there is an updated presentation of some aspects

by May & Ponto [MP12].
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CHAPTER 1

Some background material

In this chapter we give a rapid tour of some important notions that will be used.

We will assume basic familiarity with categories, functors, etc. The category theory met

will be useful to most mathematicians so it is worth becoming familiar with it. The books by

Saunders Mac Lane [ML98] and Emily Riehl [Rie16] are both recommended as references and

for learning the subject. We will make a lot of use of commutative diagrams and basic notions

from homological algebra such as exactness.

It is also assumed that readers are familiar with basic linear algebra and we focus on aspects

that are more likely to be covered in advanced books on abstract algebra such as Lang [Lan02]

or other encyclopaedic works.

1.1. Some category theory odds and ends

Given a category C, we write C(c, d) for the set of morphisms c → d and c
1c−→ c for

the identity morphism of c. It is often convenient to identify an object c with its identity

morphism 1c and so we can think of the category as ‘just’ its morphisms with the objects being

the subcategory of identity morphisms. We will write dom f (domain/source) and codom f

(codomain/target) although it is very common in the literature to encounter sf and tf used for

these.

For morphism c
f−→ d, a morphism d

g−→ c is a left inverse of f if gf = 1c, and d
h−→ c is a

right inverse of f if hf = 1d. If f has both a left and a right inverse they are equal and we set

f−1 = g = h; then f is called an isomorphism and the objects c and d are isomorphic. Notice

that for each c the set of isomorphisms c→ c forms a group.

Definition 1.1. Let C be a category.

An object i ∈ C is initial if for each c ∈ C, C(i, c) has exactly one element.

An object t ∈ C is terminal if for each c ∈ C, C(c, t) has exactly one element.

If C has both a terminal object and an initial object which are isomorphic then any such

object is a null object. Such a category is sometimes called pointed.

It is easy to see that any two terminal objects are isomorphic, and similarly for initial

objects.

Initial and terminal objects are typically denoted 0 and 1. When there is a null object, it

is isomorphic to every terminal and initial object.

Example 1.2. Here are some basic examples.

• The category of sets Set has ∅ as its unique initial object, and any singleton set (i.e.,

a set with one element) as a terminal object.

• For the category of based (or pointed) sets Set∗, the sets with one element are null

objects. Morphisms here are functions that map base points to basepoints. We can
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think of a based set as a morphism {0} → X and morphism as a commutative diagram.

{0}

~~   
X

f // Y

So Set∗ is the slice category of sets under {0}.
• Let C be any category and c and object in it. The slice category of objects under c is

the category c/C whose objects are morphisms c
u−→ codomu and where a morphism

u
f−→ v is a morphism f ∈ C(codomu, codom v) for which

c
u

zz

v

$$
codomu

f // codom v

is a commutative diagram. Composition is the same as in C. Notice that c/C has a

unique initial object c
1c−→ c, the identity morphism of c.

Similarly we can define the slice category of objects over c, C/c.

• The categories of groups Gp and abelian groups AbGp have the trivial groups as null

objects.

• The category of (unital) rings Ring and with unital homomorphisms has Z as an

initial object. If we allow a trivial ring {0} then it is a terminal object; however, for

some purposes it is useful to require that 0 ̸= 1 in a unital ring. The category Rng of

not necessarily unital rings (i.e., rings without identity) has any trivial ring as a null

object.

• In any abelian category there is a null object, also called a zero object. For example,

this applies the categories of abelian groups, modules over a ring or sheaves of modules

over a sheaf of rings on a space.

Definition 1.3. Let C be a category.

Suppose that we have a set of morphisms {c pi−→ ci : i ∈ I} in C where I is some indexing

set. Then c is a product of the ci (or for the pi) if given any set of morphisms {d fi−→ ci : i ∈ I}
there is a unique morphism f : d → c such that for all i ∈ I, fi = pif . If I = ∅ the empty

product is a terminal object.

Suppose that we have a set of morphisms {ci
ji−→ c : i ∈ I} in C where I is some indexing

set. Then c is a coproduct of the ci (or for the ji) if given any set of morphisms {ci
gi−→ d : i ∈ I}

there is a unique morphism g : c → d such that for all i ∈ I, gi = gji. If I = ∅ the empty

coproduct is an initial object.

There are also related notions of pullbacks and pushouts which are worth becoming familiar

with. These can be subsumed into the above by working slice categories of objects above/below

a fixed one. Another generalisation is limits and colimits but we won’t discuss these.
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When the indexing set is I = {1, 2} we can express things diagrammatically: Given the

diagram of solid arrows

d

f1

((

f2

��

∃!f

��
c

p1

��

p2 // c2

c1

there is a unique dotted arrow f making the whole diagram commute. A similar diagram with

all arrows reversed applies to define the coproduct.

Given two products {c pi−→ ci : i ∈ I} and {c′
p′i−→ ci : i ∈ I} it turns out that there is an

isomorphism c
∼=−→ c′ such that for every i ∈ I,

c oo
∼= //

pi
��

c′

p′i��
ci

commutes, so it is usual to refer to the product and denote it by
∏
I

ci or
∏
i∈I

ci; when I = {1, 2}

this is also written c1

⨿

c2. Similarly the coproduct is unique up to isomorphism and denoted∐
I

ci and c1 ⨿ c2.

It is also important that products and coproducts are functorial in their variables: Given

products {c pi−→ ci : i ∈ I} and {d
qi−→ di : i ∈ I} and morphisms fi : ci → di, there is a unique

morphism h : c→ d such that for every j ∈ I,

c
h //

pj

��

d

qj
��

cj
fj // dj

commutes; it is standard to denote h by
∏
I fi :

∏
I ci →

∏
I di. A similar result and notation

applies for coproducts.

Suppose that σ : I → J is a bijection. If for each j ∈ J , dj = cσ−1(i) then there is a switch

isomorphism Tσ :
∏
I ci

∼=−→
∏
J dj . For examples, when I = J = {1, 2}, the transposition (1 2)

gives rise to an isomorphism

T = T(1 2) : c1

⨿

c2
∼=−→ c2

⨿

c1

which switches the factors. Notice that the composition of switch isomorphisms

c1

⨿

c2
∼=−→ c2

⨿

c1
∼=−→ c1

⨿

c2

is the identity function. Similar considerations apply to coproducts.

Example 1.4. Here are some examples of products and coproducts.

• In the category Set, the categorical product is the Cartesian product, the coproduct

is disjoint union.

• In Gp the categorical product is the Cartesian product, the coproduct is free product.
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• In an abelian category, finite products and coproducts agree and are denoted by ⊕
and

⊕
. When discussing vector spaces or modules, × and ⊕ are often used inter-

changeably.

• InRing the product is the Cartesian product, the coproduct is much more complicated.

• In Top the product topology allows a product of topological spaces to be defined.

Similarly there is an obvious topology on the disjoint union of a collection of spaces

that makes it the coproduct.

Proposition 1.5. Suppose that in the category C all products of two objects exist and there

is a terminal object 1. Then all finite products exist, and for each object c,

1

⨿

c ∼= c ∼= c

⨿

1.

Similarly if all coproducts of two objects exist and there is an initial object 0, then all finite

coproducts exist, and for each object c,

0⨿ c ∼= c ∼= c⨿ 0.
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Monoids and comonoids. Let’s recall the notion of a monoid in algebra. A set M

together with a product/multiplication µ : M×M →M and a map ι : 1→M (where 1 is a one

element set) defines a monoid (M,µ, ι) if the following diagrams commute in the category Set.

M ×M ×M
µ×Id

yy

Id×µ

%%
M ×M

µ
%%

M ×M

µ
yy

M

1×M

ι×Id

��

M
∼=oo

Id

��

∼= // M × 1

Id×ι
��

M ×M

µ
  

M ×M

µ
~~

M

If the following diagram commutes then M is commutative.

M ×M

µ
$$

oo T

∼=
// M ×M

µ
zz

M

Of course a group is a monoid together with a self-map χ : M →M that satisfies some additional

commutative diagrams defining left and right inverses.

Now let’s generalise to a category C with finite products and terminal objects. A monoid

in C is a triple (M,µ : M

⨿

M →M, ι : 1→M) where the following diagrams in C commute.

(1.1) M

⨿

M

⨿

M
µ

⨿
Id

yy

Id
⨿

µ

%%
M

⨿

M

µ
%%

M

⨿

M

µ
yy

M

1

⨿

M

ι
⨿

Id
��

M
∼=oo

Id

��

∼= // M

⨿

1

Id
⨿

ι
��

M

⨿

M

µ
  

M

⨿

M

µ
~~

M

If the following diagram commutes then M is commutative.

(1.2) M

⨿

M

µ
$$

oo T

∼=
// M

⨿

M

µ
zz

M

Now one of the magical tricks of Category Theory is that any definition involving com-

mutative diagrams can be dualised by reversing arrows, replacing products by coproducts and

terminal objects by initial objects. So if C has finite coproducts and initial objects then a

comonoid in C is a triple (C, γ : C → C ⨿ C, ε : C → 0) making the following diagrams com-

mute.

(1.3) C ⨿ C ⨿ C88
γ⨿Id

ff
Id⨿γ

C ⨿ Cff
γ

C ⨿ C88

γ

C

0⨿ COO
ε⨿Id

C//
∼=
OO

Id

oo
∼=

C ⨿ 0OO

Id⨿ε

C ⨿ Caa
γ

C ⨿ C==
γ

C
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If the following diagram commutes then C is cocommutative.

(1.4) C ⨿ Ccc

γ

oo T

∼=
// C ⨿ C;;

γ

C

Note that comonoids don’t exist in Set, but do exist in other settings such as the homotopy

category of based spaces where they are called co-H-spaces. A monoid in a category C gives

rise to a comonoid in the opposite category Cop and vice versa.

We can also introduce notions of monoids and comonoids in a monoidal category (C,⊗,1);
for the definition of a (symmetric) monoidal category see [ML98,Rie16]. A monoid M then

has morphisms M ⊗M →M and 1→M fitting into commutative diagrams like (1.1) while a

comonoid C has morphisms C → C ⊗ C and C → 1 with diagrams like (1.3). We will discuss

the important case of vector spaces under tensor product in Section 1.2.

Here is a really important and illuminating example.

Example 1.6. Let AbGp be the abelian category of abelian groups made symmetric

monoidal using the tensor product ⊗. The unit object here is Z since for any abelian group M ,

Z⊗M ∼=M ∼=M ⊗ Z.

The symmetry condition stems from the switch isomorphism

T: M ⊗N
∼=−→ N ⊗M.

It is important that the composition

M ⊗N
∼=−→ N ⊗M

∼=−→M ⊗N

is the identity function, which is required for (AbGp,⊗) to be symmetric monoidal rather than

braided monoidal.

A monoid in (AbGp,⊗,Z) is an abelian group R equipped with a group homomorphism

φ : R⊗R→ R which gives a map

R×R→ R⊗R→ R; (x, y) 7→ xy = φ(x⊗ y)

and this is associative. The unit homomorphism η : Z→ R satisfies

η(1)x = x = xη(1),

so 1R = η(1) behaves as the unity in a ring should.

The distributive laws are hidden in the fact that φ is a homomorphism of abelian groups

and the tensor product is constructed to be bilinear so that

(x1 + x2)⊗ y = x1 ⊗ y + x2 ⊗ y, x⊗ (y1 + y2) = x⊗ y1 + x⊗ y2.

Therefore a monoid in (AbGp,⊗,Z) is a (unital) ring and a commutative monoid is just a

commutative (unital) ring.

This example can be generalised by replacing Z with any commutative ring, AbGp the

abelian category of modules over it and ⊗ with the tensor product of modules; a monoid is then

an algebra over the ring.
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Adjoint functors. Adjunctions play an important rôle in studying algebraic structures, in

particular free functors and (co)monads are ubiquitous. For full definitions and properties see

[ML98,Rie16].

Let C and D be two categories.

Definition 1.7. The pair of functors L : C → D and R : D → C between categories C

and D is an adjoint pair or are adjoint functors if there are natural (in the two variables)

isomorphisms

D(L(−),−) ∼= C(−, R(−)).
The functor L is a left adjoint of R and R is the right adjoint of L. This is indicated by writing

L ⊣ R with the Kan turnstyle ⊣ or ⊥.

C

L
))⊥ D

R

ii

It can be shown that given two left adjoints for R are naturally isomorphic and similarly for

two right adjoints of L; see [Rie16, proposition 4.4.1]. The existence of a left (or right) adjoint

requires strong conditions on a functor. For example, left adjoints must preserve coproducts

and right adjoints must preserve products. Results on this are discussed in [Rie16, section 4.6].

Notice that for any X ∈ C, under the isomorphism D(L(X), L(X)) ∼= C(X,R(L(X))), the

identity morphism IL(X) corresponds to a morphism iX : X → R(L(X)) usually called a univer-

sal morphism. Similarly for any Y ∈ D there is a morphism iY : L(R(Y )) → Y corresponding

to IR(Y ) under C(R(Y ), R(Y )) ∼= D(L(R(Y )), Y ). We can think of iX as part of a natural

transformation i( ) : IC ⇒ RL and iY as part of a natural transformation i( ) : LR⇒ ID.

Example 1.8. The forgetful functor R : Gp → Set which sends a group (G,µ, e) to its

underlying set G has a left adjoint L : Set → Gp which sends a set X to the free group

generated by it, namely ⟨X⟩. The function iX : X → ⟨X⟩ just sends an element x ∈ X to the

word x, while iG : ⟨G⟩ → G sends a word in elements of G to the element of G obtained by

evaluating the product of the letters.

Given an adjoint pair L,R, we can define endofunctors RL : C → C and LR : D → D. Then

there are natural transformations

(RL)(RL) = R(LR)L
Ri( )L +3 RIDL = RL

LR = LICR
Li( )R +3 L(RL)R = (LR)(LR)

so that (RL, i( ), Ri
( )L) is a monad in C and (LR, i( ), Li( )R) is a comonad in D. So each is a

‘monoid or comonoid in one of the categories of endofunctors ofC andD’; see [Rie16, page 154].

1.2. Vector spaces over a field as a symmetric monoidal category

In this section we will discuss an important example that underlies the study of Hopf algebras

and amany other things. This material requires knowledge of tensor products of vector spaces

and we will review some of the ideas. Throughout, k will be a field.

The abelian category of (left) k-vector spaces Vectk is very simple in terms of its additive

structure. For example, every short exact sequence splits

0→ U → V →W → 0
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so that V ∼= U ⊕W . As a result there is no homological algebra like there is for modules over a

general ring. Of course this is a consequence of the existence of bases, which also implies that

every vector space is a direct sum of 1-dimensional ones.

However, additional structure is available: Vectk is also a closed symmetric monoidal cate-

gory under tensor product ⊗ = ⊗k and with the internal function object given by

hom(−,−) = Homk(−,−) = Vectk(−,−).

The vector space k is a unit object for these since there are functorial isomorphisms

k⊗ V ∼= V ∼= V ⊗ k, hom(k, V ) ∼= V.

It is symmetric because of the functorial switch isomorphism

T: U ⊗ V
∼=−−→ V ⊗ U ; T(x⊗ y) = y ⊗ x.

The tensor product is functorial in the two variables: given linear mappings f : U → U ′

and g : V → V ′ there is a linear mapping f ⊗ g : U ⊗ V → U ′ ⊗ V ′ fitting into a commutative

diagram of linear mappings.

U ⊗ V
f⊗IdV //

IdU′ ⊗g
��

f⊗g

%%

U ′ ⊗ V

IdU ⊗g
��

U ⊗ V ′
f⊗IdV ′

// U ′ ⊗ V ′

The tensor product is associative in the sense that for three vector spaces U, V,W , there is a

canonical isomorphism

(U ⊗ V )⊗W
∼=−−→ U ⊗ (V ⊗W )

ultimately induced from the canonical bijection of sets

(U × V )×W ←→ U × (V ×W )

using the universal property of ⊗ repeatedly (this is left as an exercise for those who have not

seen it before). Then for linear mappings f : U → U ′, g : V → V ′ and h : W → W ′ there is a

commutative diagram.

(U ⊗ V )⊗W

(f⊗g)⊗h

��

oo
∼= // U ⊗ (V ⊗W )

f⊗(g⊗h)

��
(U ′ ⊗ V ′)⊗W ′ oo

∼= // U ′ ⊗ (V ′ ⊗W ′)

Because of this we usually just write U ⊗ V ⊗W for (U ⊗ V ) ⊗W and f ⊗ g ⊗ h : U ⊗ V ⊗
W → U ′ ⊗ V ′ ⊗ W ′ for (f ⊗ g) ⊗ h : (U ⊗ V ) ⊗ W → U ′ ⊗ V ′ ⊗ W ′, and identify it with

f ⊗ (g ⊗ h) : U ⊗ (V ⊗W )→ U ′ ⊗ (V ′ ⊗W ′) using the isomorphisms and diagram above.

Remark 1.9. Of course all of these properties of tensor products are consequences of the

basic universal property they satisfy. We recall that given three k-vector spaces U, V,W , a

function f : U × V →W is bilinear if for all s1, s2, t1, t2 ∈ k, u1, u2 ∈ U and v1, v2 ∈ U ,

f(s1u1 + s2u2, t1v1 + t2v2) =
∑
i,j=1,2

sitjf(ui, vj).
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Now a bilinear function τ : U × V → T into a vector space T is a tensor product for U, V if

for every bilinear map f : U × V → W there is a unique linear mapping f ′ : T → W such that

f ′ ◦ τ = f .

U × V

f ##

τ // T

∃! f ′~~
W

This universal property is used to build maps out of the tensor product into a vector space by

specifying bilinear maps. As usual the vector space T is unique up to isomorphism and there is

a standard construction that can be found in many books. We denote it by U ⊗ V = U ⊗k V

and then the map τ is given by τ(u, v) = u⊗ v where such basic tensors span U ⊗ V .

Some adjunctions for vector spaces. Our next result gives an example of an adjunction

that has many variations for modules over rings. It can be proved using the universal property

of ⊗. It also justifies the claim that (Vectk,⊗,hom) is a closed monoidal category as mentioned

earlier.

Note that Vectk(U, V ) is not just a set but a vector space. The adjunction isomorphisms

in the next result are actually vector space isomorphisms (i.e., invertible linear mappings).

Theorem 1.10. For a k-vector space V , the functors

(−)⊗ V : Vectk → Vectk, hom(V,−) : Vectk → Vectk

are adjoint, (−) ⊗ V ⊣ hom(V,−). Hence for any three vector spaces U, V,W there is an

adjunction isomorphism

Vectk(U ⊗ V,W )
∼=−→ Vectk(U, hom(V,W ))

which is functorial in the variables.

This means that for linear mappings f : U → U ′, g : V → V ′ and h : W → W ′ there are

commutative diagrams involving these isomorphisms.

Vectk(U
′ ⊗ V,W ) oo

∼= //

(f⊗Id)∗

��

Vectk(U
′, hom(V,W ))

f∗

��
Vectk(U ⊗ V,W ) oo

∼= // Vectk(U, hom(V,W ))

Vectk(U ⊗ V ′,W ) oo
∼= //

(Id⊗g)∗
��

Vectk(U, hom(V ′,W ))

(g∗)∗
��

Vectk(U ⊗ V,W ) oo
∼= // Vectk(U, hom(V,W ))

Vectk(U ⊗ V,W ) oo
∼= //

h∗
��

Vectk(U, hom(V,W ))

(h∗)∗
��

Vectk(U ⊗ V,W ′) oo
∼= // Vectk(U, hom(V,W ′))

The dual (space) of V is V ∗ = hom(V, k); if V is finite dimensional, a choice of basis leads

to an isomorphism V
∼=−→ V ∗ dependent on the basis used.
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The (strongly) dualisable objects V are characterised by the condition that for all W ,

hom(V,W ) ∼=W ⊗ V ∗,

and

V ∗∗ = hom(V ∗, k) ∼= V,

where the latter isomorphism can be chosen to be independent of choice of basis and functorial

in V ; these turn out to be precisely the finite dimensional vector spaces. Notice also that k∗ ∼= k
and Endk(V ) ∼= V ⊗ V ∗. There are also functorial isomorphisms

hom(U ⊗ V,W ) = Vectk(U ⊗ V,W ) ∼= Vectk(U,W ⊗ V ∗) = hom(U,W ⊗ V ∗).

When U and V are finite dimensional, we will make the canonical identification

(1.5) (U ⊗ V )∗ ∼= V ∗ ⊗ U∗

not with U∗⊗V ∗, although these are isomorphic via the switch isomorphism; the literature has

varying conventions on this and some minor differences occur as a result. Warning: when U

or V is infinite dimensional there is a canonical injective linear mapping

(1.6) V ∗ ⊗ U∗ → (U ⊗ V )∗

which is not an isomorphism.

For later use we mention an important construction. There is a forgetful functor Vectk →
Set which ‘forgets’ the algebraic structure and just remembers the underlying set; it sends each

k-linear mapping to itself just viewed as a function between sets. Thus Vectk is an example of

a concrete category ; many of the familiar examples of mathematical structures form concrete

categories.

Proposition 1.11. There is a functor F : Set→ Vectk which is left adjoint to the forgetful

functor, i.e., for every set X and vector space V there is a bijection

Vectk(F(X), V ) ∼= Set(X,V ),

and this gives a natural isomorphism of bifunctors

Vectk(F(−),−) ∼= Set(−,−).

Furthermore, there is a natural isomorphism F◦ (−×−) ∼= F(−)⊗F(−) between the bifunctors

F ◦ (−×−) : Set× Set→ Vectk; (X,Y ) 7→ F(X × Y ),

F(−)⊗ F(−) : Set× Set→ Vectk; (X,Y ) 7→ F(X)⊗ F(Y ).

We usually think of the vector space FX = F(X) as having X as a basis and it is called the

(free) vector space on X. One construction is

F(X) = {(α : X → k) : α is finitely supported},

where a function is finitely supported if it is zero except on finitely many elements. Of course if

we take X = {1, 2, . . . , n}, FX ∼= kn; in particular, if n = 1, FX ∼= k.
Of course every vector space V has a basis B, and there is a unique linear mapping F(B)→ V

corresponding to the inclusion function B ↪→ V ; this is easily seen to be an isomorphism, so

F(B) ∼= V . Of course this just says that every vector space is a free vector space but in many

ways corresponding to different choices of bases.

We will see later that free functors and adjunctions provide powerful tools for creating

algebraic objects with useful properties.
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Some homological algebra. As mentioned before, the abelian category of vector spaces

Vectk is semi-simple since every short exact sequence in Vectk splits, so it has no homological

algebra in the sense of derived functors. More specifically, for any vector space W , the additive

functors

W ⊗ (−), (−)⊗W, hom(W,−), hom(−,W ) : Vectk → Vectk

are all exact, i.e., they send every short exact sequence to a short exact sequence. So if

0→ V ′ → V → V ′′ → 0

is short exact then so is each of the induced sequences

0→W ⊗ V ′ →W ⊗ V →W ⊗ V ′′ → 0,

0→ V ′ ⊗W → V ⊗W → V ′′ ⊗W → 0,

0→ hom(W,V ′)→ hom(W,V )→ hom(W,V ′′)→ 0,

0→ hom(V ′′,W )→ hom(V,W )→ hom(V ′,W )→ 0.

1.3. Graded vector spaces

In many contexts, vectors spaces, modules, etc, are equipped with gradings. In principal

we can do this with an arbitrary abelian group but in these notes we will only discuss the very

common case of the integers.

A Z-graded k-vector space means a collection of vector spaces V∗ = {Vn : n ∈ Z} or

V ∗ = {V n : n ∈ Z}. Here the upper (homology) and lower (cohomology) indexing is often used

to distinguish ‘homological’ and ‘cohomological’ degrees (for example in Algebraic Topology).

Given graded vector spaces U∗ and V ∗, together with an integer d, we can form new graded

vector spaces U [d]∗ or V [d]∗ where

U [d]n = Un−d, V [d]n = V n−d.

From now one we will focus on lower gradings but the upper gradings have similar properties.

Given two such objects U∗ and V∗, a homomorphism of graded vector spaces f∗ : U∗ → V∗
is a collection of homomorphisms f∗ = {fn : Un → Vn : n ∈ Z}. We can also talk about a

homomorphism of degree d which is a homomorphism U [d]∗ → V∗. Notice that this is the same

as a homomorphism U [d+k]∗ → V [k]∗ for any k. We can form a graded version of Hom = Homk
by taking Homd(U∗, V∗) to be the set of all homomorphisms of degree d from U∗ to V∗. However,

this can be large since

Homd(U∗, V∗) =
∏
n∈Z

Hom(Ud+n, Vn).

We can also tensor graded vector spaces. The tensor product of U∗ and V∗ is the graded

vector space U∗ ⊗k V∗ = (U ⊗k V )∗ with

(U ⊗k V )n =
⊕
k∈Z

Uk ⊗k Vn−k.

It is often useful to work with graded objects where the only non-zero terms are in non-

negative degrees. A graded vector space V∗ is d-connected if Vk = 0 whenever k ⩽ d it is called

bounded below if it is d-connected for some d. We can also talk about coconnected and bounded

above objects.

A graded vector space V∗ is of finite type if for every n ∈ Z, dimk Vn < ∞. It is (totally)

finite if it of finite type and only finitely many of the dimk Vn are non-zero.

If V∗ is of finite type we can define its dual to be V ∗ where

V n = Homk(Vn, k),
15



so V ∗ is also of finite type.

It is possible to make graded vector spaces into a symmetric monoidal category and this

will be useful for Section 3.15.

The Koszul sign convention. In graded contexts there is often a sign built in depending

on degrees. The origin of this lies in the switch isomorphism

U ⊗ V T−−→∼= V ⊗ U.

When we are working with graded vector spaces U∗ and V∗ this is replace with the isomorphism

Um ⊗ Vn
(−1)mnT−−−−−−→∼=

Vn ⊗ Um.

Of course the sign factor here is only −1 if both m and n are odd. So if we are working with

graded vector spaces which are only non-zero in even degrees this sign does not differ from

that in the ungraded world. However, this new sign convention affects the notion of graded

commutativity as we will see.

Notice that when char k = 2 the Koszul signs are all 1 anyway.
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CHAPTER 2

Algebras, coalgebras, bialgebras and Hopf algebras

In this chapter we will introduce two types of algebraic structures, namely algebras and

coalgebras, then combine them into a new structure called a bialgebra. Finally we will focus

on bialgebras which possess an antipode; these are our central objects of study, namely Hopf

algebras.

Throughout, k will be a field. In fact, much of the theory works for an arbitrary commutative

ring, although additional assumptions such as flatness are sometimes requiredwhen discussing

coalgebras. We will often set ⊗ = ⊗k and hom = Homk.

2.1. Algebras

A k-algebra (A,φ, η) is a monoid in the symmetric monoidal category (Vectk,⊗,k), i.e., a
k-vector space A equipped with a k-linear product φ : A⊗ A → A and unit η : k −→ A, which

make the following diagrams in Vectk commute where the isomorphisms are the canonical ones.

(2.1) (A⊗A)⊗A

φ⊗Id

��

oo
∼= // A⊗ (A⊗A)

Id⊗φ
��

A⊗A

φ
""

A⊗A

φ
||

A

k⊗A

η⊗Id

��

A
∼=oo

Id

��

∼= // A⊗ k

Id⊗η
��

A⊗A

φ
��

A⊗A

φ
��

A

If in addition the following diagram commutes then A is commutative.

(2.2) A⊗A

φ
##

oo T

∼=
// A⊗A

φ
{{

A

An algebra is really a special kind of ring and when working with elements we set xy =

φ(x ⊗ y) and 1 = 1A = η(1) if this is unlikely to lead to confusion. Of course commutativity

means that for all x, y ∈ A, xy = yx.

Unpacking the definition we find that an algebra is a ring with the additional structure of a

specified (injective) ring homomorphism η : k→ A whose image is contained in the centre of A

and makes A a k-vector space. Commutativity means that A is a commutative ring.

A homomorphism θ : (A,φ, η) → (A′, φ′, η′) between two k-algebras is a k-linear mapping

θ : A→ A′ making the following diagrams commute.

A⊗A θ⊗θ ////

φ

��

A′ ⊗A′

φ′

��
A

θ // A′

k
η

��

η′

��
A

θ // A′

17



So a homomorphism is a ring homomorphism which is also a k-linear mapping. Of course the

kernel of a homomorphism θ is an ideal, ker θ ◁ A, and the image of θ is a subalgebra of A′

isomorphic to the quotient algebra A/ ker θ. The conditions for a subspace I ⊆ A to be a

two-sided ideal amount to saying that there is commutative diagram of the following form.

A⊗ I id⊗inc//

��

A⊗A
φ

��

I ⊗Ainc⊗idoo

��
I

inc // A I
incoo

To show that the kernel of the algebra homomorphism θ is an ideal we consider the diagram of

solid arrows

(2.3) 0 // A⊗ ker θ
Id⊗inc//

��

A⊗A Id⊗θ //

φ

��

A⊗A′

φ′◦(Id⊗θ)
��

0 // ker θ
inc // A

θ // A′

0 // ker θ ⊗A inc⊗Id//

OO

A⊗A Id⊗θ //

φ

OO

A′ ⊗A

φ′◦(θ⊗Id)

OO

in which the rows are exact. The existence of the dotted arrows making the resulting diagram

commute is now an easy exercise.

The trivial k-algebra is k with the product given by the canonical isomorphism k⊗ k
∼=−→ k

which is given on basic tensors by

r ⊗ s 7→ rs.

Since k is a field, for any algebra the unit η : k → A is an injective homomorphism of k-
algebras and it is usual to identify its image with k, thus making k a subring of A. The exact

sequence of vector spaces

0→ k→ A→ coker η → 0

splits, giving a linear isomorphism A ∼= k ⊕ coker η. However this isomorphism depends on

choosing a basis of A which extends a basis of k. If additional structure is present then it can

sometimes be made canonical.

A k-algebra A is augmented if there is a given homomorphism of k-algebras ε : A → k, so
ker ε◁A. Notice that the commutative diagram of vector spaces and linear mappings

0

��
k
η

��
0 // ker ε //

∼= $$

A
ε

//

��

k // 0

coker η

��
0

18



has exact row and column, and the composition

ker ε //
))

A // coker η

is an isomorphism. Therefore there is a canonical decomposition of vector spaces

A ∼= k⊕ ker ε ∼= k⊕ coker η.

Given an algebra A, its opposite algebra Aop has the same underlying vector space but

product

φop = φ ◦ T.
So if we denote a ∈ A viewed as an element of Aop by aop,

aopbop = φop(aop ⊗ bop) = (ba)op.

The identity function A → Aop is an algebra homomorphism if and only if A is commutative.

It is not always possible to find an isomorphism A→ Aop but it does sometimes occur.

Example 2.1. The ring Mn(k) of n× n matrices with entries in k is an algebra which has

opposite algebra Mn(k)op. Transposition defines an isomorphism

(−)T : Mn(k)→ Mn(k)op; X 7→ (XT )op.

More generally, if A is any algebra with a specified isomorphism φ : A → Aop then Mn(A),

Mn(A)
op, Mn(A

op) and Mn(A
op)op are all algebras and there is an isomorphisms

Mn(A)→ Mn(A
op)op;X 7→ (X†)op

where given the matrix X with (i, j) entry xij , X
† has (i, j) entry φ(xji).

A possibly familar example of this occurs when k = R and A = H (the quaternions).

Example 2.2. The ring of polynomials k[X1, . . . , Xn] is a commutative algebra. If we take

an ideal I◁k[X1, . . . , Xn] then the quotient ring k[X1, . . . , Xn]/I is also a commutative algebra

and the quotient homomorphism k[X1, . . . , Xn] → k[X1, . . . , Xn]/I is an algebra homomor-

phism.

The ring of non-commutative polynomials k⟨X1, . . . , Xn⟩ is an algebra which has all the

(ordered) monomials Xr1 · · ·Xrℓ as a basis. The product is of course obtained from juxtaposing

monomials. Again the quotient by an ideal is also an algebra.

If we choose a non-zero h ∈ k then the quotient of k⟨X,Y ⟩ by the principal ideal generated

by XY −Y X−h, k⟨X,Y ⟩/(XY −Y X−h), is called the Weyl algebra. We can think of Y as the

differential operator h
d

dX
and then k⟨X,Y ⟩/(XY − Y X − h) is the ring of formal differential

operators.

Given two algebras (A1, φ1, η1) and (A2, φ2, η2), their tensor product A1 ⊗ A2 becomes an

algebra with product and unit given by the compositions

(A1 ⊗A2)⊗ (A1 ⊗A2)
IdA1

⊗T⊗IdA2−−−−−−−−−→∼=
(A1 ⊗A1)⊗ (A2 ⊗A2)

φ1⊗φ2−−−−→ A1 ⊗A2

and

k −−→∼= k⊗ k η1⊗η2−−−−→ A1 ⊗A2.

So given basic tensors a1 ⊗ a2, b1 ⊗ b2 ∈ A1 ⊗A2, their product is

(a1 ⊗ a2)(b1 ⊗ b2) = a1b1 ⊗ a2b2.
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Example 2.3. Given an algebra A and its opposite algebra Aop, the algebra Ae = A⊗Aop

is called the enveloping algebra of A. It is encountered when studying bimodules over A and

Hochschild (co)homology.

We can summarises the main properties of k-algebras and their homomorphisms in the

following.

Theorem 2.4. Algebras and commutative algebras form the symmetric monoidal cate-

gories Algk and Algco
k under ⊗. In Algco

k , ⊗ is the categorical coproduct and k is an initial

object. In Algk and Algco
k the Cartesian product × = ⊕ is the categorical product.

2.2. Coalgebras

The dual notion to an algebra is that of a k-coalgebra, which is a triple (C,ψ, ε), with C a

k-vector space, a coproduct ψ : C → C⊗C, and a counit ε : C → k fitting into the commutative

diagrams shown.

(2.4) (C ⊗ C)⊗ C oo
∼= //

OO
ψ⊗Id

C ⊗ (C ⊗ C)
OO
Id⊗ψ

C ⊗ Cee

ψ

C ⊗ C99

ψ

C

k⊗ COO
ε⊗Id

C//
∼=
OO

Id

oo
∼=

C ⊗ kOO
Id⊗ε

C ⊗ Caa

ψ

C ⊗ C==

ψ

C

This says that (C,ψ, ε) is a comonoid in Vectk.

If the following diagram commutes then C is cocommutative.

(2.5) C ⊗ Ccc

ψ

oo T

∼=
// C ⊗ C;;

ψ

C

A homomorphism θ : (C,ψ, ε)→ (C ′, ψ′, ε′) between two k-coalgebras is a k-linear mapping

θ : C → C ′ making the following diagrams commute.

C ⊗ C θ⊗θ //// C ′ ⊗ C ′

C

ψ

OO

θ // C ′

ψ′

OO k

C

ε
??

θ // C ′

ε′
__

The kernel of θ is a coideal, where a subspace J ⊆ C is a coideal if the coproduct ψ restricts to

give a map J → C ⊗ J + J ⊗ C ⊆ C ⊗ C and εJ = 0; then there is a commutative diagram

J� _

��

// C ⊗ J + J ⊗ C� _

��
C

ψ //

��

C ⊗ C

��
C/J

ψ // C/J ⊗ C/J

To prove that the kernel of a coalgebra homomorphisms is a coideal involves an analogue of the

diagram (2.3). For this we note first that

ker(θ ⊗ θ) = C ⊗ ker θ + ker θ ⊗ C
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and so there is a commutative diagram of solid arrows

(2.6) 0 // ker θ
inc //

��

C
θ // C ′

0 // ker(θ ⊗ θ) inc // C ⊗ C θ⊗θ //
��
ψ

C ′ ⊗ C ′
��
ψ′

C ⊗ ker θ + ker θ ⊗ C

and there is a unique linear map giving the dotted arrow which makes the resulting diagram

commute.

The image of θ is a subcoalgebra of C ′ isomorphic to the quotient C/J equipped with the

induced coproduct ψ : C/J → C/J ⊗ C/J .
The trivial k-coalgebra is k with the coproduct given by the isomorphism

k
∼=−→ k⊗k k = k⊗ k

which on basic tensors is just

t 7→ t⊗ 1 = 1⊗ t.

For any coalgebra the counit ε : C → k is a homomorphism of k-coalgebras.
A k-coalgebra C is (co)augmented if there is a homomorphism of k-coalgebras η : k → C.

The commutative diagram of vector spaces and linear mappings has exact row and column

0

��
ker ε

��

∼=

$$
0 // k

η // C //

ε
��

coker η // 0

k

��
0

and there is a canonical decomposition of vector spaces

C ∼= k⊕ ker ε ∼= k⊕ coker η.

A coalgebra C has an opposite coalgebra Cop with coproduct

ψop = T ◦ ψ.

So on writing ψ(c) =
∑

i c
′
i ⊗ c′′i , we have

ψop(cop) =
∑
i

(c′′i )
op ⊗ (c′i)

op.

The identity function C → Cop is a coalgebra homomorphism if and only if C is cocommutative.

Remark 2.5 (Sweedler notation). Coalgebraists often use the notations

ψ(c) =
∑

c(1) ⊗ c(2) =
∑

c1 ⊗ c2
21



and even drop the summation sign (this is like the Einstein summation convention used with

tensors). This notation is quite convenient in calculations especially as an alternative to working

with humongous commutative diagrams. For example, the coassociativity condition is equivalent

to the identity

(2.7) (ψ⊗Id)◦ψ(c) =
∑

(c(1))(1)⊗(c(1))(2)⊗c(2) =
∑

c(1)⊗(c(2))(1)⊗(c(2))(2) = (Id⊗ψ)◦ψ(c),

while the counit conditions become

(2.8)
∑

ε(c(1))c(2) = c =
∑

ε(c(2))c(1).

For coalgebras C1, C2, their tensor product C1 ⊗ C2 becomes a coalgebra whose coproduct

and counit are the compositions

C1 ⊗ C2
ψ1⊗ψ2−−−−→ (C1 ⊗ C1)⊗ (C2 ⊗ C2)

IdC1
⊗T⊗IdC2−−−−−−−−−→∼=

(C1 ⊗ C2)⊗ (C1 ⊗ C2),

C1 ⊗ C2
ε1⊗ε2−−−−→ k⊗ k −−→∼= k.

So if c′ ∈ C1 and c′′ ∈ C2 with coproducts

ψC1(c
′) =

∑
c′(1) ⊗ c

′
(2), ψC2(c

′′) =
∑

c′′(1) ⊗ c
′′
(2),

the coproduct on c′ ⊗ c′′ ∈ C1 ⊗ C2 is

ψC1⊗C2(c
′ ⊗ c′′) =

∑
(c′(1) ⊗ c

′′
(1))⊗ (c′(2) ⊗ c

′′
(2)) ∈ (C1 ⊗ C2)⊗ (C1 ⊗ C2).

Dually to Theorem 2.4 we have

Theorem 2.6. Coalgebras and cocommutative coalgebras form symmetric monoidal cate-

gories Coalgk and Coalgco
k under ⊗. In Coalgco

k , ⊗ is the product and k is a terminal object.

In Coalgk and Coalgco
k the Cartesian product × = ⊕ is the coproduct.

Here are some basic examples of coalgebras, many more appear in Chapter 3.

Example 2.7. Consider the vector space C with basis γ0, γ1, γ2, . . .. This can be made into

a cocommutative coalgebra with coproduct given by

ψ(γn) =
∑

0⩽i⩽n

γi ⊗ γn−i

and counit

ε(γn) =

{
1 if n = 0,

0 if n > 0.

This is often called the Divided Power coalgebra because we can think of γn as representing

Xn/n! and the coproduct as coming from

Xn 7→ (X ⊗ 1 + 1⊗X)n.

Example 2.8. Suppose that (M,µ, 1) is a finite monoid. Then the vector space Map(M, k)
of functions M → k becomes a coalgebra under the coproduct

ψ : Map(M, k)→ Map(M ×M, k) ∼= Map(M, k)⊗Map(M, k)

with

ψ(f) = f ◦ µ←→
∑

(x,y)∈M2

f(xy)δx ⊗ δy,
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where δx ∈ Map(M, k) is given by

δx(y) =

{
1 if y = x,

0 if y ̸= x.

2.3. Dualising between coalgebras and algebras

The diagrams satisfied by the structure morphisms of algebras and coalgebras are dual in

the sense that they are related by ‘reversing all the arrows’. We can exploit this categorical

symmetry to dualise coalgebras to algebras and sometimes algebras to coalgebras.

Given a coalgebra (C,ψ, ε) the dual space C∗ = hom(C, k) becomes an algebra by defining

the product C∗ ⊗ C∗ → C∗ to be the following composition.

C∗ ⊗ C∗ � � // **
(C ⊗ C)∗

ψ∗
// C∗

hom(C ⊗ C, k) hom(C, k)
On elements, for α, β ∈ C∗ and c ∈ C,

(αβ)(c) =
∑

α(c(2))β(c(1))

where we use Sweedler notation for the coproduct on c; notice the switch in order of the indices

which is a consequence of our definition of the dual of a tensor product (1.6). The unit is the

dual of the counit ε∗,

ε∗ : k→ C∗; ε∗(t) = tε.

To see that this product on C∗ is associative using Sweedler notation, for α, β, γ ∈ C∗ and

c ∈ C, by (2.7) (
(αβ)γ

)
(c) =

∑
(αβ)(c(2))γ(c(1))

=
∑

α((c(2))(2))β((c(2))(1))γ(c(1))

=
∑

α(c(2))β((c(1))(2))γ((c(1))(1))

=
∑

α(c(2))(βγ)(c(1))

=
(
α(βγ)

)
(c),

showing that (αβ)γ = α(βγ); alternatively we could do this with a humongous commutative

diagram. A similar calculation using (2.8) shows that ε∗ is a unit. Also, if C is cocommutative

then C∗ is commutative. An important fact is that the algebra C∗ acts on C to make it a left

C∗-module, as we will see later.

We summarise this discussion in a result.

Proposition 2.9. Given a coalgebra (C,ψC , εC), there is a dual algebra (C∗, ψ∗
C , ε

∗
C). More-

over, C∗ is commutative if and only if C is cocommutative.

A homomorphism of coalgebras θ : (C,ψC , εC)→ (C ′, ψC′ , εC′) induces a homomorphism of

algebras θ∗ : ((C ′)∗, ψ∗
C′ , ε∗C′)→ (C∗, ψ∗

C , ε
∗
C).

Proof. The last part is left as an exercise. □

If (A,φ, η) is an algebra which is finite dimensional then we can also dualise to get a

coalgebra (A∗, φ∗, η∗). However, if A is infinite dimensional we need to modify the notion of

dual appropriately to make this work. There are two ways to do this: the more drastic one

involves introducing linearly topologised vector spaces and a notion of completeness, the other
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leads to a more ‘algebraic’ outcome by suitably restricting the elements in the dual space. We

will take the latter approach, see Remark 2.11 for more on the alternative.

Suppose that V is a vector space. Then a subspace U ⊆ V is cofinite or has finite codimen-

sion if dimk V/U <∞.

For an algebra A, we define its finite or restricted dual by

A◦ = {α ∈ A∗ : there is a cofinite I ◁A such that I ⊆ kerα} ⊆ A∗.

So α ∈ A∗ is in A◦ if it factors through a finite dimensional quotient algebra A/I. Of course

when A is finite dimensional, A◦ = A∗, but otherwise A◦ ⫋ A∗. As before we can ‘dualise’ the

algebra structure on A to obtain a coproduct φ∗ : A∗ → (A ⊗ A)∗ but in order to land in a

tensor product we need to restrict it to A◦ using the fact that there is a commutative diagram

A◦
� _

��

φ◦
// A◦ ⊗A◦

� _

��

oo
∼= // (A⊗A)◦

A∗ φ∗
// (A⊗A)∗

and the dotted arrow is defined to be the coproduct φ◦ : A◦ → A◦ ⊗ A◦. There is a counit

η◦ : A◦ → k obtained by precomposing with η. Then (A◦, φ◦, η◦) is a coalgebra.

Proposition 2.10. Given an algebra (A,φA, ηA), there is a dual coalgebra (A◦, φ◦
A, η

◦).

Moreover, A◦ is cocommutative if and only if A is commutative.

A homomorphism of algebras θ : (A,φA, ηA) → (A′, φA′ , ηA′) induces a homomorphism of

coalgebras θ◦ : ((A′)◦, φ◦
A′ , η◦A′)→ (A◦, φ◦

A, η
∗
A).

Remark 2.11. One way to relate this approach to the other is by noting that given two

cofinite ideals I, J ◁ A, if I ⊆ J there is an induced surjective algebra homomorphism A/I →
A/J ; these fit together to form an inverse system whose limit is the profinite completion of A,

Â = lim
I ◁A cofin.

A/I.

This can be given a certain Hausdorff profinite topology so that it is Cauchy complete.

When we take linear duals we get linear maps (A/J)∗ → (A/I)∗ which form an directed

system whose colimit is

A◦ = colim
I ◁A cofin.

(A/I)∗.

This is not the linear dual of Â but it is the continuous linear dual with respect to the profinite

topology on Â and k (which has the discrete topology). In the profinite topology the open sets

are the cosets a + J where J ◁ Â is a cofinite ideal (these are actually clopen); a continuous

linear map Â→ k is one that factors through a finite dimensional quotient Â/J .

2.4. Bialgebras

In order to define a bialgebra (also known as a hyperalgebra or bigèbre in French) we need a

vector space equipped with both an algebra and a coalgebra structure, (B,φ, η) and (B,ψ, ε),

which interact appropriately.

Recall that we can give B ⊗ B an algebra stucture and a coalgebra structure, so it makes

sense to ask if φ : B⊗B → B and η : k→ B are coalgebra homomorphisms or if ψ : B → B⊗B
and ε : B → k are algebra homomorphisms. Either of these amounts to requiring that chasing

around the following diagrams read from left to right gives the same output.
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ψ φ

=
ψ ◦ φ

Here the product for B ⊗B is shown in red, the coproduct in green.

ψ φ ψ φ

We also have two commutative diagrams for the unit and counit.

k
∼= //

η

��

k⊗ k

η⊗η
��

B
ψ // B ⊗B

B ⊗B
φ //

ε⊗ε
��

B

ε
��

k⊗ k
∼= // k

If necessary, we denote the structure maps in a bialgebra by writing (B,φ, η, ψ, ε).

Of course a homomorphism of bialgebras should be simultaneously an algebra and a coal-

gebra homomorphism, and there is a category of bialgebras Bialgk with full subcategories of

commutative and cocommutative bialgebras. If a bialgebra is both commutative and cocom-

mutative then it is called bicommutative.

Example 2.12 (The Quantum Plane). Let 1 ̸= q ∈ k. The Quantum Plane is the non-

commutative bialgebra

Oq(k2) = k⟨X,Y ⟩/(Y X − qXY ).

We will denote the residue classes of X and Y by x and y, so these satisfy yx = qxy; notice

that the monomials xiyj form a basis of Oq(k2). There is a coproduct ψ and counit ε given by

ψ(x) = x⊗ x, ψ(y) = y ⊗ 1 + x⊗ y, ε(x) = 1, ε(y) = 0.

This bialgebra is neither commutative nor cocommutative so it is a quantum monoid.

In Example 2.20 this construction will be modified to give a Hopf algebra.

Proposition 2.13. Suppose that (B,φ, η, ψ, ε) is a bialgebra.

(a) If (B,ψ, ε) is a cocommutative coalgebra, then (B,φ, η) is a monoid in Coalgco
k . In partic-

ular, φ and η are coalgebra homomorphisms.

(b) If (B,φ, η) is a commutative algebra then (B,ψ, ε) is a comonoid in Algco
k . In particular,

ψ and ε are algebra homomorphisms.

Proof. (a) In the category Coalgco
k , ⊗ is the categorical product and k is a terminal

object. Now expand the diagrams of (2.1) for (B,φ, η) with A = B and interpret them as being

in Coalgco
k .

(b) In the category Algco
k , ⊗ is the categorical coproduct and k is an initial object. Now expand

the diagrams of (2.4) for (B,ψ, ε) with C = B and interpret them as being in Algco
k . □

2.5. Interlude: Convolution monoids

In order to define Hopf algebras we will require a construction that can be made using an

algebra and a coalgebra as ingredients. Let (A,φ, η) be a k-algebra and (C,ψ, ε) a k-coalgebra.
The vector space hom(C,A) can be given a useful product.
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Definition 2.14. For f, g ∈ hom(C,A), their convolution product is

f ∗ g = φ ◦ (f ⊗ g) ◦ ψ

and since this function C → A is a composition of linear mappings it is an element of hom(C,A).

In Sweedler notation, we have for c ∈ C,

f ∗ g(c) =
∑

f(c(1))g(c(2)).

There is also the distinguished element 1 = 1C,A = η ◦ ε ∈ hom(C,A).

Proposition 2.15. With the product ∗, hom(C,A) is a monoid with identity element 1.

When A is commutative and C is cocommutative, this monoid is commutative.

Proof. To show that hom(C,A) is a monoid we need to check that ∗ is associative and 1

acts as the identity.

Associativity and coassociativity of A and C imply the commutativity of the following

diagram which proves (f ∗ g) ∗ h = f ∗ (g ∗ h) for any f, g, h ∈ hom(C,A).

Cψ

xx

ψ

&&

(f∗g)∗h=f∗(g∗h)

��

C ⊗ C

(f∗g)⊗h
��

ψ⊗Id// C ⊗ C ⊗ C

(f⊗g)⊗h
��

oo
∼= // C ⊗ C ⊗ C

f⊗(g⊗h)
��

C ⊗ C
Id⊗ψoo

f⊗(g∗h)
��

A⊗A

φ ..

A⊗A⊗A
φ⊗Id
oo oo

∼=
// A⊗A⊗A

Id⊗φ
// A⊗A

φppA

By contemplating the following commutative diagram we see that 1 ∗ f = f = f ∗ 1.

C

1∗f

))

f∗1

uu

ψ

��

ψ

��
Id

��

C ⊗ C

ε⊗Id

��

C ⊗ C

Id⊗ε
��

k⊗ C

Id⊗f
��

C
∼=oo

∼= //

f

��

C ⊗ k

f⊗Id

��
k⊗A

η⊗Id

��

A
∼=oo

Id

��

∼= // A⊗ k

Id⊗η
��

A⊗A

φ

��

A⊗A

φ

��
A

The commutativity result is left as an exercise. □

When we combine ∗ with the vector space structure on hom(C,A) we get an algebra.

Corollary 2.16. The vector space hom(C,A) becomes a k-algebra with product ∗ and

unity 1.
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Given an algebra homomorphism α : A → A′ and a coalgebra homomorphism γ : C ′ → C,

there are k-linear mappings

α∗ : hom(C,A)→ hom(C,A′); α∗(f) = α ◦ f,
γ∗ : hom(C,A)→ hom(C ′, A); γ∗(f) = f ◦ γ.

It is easy to verify that these are monoid homomorphisms and so algebra homomorphisms, i.e.,

for f, g ∈ hom(C,A),

α∗(f ∗ g) = α∗(f) ∗ α∗(g), γ∗(f ∗ g) = γ∗(f) ∗ γ∗(g),
α∗(1) = 1, γ∗(1) = 1.

In a monoid elements need not have inverses, but sometimes they do. If f ∈ hom(C,A)

then f ∈ hom(C,A) is an inverse for f if

f ∗ f = 1 = f ∗ f,

or more explicitly if for every c ∈ C, using Sweedler notation in A we have∑
f(c(1))f(c(2)) = ε(c) =

∑
f(c(1))f(c(2)).

Of course, if it exists then such a two-sided inverse for f is unique by a standard argument that

makes use of associativity.

Notice that when A = k, C∗ = hom(C,k) and 1 = ε∗, and the algebra (C∗, ∗,1) agrees with
the algebra (C∗, ψ∗, ε∗) discussed earlier.

In order to define Hopf algebras, we require some observations on inverses in convolution

monoids for bialgebras.

Lemma 2.17. Suppose that B is a bialgebra.

(a) If A is an algebra and f : B → A is an algebra homomorphism which has a convolution

inverse f in hom(B,A), then f is an algebra homomorphism B → Aop.

(b) If C is a coalgebra and g : C → B is a coalgebra homomorphism which has a convolution

inverse g in hom(C,B), then g is a coalgebra homomorphism Cop → B.

Proof. (a) Let B ⊗ B with its product φB⊗B which is also a coalgebra homomorphism

with respect to its coproduct ψB⊗B. This means that φ∗
B⊗B : hom(B,A)→ hom(B ⊗ B,A) is

a monoid homomorphism and in particular φ∗
B⊗B(f) ∈ hom(B ⊗B,A) has inverse φ∗

B⊗B(f).

Now define ℓ = φA ◦ (f ⊗ f) ◦ T: B ⊗B → A, given on elments by

ℓ(x⊗ y) = f(y)f(x).

We will show that ℓ is also a left inverse for φ∗
B⊗B(f) and therefore it agrees with φ∗

B⊗B(f). To

verify this we calculate: for x, y ∈ B,

(ℓ ∗ φ∗
B⊗B(f))(x⊗ y) =

∑∑
ℓ(x(1) ⊗ y(1))φ∗

B⊗B(f)(x(2) ⊗ y(2))

=
∑∑

f(y(1))f(x(1))f(x(2)y(2))

=
∑∑

f(y(1))f(x(1))f(x(2))f(y(2))

=
∑

f(y(1))(f ∗ f)(x)f(y(2))

=
∑

f(y(1))ε(x)f(y(2))

= ε(x)
∑

f(y(1))f(y(2))

= ε(x)(f ∗ f)(y)
= ε(x)ε(y) = ε(xy).
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So (ℓ ∗ φ∗
B⊗B(f)) = 1 and ℓ is the inverse of φ∗

B⊗B(f).

The proof of (b) is similar. □

In particular, when B is a bialgebra, the identity function IdB : B → B is both an algebra ho-

momorphism and a coalgebra homomorphism, so if it has a convolution inverse IdB ∈ hom(B,B)

this is both an algebra isomorphism B → Bop and a coalgebra isomorphism Bop → B.

Lemma 2.18. Suppose that (B,φ, η, ψ, ε) is a bialgebra which is either commutative or co-

commutative and that IdB exists. Then IdB : B → B is self-inverse, i.e.,

IdB ◦ IdB = IdB .

Proof. We will give the proof when B is commutative, the other case is similar. So IdB is

an isomorphism B ∼= Bop and by Lemma 2.17(a), IdB : B → B is an algebra homomorphism,

hence φ ◦ (IdB ⊗ IdB) = IdB ◦ φ. To identify IdB ◦ IdB it is sufficient to show that

(IdB ◦ IdB) ∗ IdB = 1.

We have

(IdB ◦ IdB) ∗ IdB = φ ◦ ((IdB ◦ IdB)⊗ IdB) ◦ ψ

= φ ◦ (IdB ⊗ IdB) ◦ (IdB ⊗IdB) ◦ ψ

= IdB ◦ φ ◦ (IdB ⊗IdB) ◦ ψ

= IdB ◦ (IdB ∗IdB)

= IdB ◦ 1

= IdB ◦ η ◦ ε = 1,

and so IdB ◦ IdB = IdB as required. □

2.6. Hopf algebras

Finally we are ready to define a Hopf algebra.

Definition 2.19. If (H,φ, η, ψ, ε) is a bialgebra for which χ = IdH exists then it is called

the antipode of H and (H,φ, η, ψ, ε, χ) is called a Hopf algebra. In many sources χ is denoted

by S.

The antipode χ has to satisfy some conditions which we can encode in the following com-

mutative diagram.

(2.9) H
ψ

{{
ε

��

ψ

##
H ⊗H

χ⊗Id

��

H ⊗H

Id⊗χ

��

k

η

��

H ⊗H

φ
##

H ⊗H

φ
{{

H
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On an element h ∈ H this expands to give

(2.10)
∑

χ(h(1))h(2) = ε(h) =
∑

h(1)χ(h(2)).

In general χ : H → H is not a bijective function, however if it is bijective then its inverse

function χ−1 fits into the two equivalent commutative diagrams

(2.11) H
ψ

{{
ε

��

ψ

##
H ⊗H

T
��

H ⊗H

T
��

H ⊗H

χ−1⊗Id
��

k

η

��

H ⊗H

Id⊗χ−1

��
H ⊗H

φ
##

H ⊗H

φ
{{

H

H
ψ

{{
ε

��

ψ

##
H ⊗H

Id⊗χ−1

��

H ⊗H

χ−1⊗Id
��

H ⊗H

T
��

k

η

��

H ⊗H

T
��

H ⊗H

φ
##

H ⊗H

φ
{{

H

which expand to give

(2.12)
∑

χ−1(h(2))h(1) = ε(h) =
∑

h(2)χ
−1(h(1)).

Example 2.20 (The localised Quantum Plane). We can modify the Quantum Plane of

Example 2.12 to give a Hopf algebra by forcing x to have an inverse. Let

Oq(k2)[x−1] = k⟨X,Y, Z⟩/(Y X − qXY,XZ − 1, ZX − 1).

We will denote the residue class of Z by x−1.

The coproduct and counit of Oq(k2) extend to Oq(k2)[x−1] so that

ψ(x−1) = x−1 ⊗ x−1, ε(x−1) = 1,

and the antipode is given by

χ(x) = x−1, χ(x−1) = x, χ(y) = −x−1y.

This is a Hopf algebra which is neither commutative nor cocommutative. It has interesting finite

dimensional quotient Hopf algebras when q takes special values; these are called Taft algebras

and are discussed in Chapter 3.

Definition 2.21. A homomorphism of Hopf algebras or Hopf homomorphism

θ : (H,φ, η, ψ, ε, χ)→ (H ′, φ′, η′, ψ′, ε′, χ′)

is a k-linear mapping θ : H → H ′ which is both an algebra and a coalgebra homomorphism. A

Hopf homomorphism which is invertible is called an isomorphism.

Just as a group homomorphism maps inverses to inverses, such a Hopf homomorphism also

satisfies

θ ◦ χ = χ′ ◦ θ.
The kernel of a Hopf algebra homomorphism θ is both an ideal and a coideal, which is also

closed under the restriction of the antipode of the domain. Such an ideal in a Hopf algebra is

called a Hopf ideal. It is easy to see if J ◁H is a Hopf ideal then there are unique algebra and

coalgebra structures on H/J so that the quotient map H → H/J is a homomorphism of Hopf

algebras; then H/J is called the quotient Hopf algebra of H with respect to J .
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Proposition 2.22. Let θ : (H,φ, η, ψ, ε, χ) → (H ′, φ′, η′, ψ′, ε′, χ′) be a Hopf homomor-

phism. Then

(a) χ′ ◦ θ = θ ◦ χ;
(b) ker θ◁H is a Hopf ideal and the image of θ is a subHopf algebra of H ′ is isomorphic to the

quotient Hopf algebra H/ ker θ.

Proof. (a) The idea is to show that in the convolution monoid hom(H,H ′) the elements

χ′ ◦ θ and θ ◦ χ satisfy .

(χ′ ◦ θ) ∗ θ = η′ ◦ ε = θ ∗ (χ′ ◦ θ)
and

(θ ◦ χ) ∗ θ = η′ ◦ ε = θ ∗ (θ ◦ χ)
where χ′ ◦ θ is the identity element. This shows that these elements are both inverses of θ

and so must be equal by uniqueness of inverses. Here is a sample, the others follow by similar

calculations:

(χ′ ◦ θ) ∗ θ = φ′ ◦
(
(χ′ ◦ θ)⊗ θ

)
◦ ψ

= φ′ ◦ (χ′ ⊗ Id) ◦ (θ ⊗ θ) ◦ ψ
= φ′ ◦ (χ′ ⊗ Id) ◦ ψ′ ◦ θ
= (χ′ ∗ Id) ◦ θ
= η′ ◦ ε′ ◦ θ
= η′ ◦ ε.

(b) This is a consequence of earlier results about homomorphisms of algebras and coalgebras. □

Remark 2.23. Of course Hopf algebras over k and their homomorphisms define a cate-

gory HAk which has the null object k. There are three obvious full subcategories whose objects
are the commutative, the cocommutative and the bicommutative Hopf algebras. In the first

two, ⊗ is the categorical coproduct and product respectively. The category of bicommutative

Hopf algebras (also known as abelian Hopf algebras) has many features possessed by an abelian

category (for example ⊗ is the both the categorical coproduct and product), and indeed appro-

priate subcategories such as finite dimensional bicommutative Hopf algebras do form abelian

categories.

We mention one important example of an isomorphism.

Example 2.24. Suppose that (H,φ, η, ψ, ε, χ) is a Hopf algebra whose antipode χ is bijec-

tive. Then its opposite Hopf algebra is (Hop, φop, ηop, ψop, εop, χop) where we take the opposite

algebra and coalgebra structures and as a function χop = χ. Then the function

χ̃ : H → Hop; χ̃(h) = (χ(h))op

is an isomorphism of Hopf algebras with inverse

χ̃op : Hop → H; χ̃op(hop) = χ−1(h).

A similar result applies if we interchange χ and χ−1.

Later we will see that these isomorphisms allows us to interchange between left and right

modules and comodules over H.

Proposition 2.25. Suppose that (H,φ, η, ψ, ε, χ) is a Hopf algebra.

(a) If (H,ψ, ε) is cocommutative then (H,φ, η, χ) is a group object in Coalgco
k . In particular,

φ, η, χ are coalgebra homomorphisms.
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(b) If (H,φ, η) is commutative then (H,ψ, ε, χ) is a cogroup object in Algco
k . In particular,

ψ, ε, χ are algebra homomorphisms.

Proof. This follows from Proposition 2.13 since χ is the inverse map in each case. □

Definition 2.26. A Hopf algebra which is commutative or cocommutative is called a clas-

sical Hopf algebra. A Hopf algebra which is both commutative and cocommutative is sometimes

called bicommutative or abelian. A Hopf algebra for which χ ◦ χ = Id is called involutary or

involutive.

Remark 2.27. Notice that involutary Hopf algebras have bijective antipodes; in general

the antipode of a Hopf algebra need not be bijective although it often is. We have shown above

that for a classical Hopf algebra, χ ◦ χ = Id and χ is an (co)algebra isomorphism H
∼=−→ Hop to

the opposite (co)algebra.

Remark 2.28. Although in general the antipode χ of a Hopf algebra H need not be either

an algebra or a coalgebra homomorphism, its composition square χ2 = χ ◦ χ is by Lemma 2.17

and because χ2 commutes with χ. This means that χ2H ⊆ H is a subHopf algebra; of course χ

is not injective or surjective this might be a proper inclusion of a quotient Hopf algebra.

Some special kinds of elements in a Hopf algebra.

Definition 2.29. If H is a Hopf algebra then its set of primitive elements is

P(H) = {h ∈ H : ψ(h) = 1⊗ h+ h⊗ 1}.

This is a vector subspace of H, but it also has other properties. For x, y ∈ P(H),

ψ(xy − yx) = ψ(x)ψ(y)− ψ(x)ψ(y)
= (x⊗ 1 + 1⊗ x)(y ⊗ 1 + 1⊗ y)− (y ⊗ 1 + 1⊗ y)(x⊗ 1 + 1⊗ x)
= (xy ⊗ 1 + x⊗ y + y ⊗ x+ 1⊗ xy)− (yx⊗ 1 + y ⊗ x+ x⊗ y + 1⊗ yx)
= (xy − yx)⊗ 1 + 1⊗ (xy − yx),

hence xy − yx ∈ P(H). This shows that P(H) is a Lie subalgebra of H equipped with its

commutator bracket. Notice also that if x ∈ P(H) then

x = ε(1)x+ ε(x) = x+ ε(x)

so ε(x) = 0, hence P(H) ⊆ ker ε.

In fact P defines a functor HAk → Liek to the category of Lie algebras over k and this has

a left adjoint. This will be discussed further in Chapter 3.

Definition 2.30. If H is a Hopf algebra then a non-zero element g ∈ H is group-like if

ψ(g) = g ⊗ g,

and its set of all group-like elements is

G(H) = {g ∈ H : g is group-like}.

If g, h ∈ G(H) then

ψ(gh) = gh⊗ gh
and since ψ(1) = 1 ⊗ 1, 1 ∈ G(H). This show that G(H) is a monoid under multiplication. If

g ∈ G(H) then using the counit we get

ε(g)g = g = gε(g)
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so ε(g) = 1; now using the antipode we also find that

χ(g)g = ε(g) = gχ(g)

so g is a unit with inverse g−1 = χ(g). Therefore G(H) ⩽ H×.

There is a more general notion that combines the group-like and the primitives. If g ∈ G(H)

then the set of g-primitives is

Pg(H) = {h ∈ H : ψ(h) = g ⊗ h+ h⊗ g}.

Lemma 2.31. Let H be a Hopf algebra. Then the set of group-like elements G(H) is linearly

independent. Hence the group-like elements span a cocommutative subHopf algebra isomorphic

to the group algebra kG(H).

Proof. Suppose that G(H) is not linearly independent. Then there is a minimal n ⩾ 1 for

which there is a subset {g0, g1, . . . , gn} ⊆ G(H) with {g1, . . . , gn} linearly independent and

g0 =
∑

1⩽k⩽n

tkgk

for tk ∈ k. Applying ψ we obtain

g0 ⊗ g0 =
∑

1⩽k⩽n

tkgk ⊗ gk ∈ H ⊗H

and so ∑
1⩽k⩽n
1⩽ℓ⩽n

tktℓgk ⊗ gℓ =
∑

1⩽k⩽n

tkgk ⊗ gk.

Since the basic tensors gk ⊗ gℓ ∈ H ⊗ H are linearly independent we must have tk = 0. This

contradiction shows that no such minimal set exists.

The monoid G(H) spans a subspace with its elements as a basis, and which is closed under

multiplication it forms a subalgebra visibly isomorphic to the group algebra kG(H). Also the

coproduct ψ restricts to it and agrees with the coproduct in the group algebra. Finally, it is

closed under the action of the antipode. □

In fact G(−) defines a functor G: HAk → Gp and this has as its left adjoint the group

algebra functor k(−) : Gp→ HAk, so there is a natural isomorphism of bifunctors

HAk(k(−),−) ∼= Gp(−,G(−)).

This will be discussed more in Chapter 3.

2.7. SubHopf algebras, adjoint actions and normal subalgebras

A Hopf algebra H can contain subalgebras, subcoalgebras and subbialgebras. A subbialge-

bra K ⊆ H where the antipode χ restricts to give an antipode for K is called a subHopf algebra;

of course K is then a Hopf algebra in its own right.

K
χ|K //

� _

��

K� _

��
H

χ // H

This is analogous to the notion of a subgroup of a group. In fact the group algebra of a subgroup

H ⩽ G is a subHopf algebra kH ⊆ kG.
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Proposition 2.32. The image of the antipode χH ⊆ H is a subHopf algebra. More gener-

ally, for n ⩾ 2, χnH ⊆ H is a subHopf algebra.

Proof. We know that for H the identities

ψ ◦ χ = (χ⊗ χ) ◦ T ◦ ψ, χ ◦ φ = φ ◦ T ◦ (χ⊗ χ),

which imply

φ(χH ⊗ χH) ⊆ χH, ψχH ⊆ χH ⊗ χH,
hence χH is a subbialgebra of H.

We also have

(χ ∗ Id) ◦ χ = φ ◦ (χ⊗ Id) ◦ ψ ◦ χ
= φ ◦ (χ⊗ Id) ◦ (χ⊗ χ) ◦ T ◦ ψ
= φ ◦ (χ⊗ χ) ◦ (χ⊗ Id) ◦ T ◦ ψ
= φ ◦ (χ⊗ χ) ◦ T ◦ (Id⊗χ) ◦ ψ
= χ ◦ φ ◦ (χ⊗ Id) ◦ ψ
= χ ◦ φ ◦ (χ ∗ Id)
= χ ◦ η ◦ ε = η ◦ ε,

and a similar calculation shows that (Id ∗χ)◦χ = η◦ε. These identities show that the restriction

of χ to χH is an antipode for it, therefore χH is a subHopf algebra of H. □

Now we will consider the analogue of a normal subgroup. There are two approaches which

roughly correspond to the two ways of thinking about when a subgroup is normal (i.e., requiring

left and right cosets to be equal, or being closed under conjugation).

Let A ⊆ H be a subalgebra and let A+ = ker εA, the kernel of the counit restricted to A.

Then HA+ ⊆ H is a left ideal and A+H ⊆ H is a right ideal. If HA+ = A+H we can form

the quotient algebra H/HA+, but this won’t always be a Hopf algebra. If K ⊆ H is a subHopf

algebra and if HK+ = K+H, this is also a coideal and H/HK+ is a quotient Hopf algebra. So

this looks like a reasonable way to define a ‘normal’ subHopf algebra.

The alternative approach requires the two adjoint actions.

Definition 2.33. For h ∈ H, the left and right adjoint actions adlh : H → H and adrh : H →
H are given by

adlh(x) =
∑

h(1)xχ(h(2)), adrh(x) =
∑

χ(h(1))xh(2).

Lemma 2.34. The adjoint actions are left and right actions of H on itself, i.e., for h′, h′′ ∈
H,

adlh′h′′ = adlh′ ◦ adlh′′ , adrh′h′′ = adrh′′ ◦ adrh′ .
Furthermore, for h, x, y ∈ H,

adlh(xy) =
∑

adlh(1)(x)ad
l
h(2)

(y), ε(adlh(x)) = ε(h)ε(x), adlh(1) = 1,

adrh(xy) =
∑

adrh(1)(x)ad
r
h(2)

(y), ε(adrh(x)) = ε(h)ε(x), adrh(1) = 1.

The left/right adjoint actions makes H into a left/right module over itself.

For the Hopf algebra kG of a group, when g ∈ G, the two adjoint actions correspond to left

and right conjugations:

adlg = g(−)g−1, adrg = g−1(−)g.
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Now we can define a subalgebra A ⊆ H to be ad-invariant if for every h ∈ H, adlhA ⊆ A and

adrhA ⊆ A. Although in general this notion involves two independent conditions, for some Hopf

algebras such as group algebras the left and right adjoint actions give equivalent information.

Lemma 2.35. Suppose that the coproduct ψ is cocommutative. Then the following conditions

are equivalent:

• A is ad-invariant;

• for every h ∈ H, adlhA ⊆ A;
• for every h ∈ H, adrhA ⊆ A.

Proof. By Lemma 2.18, χ : H → H is a bijection and indeed χ−1 = χ.

Suppose that for every h ∈ H, adlhA ⊆ A. Then for every a ∈ A and h ∈ H, let h′ = χ(h)

so that h = χ(h′) and

adrh(a) =
∑

χ(h(1))ah(2)

=
∑

χ(χ(h′)(1))aχ(h
′)(2)

=
∑

χ(χ(h′(2)))aχ(h
′
(1))

=
∑

h′(2)aχ(h
′
(1))

=
∑

h′(1)aχ(h
′
(2)) = adlh′(a) ∈ A,

where we have used cocommutativity in the last step. Therefore

∀h ∈ H, adlhA ⊆ A =⇒ ∀h ∈ H, adrhA ⊆ A.

Similarly,

∀h ∈ H, adrhA ⊆ A =⇒ ∀h ∈ H, adlhA ⊆ A. □

Remark 2.36. In the next result we need the notion of faithful flatness: For a k-algebra R,
a right R-module L is faithfully flat if every sequence of left R-modules

0→M ′ →M →M ′′ → 0

is short exact if and only if the induced sequence of k-vector spaces

0→ L⊗RM ′ → L⊗RM → L⊗RM ′′ → 0

is short exact. A similar definition of faithfully flat applies to a right module. These notions are

of course stronger than flatness: a right R-module L is flat if L⊗R (−) is exact, and similarly

for a left module. Free modules are always faithfully flat.

Proposition 2.37. Let K ⊆ H be a subHopf algebra.

(a) If K is ad-invariant then HK+ = K+H and this is a Hopf ideal. Futhermore the quotient

mapping H → H/HK+ is a homomorphism of Hopf algebras.

(b) If HK+ = K+H and H is faithfully flat as a left or right K-module then K is ad-invariant.

(c) If H is finite dimensional then K is ad-invariant if and only if HK+ = K+H.

Proof. Proofs can be found in [Mon93,Rad12].

Since free modules are faithfully flat, part (c) follows from the Nichols-Zoeller Theorem 5.1

that we will meet later. □

This result leads us to make the following definition.
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Definition 2.38. A subHopf algebra K ⊆ H is normal if it is ad-invariant and therefore

HK+ = K+H is a Hopf ideal in H and H → H/HK+ is a homomorphism of Hopf algebras.

Following Milnor & Moore [MM65] it is common to write

H//K = H/HK+ ∼= H ⊗K k,

where the right hand term is defined using the right K-module structure on H and the counit

K → k to define the trivial K-module, and this isomorphism is one of left H-modules.

Example 2.39. If G is a group then the adjoint actions in kG are given by adlg = g(−)g−1

and adrg = g−1(−)g for g ∈ G ⊆ kG, so adrg = adlg−1 . Hence a subalgebra A ⊆ kG is ad-invariant

if and only if for all g ∈ G, adlgA = A.

If N ◁ G, then kN ⊆ kG is a normal subHopf algebra and kG//kN ∼= kG/N , the group

algebra of the quotient group G/N .

Example 2.40. Let g be a Lie algebra over k with Lie bracket [ , ] and U(g) its universal

enveloping algebra which will be discussed in Chapter 3. This is a cocommutative Hopf algebra

in which there is a copy of g which generates it as an algebra. Furthermore, each element x ∈ g

is primitive and the left adjoint action of x on y ∈ g is given by

adlx(y) = xy − yx = [x, y]

so the adjoint action extends the Lie theoretic adjoint action of g on itself. In fact the action

of adlx on U(g) is as a derivation: for a, b ∈ U(g),

adlx(ab) = adlx(a)b+ aadlx(b),

so since every element is a linear combination of monomials in elements of g the adjoint action

of g itself determines it.

If h ⊆ g is a Lie subalgebra then U(h) ⊆ U(g) is a subHopf algebra. If h is normal in g then

g/h is also a Lie algebra and

U(g)//U(h) ∼= U(g/h).

By the Poincaré-Birkhoff-Witt Theorem, U(g) is free as a left or right U(h)-module.
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CHAPTER 3

A cornucopia of examples

3.1. Endomorphism algebras of vector spaces

For a vector space V , its endomorphism algebra is

Endk(V ) = hom(V, V )

with composition as its product. If V is finite dimensional then

Endk(V ) ∼= V ⊗ V ∗

as vector spaces with the obvious pairing

(V ⊗ V ∗)⊗ (V ⊗ V ∗)
∼=−→ V ⊗ (V ∗ ⊗ V )⊗ V ∗ → V ⊗ k⊗ V ∗ ∼=−→ V ⊗ V ∗

making this an isomorphism of algebras. Of course if we choose a basis for V and the corre-

sponding dual basis for V ∗ we can find and isomorphism of algebras with the ring of dimk V by

dimk V matrices

Endk(V ) ∼= Mdimk V (k).

3.2. Polynomial algebras and their duals

Example 3.1. Let k[X] be the polynomial ring. We can give it a coproduct by making X

primitive,

ψ(X) = X ⊗ 1 + 1⊗X,
and the antipode is determined by

χ(X) = −X.
This Hopf algebra is bicommutative.

If k has characteristic 0 this has no ideals which are also coideals, but if the characteristic

is p > 0 then for k ⩾ 1, (Xpk) is a coideal and k[X]/(Xpk) is a quotient Hopf algebra.

This example can be generalised to a polynomial ring k[X1, . . . , Xn] and then there is an

isomorphism of Hopf algebras

k[X1, . . . , Xn] ∼= k[X1]⊗ · · · ⊗ k[Xn].

Example 3.2 (Divided power Hopf algebra). Consider the k-vector space Γk with basis

consisting of the elements γi (i ⩾ 0). Make Γk into a commutative algebra with product

γiγj =

(
i+ j

i

)
γi+j

and unity 1 = γ0. Make it a cocommutative coalgebra with product

ψ(γk) =
∑

0⩽i⩽k

γi ⊗ γk−i

and counit

ε(γ0) = 1, ε(γk) = 0 (k > 0).
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Then combining these structures Γk becomes a bicommutative Hopf algebra with antipode

defined recursively using χγ1 = −γ1 and∑
0⩽i⩽k

γiχγk−i = 0.

If the characteristic of k is 0 then it is easy to show that there is an isomorphism of Hopf

algebras Γk ∼= k[X] under which

γk ↔
1

k!
Xk

where X is primitive. In this case PΓk = k{γ1} and Γk is primitively generated.

If the characteristic of k is p > 0 we have relations such as γpk = 0 when k > 0. As an

algebra, Γk is generated by the elements γpr with r ⩾ 0. Also PΓk = k{γ1}, and so Γk is not

primitively generated.

The finite dual Γ◦
k is familiar: if we define

x : Γk → k; x(γk) =

{
1 if k = 1,

0 otherwise,

then x ∈ Γ◦
k and

xn(γk) =

{
1 if k = n,

0 otherwise,

so xn ∈ Γ◦
k for every n ⩾ 0. Furthermore, x is primitive. Then there is an isomorphism of Hopf

algebras

k[X]
∼=−→ Γ◦

k; Xk 7→ xk.

In fact this relationship is symmetric: k[X]◦ ∼= Γk.

3.3. The free vector space

Let X be a set and recall the free vector space on X, F(X).

For any non-empty set X, F(X ×X) ∼= F(X) ⊗ F(X) and the diagonal map X → X ×X
induces a k-linear map ψ : F(X)→ F(X)⊗ F(X) with ψ(x) = x⊗ x for x ∈ X.

F(X) //

ψ

++
F(X ×X) // F(X)⊗ F(X)

Since there is a bijection X × (X ×X) ∼= (X ×X)×X this is coassociative. If we take any set

1 with a single element it is a terminal object and there are bijections

1×X ∼= X ∼= X × 1.

Also, F(1) ∼= k. Now the unique function X → 1 induces a counit ε : F(X)→ k. Putting all this

together we find that (F(X), ψ, ε) is a coalgebra. In fact the switch map gives a commutative

diagram

X

{{ ##
X ×X oo T

∼=
// X ×X

and using this we can show that (F(X), ψ, ε) is a cocommutative coalgebra.

If X is a monoid it has a product X ×X → X and a unit 1 → X. By functoriality, these

induce maps

φ : F(X)⊗ F(X)
∼=−→ F(X ×X)→ F(X), η : k→ F(X),
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so that (F(X), φ, η) is an algebra which is commutative if and only if the monoid X is commu-

tative.

Now if X is a monoid we can put together the coalgebra and algebra structures to obtain

a cocommutative bialgebra (F(X), φ, η, ψ, ε) which is commutative if and only if the monoid is

commutative. With this structure, kX = F(X) is called the monoid algebra of X.

There is also a dual object, namely

kX = the set of all functions X → k constant a.e.,

i.e., functions which are constant except for a finite number of exceptional values. This has a

basis consisting of the Dirac functions δx : X → k (x ∈ X) together with the constant function 1

taking value 1, where

(3.1) δx(y) =

{
1 if y = x,

0 otherwise.

Notice that the basis elements δx are idempotents as are the elements 1−δx; in fact when x ̸= y,

δxδy = 0 so δx and δy are orthogonal idempotents. For two sets X,Y , there is an isomorphism

of algebras

kX×Y ∼= kX ⊗ kY .

The diagonal map X → X ×X induces a multiplication

kX ⊗ kX
∼=−→ kX×X → kX

which is ‘pointwise product’ of functions. This makes into a commutative algebra. In fact

kX ∼= hom(kX,k).

The Dirac functions satisfy

δxδy =

{
δx if x = y,

0 otherwise.

When X is a finite monoid, there is a coproduct and kX is then a commutative bialgebra.

3.4. Group algebras and dual group algebras

If G is a group, the inverse map G → G induces a coalgebra map χ : F(G) → F(G). Then

(F(G), φ, η, ψ, ε, χ) is a cocommutative Hopf algebra. The algebra kG = F(G) is called the group

algebra of G, and we know that it is also Hopf algebra. The dual kG is also a commutative Hopf

algebra, the dual group algebra; when G is finite kG is the k-linear dual of kG.
Let’s make these structures explicit. For kG the coproduct, counit and antipode are given

on a group elements g ∈ G by

(3.2) ψ(g) = g ⊗ g, ε(g) = 1, χ(g) = g−1.

For kG we have

(3.3) ψ(δg) =
∑
h∈G

δh ⊗ δh−1g, ε(δg) = δg(1) =

{
1 if g = 1,

0 otherwise,
χ(δg) = δg−1 .

This construction of the (Hopf) algebra kG for each group defines two left adjoints. Recall

that every ring has a group of units and in particular every k-algebra A has a group of units

A×; we can think of this as defining a functor (−)× : Algk → Gp. Of course every Hopf algebra

is also an algebra so there is a restriction to a functor (−)× : HAk → Gp.
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Proposition 3.3. The functor F : Gp → Algk is a left adjoint to the unit functor, i.e.,

there is natural isomorphism of bifunctors

Algk(F(−),−) ∼= Gp(−, (−)×).

Similarly, the functor F : Gp→ HAk is a left adjoint to the group-like element functor G, i.e.,

there is natural isomorphism of bifunctors

HAk(F(−),−) ∼= Gp(−,G(−)).

For finite groups, we can do something similar withM(G), this time obtaining a commutative

Hopf algebra contravariantly functorial in G. It is common to set kG = M(G) and call this the

dual group algebra of G.

3.5. Poset coalgebras and algebras

Let (P,≼) be a locally finite poset, i.e., each interval

[x, y] = {t ∈ P : x ≼ t ≼ y}

is finite. We define a vector space C(P,≼) with basis the symbols [x, y] with x ≼ y. Then

ψ : C(P,≼)→ C(P,≼)⊗ C(P,≼); ψ([x, y]) =
∑
t∈[x,y]

[x, t]⊗ [t, y]

is a coproduct and

ε : C → k; ε([x, y]) =

{
1 if x = y,

0 otherwise,

is its counit. There is a dual incidence algebra A(P,≼) which consists of the finitely supported

functions f : {[x, y] : x ≼ y} → k with the product given by convolution,

(f ∗ g)([x, y]) =
∑
t∈[x,y]

f([x, t])g([t, y]),

and the unit is given by the constant functions.

3.6. Free algebras, bialgebras and Hopf algebras

The forgetful functor Algk → Vectk which forgets the multiplication has a left adjoint. Its

construction involves the tensor powers of a vector space V : set T0(V ) = k and for each n ⩾ 1,

Tn(V ) = V ⊗ Tn−1(V ) = V ⊗n.

Then

T(V ) =
⊕
n⩾0

Tn(V ) =
⊕
n⩾0

V ⊗n.

There are obvious linear mappings Tm(V ) ⊗ Tn(V ) → Tn+n(V ) and these make T(V ) into a

k-algebra. It is easy to see that for any k-linear mapping f : U → V there is a unique algebra

homomorphism T(f) : T(U) → T(V ) which extends T1(f) = f : T1(U) → T1(V ). Then T(V )

is called the tensor algebra or the free algebra on V .

Proposition 3.4. The functor T: Vectk → Algk is left adjoint to the forgetful functor

Algk → Vectk, i.e., there is a natural isomorphism of bifunctors

Algk(T(−), (−)) ∼= Vectk((−), (−)).
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We can modify this to the case of commutative algebras. The free algebra T(V ) has a

2-sided ideal I(V ) generated by all the elements of form

u⊗ v − v ⊗ u ∈ T2(V ) (u, v ∈ V ).

The quotient algebra

S(V ) = T(V )/I(V )

is commutative since we have implicitly killed all commutators (exercise!), and S(V ) is called

the symmetric algebra or the free commutative algebra on V .

Proposition 3.5. The functor S: Vectk → Algco
k is left adjoint to the forgetful functor

Algco
k → Vectk, i.e., there is a natural isomorphism of bifunctors

Algco
k (S(−), (−)) ∼= Vectk((−), (−)).

Notice that both T(V ) and S(V ) are naturally N-graded algebras: the degree n part of T(V )

is Tn(V ) and its image in S(V ) is Sn(V ). As a vector space,

S(V ) =
⊕
n⩾0

Sn(V ).

3.7. Free bialgebras and free Hopf algebras

There is also a functor which forgets the algebra structure:

HAk → Coalgk; (H,φ, η, ψ, ε, χ) 7→ (H,ψ, ε, χ).

This also has a left adjoint, but we have to construct it in stages.

We first form the composition

Coalgk → Vectk
T−→ Bialgk

into the category of bialgebras, where the first map is the forgetful functor. Then for a coalgebra

C, T(C) is the free bialgebra on C. Its elements are sums of monomials in elements of C ∼= T1(C)

so the coproduct is obtained using

ψ(c1c2 · · · cℓ) = ψ(c1)ψ(c2) · · ·ψ(cℓ).

There is a similar construction forming the free free commutative bialgebra on C, S(C).

There are variants of these for (co)augmented coalgebras which form a category k/Coalgk
(i.e., coalgebras under k). Given a coaugmented coalgebra η : k → C we form T(C) then pass

to the quotient bialgebra

T(C)/(η(1)− 1).

This of course identifies η(1) ∈ T(C) with 1 ∈ T0(C). We can do a similar thing with the

commutative version.

To get the free algebra functor into HAk we take the direct sum of coalgebras C ⊕ Cop,

form the free algebra T(C ⊕ Cop) and then impose relations to identify each element cop with

an antipode applied to c, i.e., quotient by the ideal generated by all the expressions∑
c(1) ⊗ c

op
(2) − ε(c)⊗ 1,

∑
cop(1) ⊗ c(2) − ε(c)⊗ 1

where c ∈ C.
To get a free commutative Hopf algebra we can use S instead of T. In fact

S(C ⊕ Cop) ∼= S(C)⊗ S(Cop).

Since a Hopf algebra is naturally a coaugmented coalgebra we can also do this by first

applying the free bialgebra functors for coaugmented coalgebras.
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3.8. Enveloping algebras of Lie algebras

Recall that a Lie algebra over k is a vector space L equipped with a linear mapping called

the Lie bracket

[−,−] : L⊗ L→ L

which satisfies the following conditions for all x, y, z ∈ L:

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0;(Jacobi identity)

[y, x] + [x, y] = 0;(Anticommutativity)

[x, x] = 0.(Alternativity)

If the characteristic of k is not 2 then anticommutativity implies alternativity so then the last

condition is redundant. Care is also required when the characteristic is 3 but we will ignore this

subtlety.

A Lie algebra with trivial bracket [x, y] = 0 is called an abelian Lie algebra; abelian Lie

algebras are essentially the same thing as vector spaces.

Lie algebras over k form an abelian category Liek with homomorphisms preserving brackets.

For any algebra A, its elements for a Lie algebra with the usual commutator [x, y] = xy−yx
as its bracket. Of course this Lie algebra is abelian if and only if the algebra is commutative

This construction defines a functor Algk → Liek. We will see that it has a left adjoint. But in

fact there is another functor P: HAk → Liek which also has a left adjoint.

To construct the adjoint in the algebra case we first recall the free algebra functor T. We can

apply this to a Lie algebra L but the linear mapping L = T1(L) ↪→ T(L) is not a homomorphism

of Lie algebras if we make T(L) a Lie algebra using the commutator. To correct this we have

to force relations by passing to a quotient algebra. We consider the 2-sided ideal J(L) ◁ T(L)

generated by all the elements

x⊗ y − y ⊗ x− [x, y] (x, y ∈ L).

Notice that x⊗ y, y ⊗ x ∈ T2(L) but [x, y] ∈ T1(L). The resulting quotient algebra

U(L) = T(L)/J(L)

is called the universal enveloping algebra of L. It can be verified that the mapping L → U(L)

is a Lie algebra homomorphism where U(L) is given the commutator as its Lie bracket (it is

injective except possibly when the characteristic of k is 3).

Proposition 3.6. The functor U: Liek → Algk is left adjoint to the functor Algk → Liek
sending each algebra to its Lie algebra with the commutator bracket, i.e., there is a natural

isomorphism of bifunctors

Algk(U(−), (−)) ∼= Liek((−), (−)).

The Poincaré-Birkhoff-Witt Theorem is an important result which describes the vector space

structure of U(L) at least given a certain kind of basis of L. Here is a version when L is of finite

or countable dimension with a basis x1, x2, . . . and we denote the image of an element ℓ ∈ L
in U(L) by ℓ̃.

Theorem 3.7 (Poincaré-Birkhoff-Witt Theorem). The distinct monomials

x̃1
k1 x̃2

k2 · · · x̃ℓkℓ (ki ⩾ 0)

form a basis for U(L). In particular the linear map L→ U(L) sending x to x̃ is injective.
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Since the map L→ U(L) is injective, it is usual to omit the tildes and write x for the image

of x ∈ L in U(L).

Of course we have chosen a particular ordering here; for example to express x2x1 we note

that in U(L) we have

x2x1 = (x1x2 − x2x1) + x1x2 = [x1, x2] + x1x2

where [x1, x2] ∈ L ⊆ U(L) is a linear combination of the xi.

For any Lie algebra L we can make U(L) into a Hopf algebra by defining L ⊆ U(L) to be

contained in PU(L). Then U(L) is generated as an algebra by PU(L). Of course for any Hopf

algebra H the inclusion P(H) ↪→ H is a Lie homomorphism so it induces a Hopf algebra homo-

morphism UP(H)→ H; if this is surjective then H is called primitively generated. Primitively

generated Hopf algebras are cocommutative and in a sense the ‘easy’ ones to understand.

Proposition 3.8. The functor U: Liek → HAk is left adjoint to the functor P: HAk →
Liek, i.e., there is a natural isomorphism of bifunctors

HAk(U(−), (−)) ∼= Liek((−),P(−)).

Here are some examples.

Example 3.9. Let p be a prime number and k a field of characteristic p. Let

H = k[X]/(Xp)

and write x = X + (Xp) ∈ H. Then the coproduct ψ(x) = 1 ⊗ x + x ⊗ 1 + x ⊗ x and counit

ε(x) = 0 make H a bicommutative Hopf algebra.

It is easy to see that PH = 0, so H is not primitively generated.

This is a disguised version of the group algebra kCp. If the characteristic of k is not equal

to p and k contains a primitive p-th root of unity then kCp is not primitively generated.

Example 3.10. The polynomial ring H = k[X] given the coproduct

ψ(Xn) =
∑

0⩽i⩽n

(
n

i

)
Xi ⊗Xn−i

is a commutative and cocommutative Hopf algebra which is primitively generated. If the char-

acteristic of k is 0 then PH = k{x}, but if it is a prime number p then

PH = k{xpk : k ⩾ 0}.

3.9. Restricted Lie algebras

In this section we will assume that k has positive characteristic p. Then there is a variation

of the notion of Lie algebra called a restricted Lie algebra or a p-Lie algebra. For details see

Jacobson [Jac79, section V.7] or Milnor & Moore [MM65, section 6].

For any Hopf algebra H over k, there is a Frobenius mapping

PH → PH; x 7→ xp.

Of course this is not linear over k but if t ∈ k, then (tx)p = tpxp. If x, y ∈ PH commute then

(x+ y)p = xp + yp, but in general there is a more complicated formula.

A Lie algebra over k is called a restricted Lie algebra if there is an additive homomorphism

(−)[p] : L→ L (the restriction) such that

• for x ∈ L and t ∈ k, (tx)[p] = tpx[p];
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• adx[p] = adpx = adx ◦ adx ◦ · · · ◦ adx, where adx : L→ L is the linear mapping given by

adx(y) = [x, y];

• for x, y ∈ L,

(x+ y)[p] = x[p] + y[p] +

p−1∑
i=1

si(x, y)

where for an indeterminate Z, the coefficient of Zi−1 in (adtx+y)
p−1(x) is isi(x, y).

For a Hopf algebra H over k, its primitives form a restricted Lie algebra with the Frobenius

map being its retriction. Then there is a functor from Hopf algebras to restricted Lie algebras

and this has a left adjoint given on a restricted Lie algebra by

V(L) = U(L)/(x̃[p] − x̃p : x ∈ L),

a quotient Hopf algebra of the usual enveloping algebra; this is called the restricted enveloping

algebra of L. When L is finite dimensional, so is V(L) whereas U(L) is infinite dimensional.

There is also a version of the PBW Theorem for V(L).

3.10. Affine group schemes

Motivated by Alexander Grothendieck’s insights, much of Algebraic Geometry is now cen-

tred on representable functors on the category of commutative algebras over a base ring. A

commutative algebra R ∈ Algco
k defines a functor

Spec(R) : Algco
k → Set; Spec(R)(A) = Algco

k (R,A).

This is called an affine scheme. Its space of geometric points is given by its value on an algebraic

closure k, Spec(R)(k).
In practise such a functor often has a factorisation through a functor into a concrete category

C such as the category of groups; in this case we say that it is a C-scheme.

C

��
Algco

k
//

Spec(R) //

Set

Let’s suppose that Spec(R) takes values in the category of groups Gp so it is group scheme.

Now the coproduct in Algco
k is given by ⊗ and k is an initial object, so for any commutative

algebra A,

Spec(R⊗R)(A) ∼= Spec(R)(A)× Spec(R)(A)

and Spec(k)(A) contains only the unit homomorphism k→ A. The multiplication is a natural

transformation

Spec(R⊗R) ∼= Spec(R)× Spec(R)→ Spec(R)

so if we evaluate on R⊗R we get

Spec(R⊗R)(R⊗R)→ Spec(R)(R⊗R)

which sends IdR⊗R to a homomorphism ψ : R → R ⊗ R. Similarly the identity evaluated on k
gives

Spec(k)(k)→ Spec(R)(k)
which sends Idk to an element ε : R→ k. Finally the inverse map gives a natural transformation

Spec(R)→ Spec(R) which when evaluated on R sends IdR to χ : R→ k. All of these structure

maps are algebra homomorphisms by definition and make (R,ψ, ε, χ) a cogroup object in Algco
k ,
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in other words we have a commutative Hopf algebra; if the group scheme takes values in abelian

groups then it will be cocommutative. Here are some examples.

Each commutative algebra A has a group of units A×. To specify a unit means to pick

an element and another element which is its inverse. We can do this with the affine scheme

Spec(k[U, V ]/(UV − 1)) where

ψ(U) = U ⊗ U, ψ(V ) = V ⊗ V, ε(U) = 1 = ε(V ), χ(U) = V, χ(V ) = U.

It is usual to set V = U−1 and write k[U,U−1] = k[U, V ]/(UV − 1). This is the multiplicative

group scheme which is often denoted Gm.

For each natural number n ⩾ 1, there is a natural transformation [n] : Gm → Gm induce by

the Hopf algebra homomorphism k[U,U−1]→ k[U,U−1] which maps U to Un. This corresponds

to the n-th power map when evaluated on an algebra A.

Gm(A)
[n]
// Gm(A)

A× (−)n
// A×

In fact Gm[n] = ker[n] is also a scheme, given by

Gm[n] = Spec(k[U,U−1]/(Un − 1)),

represented by the quotient Hopf algebra k[U,U−1]/(Un − 1) ∼= k[U,U−1]//k[Un, U−n] where

k[Un, U−n] ⊆ k[U,U−1] is the evident subHopf algebra.

The multiplicative group scheme can be generalised to a non-abelian group scheme GLn
for n ⩾ 2. For example, when n = 2,

GL2 = Spec
(
k[A,B,C,D,E]/((AD −BC)E − 1)

)
with coproduct induced by matrix mutiplication

ψ(A) = A⊗A+B ⊗ C, ψ(B) = A⊗B +B ⊗D,
ψ(C) = C ⊗A+D ⊗ C, ψ(D) = C ⊗B +D ⊗D,
ψ(E) = E ⊗ E.

The antipode is induced by the formula for finding the entries in inverse of a 2 by 2 matrix:

χ(A) = DE, χ(B) = −BE,
χ(C) = −CE, χ(D) = AE,

χ(E) = AD −BC.

There is a normal subgroup scheme SL2 ◁GL2 given by

SL2 = Spec
(
k[A,B,C,D]/((AD −BC)− 1)

)
where k[A,B,C,D]/((AD − BC) − 1) is a quotient Hopf algebra of k[A,B,C,D,E]/((AD −
BC)E − 1).

Natural transformations of group schemes. A natural transformation Θ: Spec(R)→
Spec(S) between two group schemes represented by Hopf algebras R and S is determined by its

effect on IdR ∈ Spec(R)(R), i.e., by Θ(IdR) ∈ Spec(S)(R) which is an algebra homomorphism

θ : S → R. In order for Θ to give group homomorphisms it turns out that θ must also be

a coalgebra homomorphism, hence it is a Hopf algebra homomorphism. This gives rise to a

bijection between natural transformations Spec(R)→ Spec(S) and HAk(S,R).
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3.11. Combinatorial Hopf algebras

The symmetric function Hopf algebra can be defined over any commutative ring k. It is

bicommutative and

Symm(k) = k[en : n ⩾ 1]

with coproduct given by

ψ(en) =
∑

0⩽i⩽n

ei ⊗ en−i

where e0 = 1. Its vector space of primitives is spanned by the elements sn defined by s1 = e1
and the Newton recursion formula

sn = e1sn−1 − e2sn−2 + e3sn−3 − · · ·+ (−1)n−2en−1s1 + (−1)n−1nen.

If the characteristic of k is zero then

Symm(k) = k[sn : n ⩾ 1]

but if it is a prime p > 0 then for any k,

spk = spk.

The en are essentially the elementary symmetric functions in infinitely many indeterminates

while the sn are the power sums. The antipode is given by

χ(en) = hn

where the hn are the total symmetric functions. There is another set of polynomial generators

that occurs, namely the wn defined recursively by

pn =
∑
k|n

kw
n/k
k .

If the characteristic of k is p > 0 then for each m with p ∤ m, there is a subHopf algebra

B[m] = k[wmpr : r ⩾ 0] ⊆ Symm(k)

and a Hopf algebra splitting

Symm(k) =
⊗
p∤m

B[m].

This is related to Witt vectors and also the Necklace Algebra of Rota and Metropolis [MR83].

3.12. Taft algebras

For n ⩾ 2 and ζ ∈ k a primitive n-th root of unity (so the characteristic of k does not

divide n) there is a Taft Hopf algebra Hn,ζ . As an algebra,

Hn,ζ = k⟨u, v⟩/(un − 1, vn, vu− ζuv).

The coproduct is given by

ψ(u) = u⊗ u, ψ(v) = v ⊗ u+ 1⊗ v

and the antipode by

χ(u) = u−1, χ(v) = −vu−1.

The Hopf algebra Hn,ζ is neither commutative nor cocommutative. In fact

χ2(u) = u, χ2(v) = uvu−1 = ζ−1v.

The elements uivj (0 ⩽ i, j < n) form a basis of Hn,ζ so dimkHn,ζ = n2. Also, these basis

elements are eigenvectors for the linear mapping χ2 which can be diagonalised with respect to

that basis.
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The ideal generated by v is a Hopf ideal and the quotient is

Hn,ζ/(v) ∼= kCn,

the group algebra of the cyclic group Cn.

Finally, the dual Hopf algebra H∗
n,ζ and Hn,ζ are isomorphic to as Hopf algebras, so Hn,ζ is

self-dual.

3.13. Frobenius algebras

Frobenius algebras are commonly encountered, and we will see later that every finite di-

mensional Hopf algebra is a Frobenius algebra. The book of Kock [Koc04] is a good general

introduction.

Definition 3.11. A finite dimensional k-algebra A is a Frobenius algebra if it has a Frobenius

form λ ∈ A∗ = hom(A,k) which is non-trivial on every simple left submodule.

A left submodule is of course a left ideal; it is simple if it has no non-trivial proper submod-

ules so it is minimal. A given Frobenius algebra can have many different Frobenius forms.

A Frobenius form λ has an associated non-degenerate k-bilinear Frobenius form

β : A×A→ k; β(x, y) = λ(xy)

which satisfies

β(xy, z) = β(x, yz).

This can be used to show that λ is non-trivial on every simple right submodule.

The Frobenius form induces two k-linear mappings

A→ A∗; a 7→ a · λ, a 7→ λ · a

where

a · λ(x) = λ(xa), λ · a(x) = λ(ax).

If we make A∗ a left or right A-module by premultiplying on the right or the left these become

left and right A-module isomorphisms. In particular this means that A is injective as a left or

right A-module, i.e., it is self-injective. This has lots of implications: for example, A is a Kasch

algebra, i.e., every simple left or right module is isomorphic to a submodule of A.

As well as the algebra (A,φ, η) structure, λ also gives rise a coalgebra (A,ψ, ε) for which

the counit is ε = λ. Note that (A,φ, η) and (A,ψ, ε) do not interact appropriately to form a

bialgebra, but instead the two structures interact through the Frobenius condition which says

that the following diagram commutes.

(3.4) A⊗A
φ

��

ψ⊗Id

��

Id⊗ψ

��
A⊗A⊗A

Id⊗φ ..

A

ψ
��

A⊗A⊗A

φ⊗IdppA⊗A

In Sweedler notation this becomes for x, y ∈ A,

(3.5)
∑

x(1) ⊗ x(2)y = ψ(xy) =
∑

xy(1) ⊗ y(2).

Later we will see that every finite dimensional Hopf algebra is a Frobenius algebra, but the

coproduct associated to the Frobenius form is not the same as that of the coalgebra structure

of the Hopf algebra.
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3.14. Quivers and their path algebras

A quiver is a (finite) directed/oriented graph Q = (Q0, Q1) where Q0 is the set vertices and

Q1 is the set of edges/arrows. An arrow a has a source vertex s(a) and a target vertex t(a).

An ordered pair of arrows (a, b) is composable if t(a) = s(b). A path in Q of length ℓ ⩾ 0 is a

sequence a = (a1, a2, . . . , aℓ) of composable arrows. A path of length 0 is just a vertex and we

allow it to be pre/post composed with any arrow with it as target or source.

The path algebra of Q is the vector space with paths as its basis, i.e.,

P(Q) =
⊕
a

,

and we make this into algebra by extending

a⊗ b 7→ ab

where ab is the path obtained by splicing the composable paths (a,b). If a and b are not

composable the product is 0. Two paths of length 0/vertices have product 0 if they are distinct,

and a if they are equal. The unity is

1 =
∑
a∈Q0

a.

In P(Q) the vertices/paths of length 0 are primitive orthogonal idempotents which sum up to 1.

If we now specify a subset R of paths of length at least 2 then these generate an ideal

I(R) ◁ P(Q) so we may form the quotient algebra P(Q)/I(R). The pair (Q,R) is called a

quiver with relations.

Here are some examples.

• The quiver

pa b

has exactly one path of length 1, the path algebra has dimension 3 and basis a, b, p

and relations

a2 = a, b2 = b, ap = p = pb, p2 = 0.

• The quiver

pa

is infinite dimensional and its path algebra is the polynomial algebra k[p].
• The path algebra of the quiver

p

q

a b

is also infinite dimensional and is additively isomorphic to the product

ak[pq]× bk[qp]× pk[qp]× qk[pq].
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3.15. Graded (co)algebra

We can work with graded vector spaces as discussed in Section 1.3. We will view k as a

graded vector space concentrated in degree 0.

A graded k-algebra A∗ is a graded vector space together with a product φ : A∗ ⊗ A∗ → A∗
and a unit η : k→ A∗ (which is really a linear map k→ A0) so that the analogues of (2.1) are

commutative. Of course φ restricts to give maps Am⊗An → Am+n so this can be pulled apart

to give statements about maps between ungraded vector spaces.

A graded algebra A∗ is (graded) commutative if the analogue of (2.2) commutes where we

use the switch map with built in signs. This means that on elements a ∈ Am and b ∈ An, if we
set xy = φ(x⊗ y) on basic tensors,

ab = (−1)mnba.

This leads to the result a2 = 0 whenever a has odd degree and char k ̸= 2.

Similarly we can define a graded k-coalgebra C∗ to be a graded vector space with a coproduct

ψ : C∗ → C∗ ⊗ C∗ and counit ε : C∗ → k where the analogues of (2.4) commute. Graded

cocommutativity is also defined in the obvious way. Here the coproduct gives rise to maps

Cn →
⊕
k∈Z

Ck ⊗ Cn−k.

Bialgebras and Hopf algebras can now be defied in the graded setting. But beware: the

commutative diagrams required for the interactions between product and coproduct involve

using the swith map and this needs to be interpreted using the Koszul sign convention! There

are also signs appearing in the formula for the antipode of a Hopf algebra.
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CHAPTER 4

Modules and comodules

Rings have modules, and so do algebras. The dual notion for a coalgebra is that of a

comodule. As special cases, bialgebras and Hopf algebras have both!

4.1. Modules over an algebra

Algebras are rings with additional structure, so they have modules; in particular a module

over a k-algebra is automatically a k-vector space. But in keeping with our viewpoint of working

with vector spaces, we will define a module as a vector space with additional structure.

Definition 4.1. Given a k-algebra (A,φ, η), a left A-module (M,µ) is a k-vector space M
and a k-linear map µ : A⊗M →M for which the following diagrams commute.

A⊗A⊗M
Id⊗µ //

φ⊗Id
��

A⊗M
µ

��
A⊗M

µ // M

k⊗M
∼= //

η⊗Id
��

M

A⊗M
µ

;;

A similar definition applies to a right A-module, but we can also view it as a left module over

the opposite algebra Aop so won’t discuss right modules explicitly. The action of the algebra

for a right module can be thought of either as a map Aop⊗M →M or as a map M ⊗A→M .

An A-module homomorphism θ : (M,µ)→ (M ′, µ′) is a k-linear mapping θ :M →M ′ that

makes the following diagram commute.

A⊗M Id⊗θ //

µ

��

A⊗M ′

µ′

��
M

θ // M ′

Of course a homomorphism has a kernel, an image and a cokernel, all of which are easily seen

to be A-modules. Furthermore, the set of all homomorphisms M → N between two A-modules

is a subspace HomA(M,M ′) ⊆ hom(M,M ′).

Example 4.2. An A-module M is cyclic if it is generated by one element, so for some

m0 ∈M ,

M = Am0 = {am0 : a ∈ A}.
Such an element x0 is called a (cyclic) generator. The annihilator of an element m ∈M ,

annA(m) = {a ∈ A : am = 0} ⊆ A

is always a left ideal of A. For the cyclic module above there is an isomorphism

A/ annA(m0)
∼=−→M ; a+ annA(m0) 7→ am0.

More generally, an A-module M is finitely generated if there are elements m1, . . . ,mk such

that

M = Am1 +Am2 + · · ·+Amk = {a1m1 + · · ·+ akmk : ai ∈ A}.
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So a finitely generated module is quotient of a finite direct sum of free cyclic modules, i.e., there

is an epimorphism

Ak =

k︷ ︸︸ ︷
A⊕A⊕ · · · ⊕A↠M

under which each standard basis element ei = (0, . . . , 0, 1, 0, . . . , 0) maps to mi.

Example 4.3. Recall Example 2.3. A left module M over the enveloping algebra Ae =

A ⊗ Aop is sometimes called a A-A-bimodule because it is simultaneously a left and a right

A-module and the two actions commute, i.e., if a′, a′′ ∈ A and m ∈M , then

(a′m)a′′ = a′(ma′′).

An important example of such a module is A itself acted on by A through left and right

multiplication. This gives rise to an algebra homomorphism Ae → Endk(A); when A is finite

dimensional this homomorphism need not be injective, but if Ae ∼= Endk(A) then A is called an

Azumaya algebra. Examples include matrix rings of central simple algebras over k and they give

rise to the Brauer group of the field which appears in Galois Theory and Class Field Theory.

The multiplication map

Ae = A⊗Aop → A; x⊗ yop 7→ xy

is a surjective homomorphism of Ae-modules. If A is a projective Ae-module (or equivalently

if this is a split surjection) then A is called separable. For the case where A is a field extension

of k this is equivalent to the notion of separability met in Galois Theory.

For a vector space W , the tensor product A ⊗ W becomes a left A-module where the

composition

A⊗ (A⊗W ) oo ∼=
//

++
(A⊗A)⊗W

φ
// A⊗W

is the multiplication. The left module A⊗W is called an extended A-module.

The set of A-module homomorphisms θ : (M,µ)→ (M ′, µ′) is a subspace

HomA(M,M ′) ⊆ hom(M,M ′).

If A is commutative it is also an A-module. When M ′ = M , EndA(M) = HomA(M,M) is an

algebra with composition as its product.

There is an adjunction

(4.1) HomA(A⊗W,M) ∼= hom(W,M)

under which θ ∈ HomA(A⊗W,M) corresponds to

W oo
∼=
// **k⊗W

η⊗Id
// A⊗W

θ
// M

and f ∈ hom(W,M) corresponds to A⊗W →M given on basic tensors by

a⊗ w 7→ af(w).

The vector space hom(A,W ) becomes a left A-module with the multiplication of a ∈ A and

f ∈ hom(A,W ) given by

(af)(x) = f(xa).

Notice that if b ∈ A,

(a(bf))(x) = (bf)(xa) = f((xa)b) = f(x(ab)) = ((ab)f)(x),
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so a(bf) = (ab)f as required for this to define a left module structure.

This A-module fits into another important adjunction. For any A-module L, there is an

isomorphism

(4.2) hom(L,W )
∼=−−→ HomA(L, hom(A,W )); f 7−→ (ℓ 7→ (a 7→ af(ℓ))).

The inverse sends g ∈ HomA(L, hom(A,W )) to the composition

L
g−→ hom(A,W )

η∗−→ hom(k,W )
∼=−→W

induced by the unit η : k→ A.

Before stating the next lemma, we give some definitions that generalise those for modules

over rings. In this we always work with left modules but analogous notions apply to right

modules.

Definition 4.4. Let A be a k-algebra.
• An A-module P is projective if given a diagram of solid arrows consisting of homomor-

phisms of A-modules with exact column

U

p

��
P

f //

f ′
33

V

��
0

there is a homomorphism f ′ : P → U making the resulting diagram commute.

• An A-module I is injective if given a diagram of solid arrows consisting of homomor-

phisms of A-modules with exact column

0

��
U

i
��

g // I

V g′

KK

there is a homomorphism g′ : V → I making the resulting diagram commute.

Lemma 4.5. Let A be a k-algebra.
(a) For any k-vector space W , the extended A-module A⊗W is a free module.

(b) For any A-module M , let M0 denote its underlying vector space. Then there is a surjective

A-module homomorphism A⊗M0 →M .

(c) If P is a projective A-module, then there is an isomorphism of A-modules A⊗ P0
∼= P ⊕Q

where Q is another projective module. So P is a summand/retract of a free module.

(d) For any k-vector space W , hom(A,W ) is an injective A-module.

(e) If I is an injective A-module then there is an isomorphism of A-modules hom(A, I0) ∼= I⊕J
where J is also an injective module. So I is a summand/retract of an injective module of the

form hom(A, I0).

Proof. (a) Choose a basis of W and use it to give a basis for the A-module A⊗W .

(b) Use the isomorphism (4.1).
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(c) This is a standard argument: use (b) and projectivity.

(d) Suppose that we have a diagram of A-modules with exact row

0 // U //

��

V

hom(A,W )

Now apply HomA(−, hom(A,W )) to the row to obtain a commutative diagram where we

use (4.2) to get the vertical isomorphisms.

HomA(U, hom(A,W ))
OO
∼=
��

HomA(V,hom(A,W ))oo
OO
∼=
��

hom(U,W ) hom(V,W )oo

But the original k-linear map U → V is split injection, so the linear map in the bottom row is

surjective, hence so is the one in the top. It follows that the original diagram of A-modules can

be extended with the dotted arrow to

0 // U //

��

V

yy
hom(A,W )

and so hom(A,W ) is injective.

(e) This is proved in a similar way to (c) using (4.2). □

Now we can summarise all of this in categorical language.

Theorem 4.6. There is an abelian category ModA whose objects are the left A-modules

and whose morphisms are given by ModA(M,N) = HomA(M,N). The usual ⊕ = × is the

coproduct and product; more generally, in this category arbitrary coproducts and coproducts

exist. This category has enough projectives and injectives.

Remark 4.7. In general there is no obvious monoidal structure on ModA since although

we can form the tensor product M ⊗A N of a right A-module M and a left A-module N , it is

only an A-module when A is commutative. An alternative approach is possible when A is a

bialgebra such as a Hopf algebra: in that case we can give ModA a monoidal structure using

⊗k. This will be discussed more later.

Example 4.8. When G is a group, a kG-module is the same thing as a k-representation or

k-linear representation of G.

Example 4.9. A module over the polynomial algebra k[X] is the same thing as a vector

space V together with a given linear endomorphism f : V → V . Since k[X] is a Euclidean

domain there is a structure theory for such modules which are finite dimensional: every such

module is isomorphic to a direct sum of cyclic modules k[X]/(p(X)).

An non-trivial A-module M is called simple if it contains no non-zero proper submodules.

For example, every finite dimensional module contains a simple submodule.

Example 4.10. A finite dimensional algebra A is called semi-simple if every finite dimen-

sional A-module M is isomorphic to a direct sum of simple submodules. This notion is studied

in Artin-Wedderburn theory. For a finite group G, kG is semi-simple if and only if char k ∤ |G|.
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The algebra A is called simple if it contains no non-zero proper two sided ideals. Every

semi-simple algebra is isomorphic to a product of simple algebras. Every finite dimensional

simple algebra is isomorphic to a matrix algebra Mn(D) over a division algebra D whose centre

is k.

Example 4.11. In Example 2.2 we described the infinite dimensional Weyl algebra: it is

simple if and only if chark = 0.

Example 4.12. For a Lie algebra g, a representation (or g-module) means a Lie algebra

homomorphism g→ Endk(V ) for a vector space V . This is equivalent to making V into a U(g)-

module where U(g) is the universal enveloping algebra of g. Even when g is finite dimensional,

U(g) is not so this leads to consideration of infinite dimensional modules. However in many

cases the simple g-modules are most conveniently described as cyclic quotients of U(g).

4.2. Comodules over a coalgebra

Dually, a coalgebra has comodules. Their basic theory is very similar to that of modules

over an algebra with ‘arrows reversed’.

Definition 4.13. Given a k-coalgebra (C,ψ, ε), a left comodule (N, ν) is a k-vector space N
and a k-linear map ν : N → C ⊗ N called the coaction or comultiplication which makes the

following diagrams commute.

C ⊗ C ⊗N C ⊗NId⊗νoo

C ⊗N

ψ⊗Id

OO

N
νoo

ν

OO k⊗N N
∼=oo

ν{{
C ⊗N

ε⊗Id

OO

A right C-comodule is the same thing as a left comodule over the opposite coalgebra Cop.

Sweedler notation is often used for the coproduct of a comodule, one version is

ν(n) =
∑

n(1) ⊗ n(0)

where n(1) ∈ C and n(0) ∈ N , so the index (0) is reserved for elements in the comodule.

A C-comodule homomorphism ρ : (N, ν) → (N ′, ν ′) is a k-linear mapping θ : N → N ′ that

makes the following diagram commute.

C ⊗N
Id⊗ρ // C ⊗N ′

N
ρ //

ν

OO

N ′

ν′

OO

It is easy to see that the image and the cokernel of a homomorphism ρ are comodules. To

see that kernels exist, let ρ : N → N ′ be a C-comodule homomorphism. As a linear mapping ρ

has a kernel and there is an exact sequence of linear mappings

0 // ker ρ // N
ρ // N ′

and we can extend this to a commutative diagram of solid arrows

0 // ker ρ
inc //

��

N
ρ //

ν

��

N ′

ν′

��
0 // C ⊗ ker ρ

Id⊗inc// C ⊗N
ρ // C ⊗N ′
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in which the bottom row is exact because tensoring over a field is an exact functor. Now a

diagram chase shows that ν ◦ inc factors through C⊗ker ρ hence we can fill in the dotted arrow

and more diagram chasing shows that it is a comultiplication making ker ρ a comodule and a

kernel for ρ.

For a vector space W , the tensor product C ⊗W becomes a left C-comodule where the

composition

C ⊗W
ψ
//

,,
(C ⊗ C)⊗W oo

∼=
// C ⊗ (C ⊗W )

is the comultiplication; C ⊗ W is called an extended C-comodule. The set of C-comodule

homomorphisms ρ : (N, ν) → (N ′, ν ′) is a vector subspace CohomC(N,N
′) ⊆ hom(N,N ′).

There is an adjunction isomorphism

(4.3) CohomC(N,C ⊗W ) ∼= hom(N,W )

under which ρ ∈ CohomC(N,C ⊗W ) corresponds to

N
ρ
// **
C ⊗W

ε⊗Id
// k⊗W oo

∼=
// W

and g ∈ hom(N,W ) corresponds to the following composition.

N
ν
//

))
C ⊗N

Id⊗g
// C ⊗W

Proposition 4.14. An extended comodule C ⊗W is an injective comodule. Hence a co-

module which is a direct summand of an extended comodule is injective.

Proof. Suppose given the following commutative diagram of comodule homomorphisms

with an exact row.

0 // N
ρ //

��

N ′

C ⊗W
Applying CohomC(−, C ⊗W ) ∼= hom(−,W ) to the row we get a diagram of vector spaces

0 CohomC(N,C ⊗W )oo CohomC(N
′, C ⊗W )

ρ∗oo

0 hom(N,W )oo
��

∼=

OO

hom(N ′,W )
ρ∗oo

��
∼=

OO

with exact bottom row. Therefore the top row is exact so we can fill in the dotted arrow with

a comodule homomorphism.

0 // N
ρ //

��

N ′

{{
C ⊗W

This shows that C⊗W is injective and any summand of such a comodule is as well by a standard

argument. □

The next result implies that the abelian category of C-comodules has enough injectives and

identifies the injectives.
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Proposition 4.15. For any C-comodule N there is a comodule monomorphism N → I

where I is an extended comodule and so injective. Hence every injective comodule is a direct

summand of an extended comodule.

Proof. We can view N as just a vector space and then using the isomorphism (4.3) we

obtain CohomC(N,C ⊗ N) ∼= hom(N,N) and IdN ∈ hom(N,N) corresponds to a comodule

homomorphism N → C ⊗N and the commutative diagram

N
ν // C ⊗N

ε⊗Id
��

k⊗NOO
∼=��

N

shows that it is injective, so N embeds into the extended comodule I = C ⊗ N which is an

injective comodule.

It follows that every injective comodule J embeds into the extended comodule C ⊗ J and

by injectivity it must be a direct summand. □

We can summarise this information in a statement about the category of comodules.

Theorem 4.16. For a k-coalgebra C, its comodules and comodule homomorphisms form

an abelian category ComodC with enough injectives. This category has ⊕ as coproduct and

product.

If C is finite dimensional then ComodC also has enough projectives.

In general the comodule category of a coalgebra may not have enough projectives, although

in many cases it does. This asymmetry leads to slight differences in their homological algebra

compared to that of algebras. The finite dimensional case can be verified using ideas in the

discussion that follows, see Proposition 4.23.

Now recall that a coalgebra C has an associated algebra C∗. A left C-comodule has an

action ν† : C∗ ⊗N → N defined by

γn = ν†(γ ⊗ n) =
∑

γ(n(1))n(0),

where of course γ(n(1)) ∈ k. If α, β ∈ C∗,

α(βn) =
∑

α(β(n(1))n(0))

=
∑

β(n(1))α
(
(n(0))(1)

)
(n(0))(0)

while

(αβ)n =
∑

(αβ)(n(1))n(0))

=
∑

α
(
(n(1))(0)

)
β
(
(n(1))(1)

)
n(0) =

∑
β
(
(n(1))(1)

)
α
(
(n(1))(0)

)
n(0)

=
∑

β(n(1)α
(
(n(0))(1)

)
(n(0))(1),

so α(βn) = (αβ)n. Another argument shows that ε∗n = n. So with this multiplication, N

becomes a left C∗-module.

Definition 4.17. Let A be a k-algebra and M a left A-module. Then M is locally finite if

every element m ∈M is contained in a submodule which is a finite dimensional subspace.
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In particular this means that for each m ∈ M , the cyclic submodule Am ⊆ M is a finite

dimensional subspace. The locally finite A-modules form a full abelian subcategory Modl.f.
A of

the full category ModA of all A-modules.

Definition 4.18. Let C be a k-coalgebra and N a left C-comodule. Then N is locally finite

if every element m ∈M is contained in a subcomodule which is a finite dimensional subspace.

In fact this notion is redundant!

Lemma 4.19. Let C be a coalgebra. Then every C-comodule is locally finite.

Proof. Let N be a C-comodule. The idea of the proof is that for n ∈ N , the coproduct

ν(n) =
∑

n(1) ⊗ n(0)
gives rise to a finite dimensional subspace spanned by the elements n(0) ∈ N . Now using

coassociativity of ν, this can be shown to be a subcomodule. □

Lemma 4.20. Let C be a coalgebra and C∗ its dual algebra. Let N be a left C-comodule

which we also view as a left C∗-module. Then N is a locally finite C∗-module.

Proof. It is sufficient to show that for n ∈ N , the cyclic submodule C∗n ⊆ N is finite

dimensional. Lemma 4.19 tells us that n is contained in a finite dimensional subcomodule

W ⊆ N and by definition of the action of C∗ on n, C∗n ⊆W . □

Dualising from an algebra to a coalgebra is more problematic unless the finite dual is used.

Details can be found in Montgomery [Mon93] or Radford [Rad12]. We summarise the main

results.

Lemma 4.21. Let A be an algebra and A◦ its finite dual coalgebra. Let M be a locally finite

left A-module. Then M can be given the structure of a left A◦-comodule.

Proposition 4.22. There is an isomorphism of abelian categories

Modl.f.
A

∼−→ ComodA◦ .

Of course when A is finite dimensional, A◦ = A∗, and locally finite is equivalent to every

element being in a finitely generated submodule. If we restrict attention to finite dimensional

modules and comodules we obtain an important related result.

Proposition 4.23. There is an isomorphism of abelian categories

Modf.d.
A

∼−→ Comodf.d.
A∗ .

In particular, projective/injective modules correspond to projective/injective comodules.

Of course the finite dimensional projective A-modules are summands of direct sums of copies

of A. Also A is an A∗-comodule through the adjunction

hom(A⊗A,A) ∼= hom(A,A∗ ⊗A).

under which the product correspond to a coaction A→ A∗⊗A making it an A∗-comodule, and

in fact it is projective.

Example 4.24. Recall Section 3.4. Let G be a finite group. Then the dual group alge-

bra kG = (kG)∗ is a coalgebra with coproduct given in (3.3). Now a kG-module M gives rise

to a kG-comodule ρ : M → kG ⊗M where

ρ(m) =
∑
g∈G

δg ⊗ g−1m.
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4.3. Tensor and cotensor products

Suppose that A is an algebra, (M,µ) is a right A-module and (N, ν) is a left A-module.

One definition of the tensor product M ⊗A N makes it the cokernel of the k-linear mapping

(µ⊗ Id− Id⊗ν) : M ⊗A⊗N →M ⊗N . In other words there is an exact sequence

(4.4) M ⊗A⊗N
µ⊗Id− Id⊗ν // M ⊗N // M ⊗A N // 0

of k-linear mappings. This can also be defined as the coequalizer of the maps µ⊗ Id and Id⊗ν.
Unless A is commutative M ⊗AN is not an A-module in an obvious way. For this construction

there are formulae such as

A⊗A N ∼= N, M ⊗A A ∼=M.

Notice also that if B ⊆ A is a subalgebra we can also define M ⊗B N and there is a linear

surjection M ⊗BN →M ⊗AN . If we fix M or N then M ⊗A (−) and (−)⊗AN define additive

functors.

Proposition 4.25. For a fixed right A-module M , the functor M ⊗A (−) : ModA → Vectk
is right exact, i.e., it sends every short exact sequence of left A-modules

0→ N ′ → N → N ′′ → 0

to an exact sequence

M ⊗A N ′ →M ⊗A N →M ⊗A N ′′ → 0.

The left derived functors of M ⊗A (−) are denoted TorA∗ (M,−); these can be computed using

projective resolutions.

Remark 4.26. A left A-module P is called flat if for every right A-moduleM , TorAs (M,P ) =

0 for s > 0. In fact we can calculate TorA∗ (M,N) by using any flat resolution P• → N → 0,

i.e., a resolution consisting of flat modules Ps. Then TorA∗ (M,N) is the homology of the chain

complex N ⊗A P•. Free and projective modules are flat, and so are colimits of flat modules.

Now we dualise to comodules. Suppose that C is a coalgebra, (M,µ) is a right C-comodule

and (N, ν) is a left C-comodule. We define the cotensor product M□CN as the kernel of

(µ⊗ Id− Id⊗ν) : M ⊗N →M ⊗ C ⊗N , so there is an exact sequence

(4.5) 0 // M□CN // M ⊗N
µ⊗Id− Id⊗ν // M ⊗ C ⊗N

and M□CN can be viewed as the equalizer of µ ⊗ Id and Id⊗ν. Here M□CN is only a

C-comodule if C is cocommutative. We have

C□CN ∼= N, M□CC ∼=M.

A surjection of coalgebras C → D induces an injective linear mapping M□CN →M□DN .

We identified injective comodules in Proposition 4.15; they are direct summands of extended

comodules. For such a comodule we have

M□C(C ⊗W ) ∼=M ⊗W

Proposition 4.27. For a fixed right C-comodule M , the functor M□C(−) : ComodC →
Vectk is left exact, i.e., it sends every short exact sequence of left C-comodules

0→ N ′ → N → N ′′ → 0

to an exact sequence

0→M□CN
′ →M□CN →M□CN

′′.

59



The right derived functors of M□C(−) are denoted Cotor∗C(M,−); these can be computed using

injective resolutions.

Proof. This is a routine exercise in homological algebra. The main thing to note is that a

short exact sequence

0→ I → N → N ′′ → 0

with I an injective comodule splits and so

0→M□CI →M□CN →M□CN
′′ → 0

is short exact. □

4.4. Modules over a Hopf algebra

For a Hopf algebra we have both modules and comodules. We will focus on (left) modules

but similar things apply to comodules.

From now on, let (H,φ, η, ψ, ε, χ) be a Hopf algebra which we will assume has an invertible

antipode; this condition holds if the Hopf algebra is classical since then χ ◦ χ = Id. We will

often indicate the multiplication in a module (M,µ) by writing hx = µ(h⊗ x).
There are two obvious left modules. First we can let H act on itself by left multiplication, so

for µ we just take φ. This is sometimes called the left regular representation of H; this module

is free of rank 1. At the other extreme we can let H act on k using the counit ε, so µ is the

map

H ⊗ k→ k; h⊗ 1 7→ ε(h).

In fact for any vector space W we can let H act on W by

H ⊗W →W ; h⊗ w 7→ ε(h)w.

Such representations are called trivial representations, and the one with W = k is often called

the trivial representation and it is simple or irreducible.

Now we come to an important property of the category of modules over a Hopf algebra:

it forms a closed monoidal category. Let (M1, µ1) and (M2, µ2) be two left H-modules. Their

tensor productM1⊗M2 is a k-vector space which also admits a multiplication µ̃ which is defined

to make the diagram

H ⊗ (M1 ⊗M2)

ψ⊗Id⊗ Id
��

µ̃ // M1 ⊗M2

(H ⊗H)⊗ (M1 ⊗M2) ∼=
Id⊗T⊗Id // (H ⊗M1)⊗ (H ⊗M2)

µ1⊗µ2

OO

commute and making it an H-module (M1⊗M2, µ̃). Using Sweedler notation we can write this

explicitly as

µ̃(h⊗m1 ⊗m2) =
∑

h(1)m1 ⊗ h(2)m2.

If H is cocommutative then the switch map

M1 ⊗M2
T−→∼= M2 ⊗M1.

is an isomorphism of H-modules, but when H is not cocommutative this need not be true.

If W is any vector space with the trivial H-module structure, there is an isomorphism of

H-modules

W ⊗M ∼=M ⊗W.
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In particular,

k⊗M ∼=M ∼=M ⊗ k.

For any H-module M we can consider the subspace of H-invariants

MH = {x ∈M : ∀h ∈ H, hx = ε(h)x} ⊆M.

What about M∗ = hom(M, k)? There is a natural right H-module structure on this given

by taking for h ∈ H and f ∈M∗,

(f · h)(x) = f(hx).

We can twist this into a left action by defining

(h · f)(x) = f(χ(h)x).

More generally, for two H-modules M,N , hom(M,N) becomes a module with the action given

in Sweedler notation by

(h · g)(x) =
∑

h(1)g(χ(h(2))x).

By an interesting calculation, the subspace of H-invariants of hom(M,N) turns out to be

(4.6) hom(M,N)H = HomH(M,N).

In particular,

MH ∼= {f(1) ∈M : f ∈ hom(k,M)H} ∼= HomH(k,M).

In fact taking invariants gives a functor (−)H : ModH → Vectk which is left exact, i.e., it

sends every short exact sequence

0→ L→M → N → 0

to an exact sequence

0→ LH →MH → NH ·

This means it has right derived functors denoted by Ext∗H(k,−) and also called the cohomology

of H with coefficients in M . When H = kG is a group algebra this is the cohomology of G

relative to k.
We can also define the H-coinvariants of an H-module M to be

MH =M/ span{hm− ε(h)m : h ∈ H, m ∈M},

where span(X) means the subspace spanned by X. This can be shown to be isomorphic to

the tensor product k⊗H M where we view k as a right H-module. Taking coinvariants gives a

functor (−)H : ModH → Vectk which is right exact, i.e., it sends every short exact sequence

0→ L→M → N → 0

to an exact sequence

LH →MH → NH → 0.

The left derived functors are TorH∗ (k,−) and TorH∗ (k,M) is also known as the homology of H

with coefficients in M . When H = kG for a group G, this is the homology of G.

When M and N are two left H-modules,

(M ⊗N)H ∼= k⊗H (M ⊗N)

is also isomorphic to the quotient (M ⊗N)/T where T is the subspace spanned by the elements

hm⊗ n−m⊗ hn (h ∈ H, m ∈M, n ∈ N).
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As a special case of this, suppose that L is a right H-module; we can make this into a left

H-module by defining the action to be

h · ℓ = ℓχ(h).

Then with this left H-module L and a left H-module N ,

(L⊗N)H ∼= L⊗H N

where the latter is the right-left tensor product over H.

We can assemble all of these ideas into an important categorical result which we will make

use of later.

Theorem 4.28. The category of left H-modules ModH under ⊗ and hom(−,−) is closed

monoidal. So for H-modules L,M,N there is a functorial adjunction isomorphism

(4.7) ModH(L⊗M,N)
∼=←→ModH(L, hom(M,N)).

If H is cocommutative ModH is symmetric monoidal.

If M is finite dimensional then (4.7) gives rise to a functorial isomorphism

(4.8) ModH(L⊗M,N)
∼=←→ModH(L,N ⊗M∗).

We will return to the issue of the lack of symmetry for non-cocommutative Hopf algebras

when we discuss quantum groups. We mention one general observation that shows care is need

in such situations.

Suppose that M is a finite dimensional H-module. Then the dual space M∗ = hom(M, k)
and hence the double dual space M∗∗ = (M∗)∗ = hom(M∗, k) admit left H-modules structures

as described above.

Lemma 4.29. The canonical linear isomorphism M →M∗∗ need not be an isomorphism of

H-modules, but does induce an isomorphism of H-modules

(χ2)∗M
∼=−→M∗∗,

where (χ2)∗M is the vector space M given the H-module structure with

h ·m = χ2(h)m.

Of course if H is involutary (i.e., χ2 = IdH) then (χ2)∗M = M , but in general these need

not even be isomorphic H-modules.

If W is a vector space which we view as a trivial H-module, then the extended H-module

on W is the left H-module H ⊗W with action on basic tensors

h(k ⊗ w) = (hk)⊗ w.

More generally, if K ⊆ H is a subalgebra then for a left K-module N there is an induced

H-module

indHK N = H ⊗K N

where the tensor product is formed using right K-module structure on H. There is also the

coinduced H-module

coindHK N = HomK(H,N)

where the left H-multiplication is induced by right multiplication on the domain, i.e.,

h · f(−) = f((−)h).
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These constructions give rise to additive functors

indHK : ModK →ModH , coindHK : ModK →ModH

which have adjoints.

If M is a left H-module, by restriction to K it is also a left K-module which we will denote

by resHKM ; this defines an additive functor

resHK : ModH →ModK .

If M is a left H-module and N is a left K-module, there are isomorphisms

ModH(ind
H
K N,M) ∼= ModK(N, resHKM),(4.9)

ModH(M, coindHK N) ∼= ModK(resHKM,N),(4.10)

functorial in M,N . Of course this says that there are adjoint pairs

indHK ⊣ resHK , resHK ⊣ coindHK .

Notice that the functor resHK both a left and a right adjoint.

When H = kG and K = kH for a subgroup H ⩽ G, these adjunctions are the source of

Frobenius reciprocity in the representation theory of finite groups.

IfM is an H-module it is useful to forget its module structure and take its underlying vector

space with the trivial H-module structure which we will denote εM = resHk M . The next result

is really important and useful when doing homological algebra over a Hopf algebra.

Proposition 4.30. Suppose that H is a Hopf algebra. For a left H-module M there are

isomorphisms of left H-modules

H ⊗M
∼=←→ H ⊗ εM

∼=←→M ⊗H,

where H ⊗ εM is the extended module for the vector space M . Hence H ⊗M is always a free

H-module.

Proof. The following k-linear maps are inverse H-module maps:

H ⊗M → H ⊗ εM ; h⊗ x 7→
∑

h(1) ⊗ χ(h(2))x,

H ⊗ εM → H ⊗M ; h⊗ x 7→
∑

h(1) ⊗ h(2)x.

In the first map, χ(h(2))x really does mean we multiply using the original module structure

of M not the trivial one! Verifying it is an H-module homomorphism is an exercise in using

Sweedler notation (or better, working with commutative diagrams).

A similar argument works for M ⊗H. □

If H is finite dimensional it is also true that for any H-module M , there is an isomorphism

of H-modules

hom(H,M) ∼= H∗ ⊗ εM

where H∗ = hom(H, k) is injective; later we will see that H∗ ∼= H so hom(H,M) is also a free

H-module.
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An important example: representations of a finite group. A representation of a

finite group G over k is equivalent to a kG-module. For a vector space V , the induced kG-
module

V ↑G1 = indG1 V
∼= kG⊗ V

is free and for a kG-module M it is well known that

kG⊗M ∼=M ↑G1 .

If M,N are two kG-modules then so is M ⊗N with g ∈ G acting on basic tensors by

g · (m⊗ n) = gm⊗ gn.

Similarly, M∗ = hom(M, k) is a kG-module with action of g ∈ G on f ∈M∗ given by

(g · f)(m) = f(g−1m) (m ∈M).

This is sometimes called the dual or contragredient module of M .

If H ⩽ G then kH ⊆ kG is a subHopf algebra and for any kH-module L, there is an induced

module L ↑GH ; in particular,

kG/H ∼= kG⊗kH k.
If M is a kG-module we can view it as a kH-module and then as kG-modules,

kG⊗kH M ∼= kG/H ⊗M.

In fact the only subHopf algebras of kG are the kH. If N ◁ G the kG/N is a quotient Hopf

algebra of kG.
In the representation theory of a finite group it is well known that the tensor product of two

G-modules M and N is a G-module M ⊗N with the action of g ∈ G on basic tensors given by

g(x⊗ y) = gx⊗ gy;

this of course is equivalent to the Hopf algebra definition since in kG the coproduct on an

element g ∈ G ⊆ kG is given by ψ(g) = g ⊗ g.
All of the above structure is important in studying representations and it can be viewed

as having its origins in the Hopf algebra structure of kG. Actually it can be thought of in

terms of group actions: Suppose that G acts on a set X; for a subgroup H ⩽ G there is also a

transitive action on G/H. Then there is a diagonal action of G on G/H ×X. Also, using the

right H-action on G and the restricted H-action on X we can form G ×H X which has a left

G-action. Then there is a G-equivariant bijection

G/H ×X
∼=−→ G×H X.

If we apply the free vector space functor to this isomorphism we obtain an isomorphism like the

one above.

Representations of Lie algebras. Another important kind of example is provided by Lie

algebras.

A representation of a Lie algebra L is a Lie algebra homomorphism ρ : L→ Endk(V ) where V

is a vector space and Endk(V ) is given its algebra commutator bracket. Using Proposition 3.6

we see that this data is equivalent to considering the corresponding algebra homomorphism

ρ̃ : U(L)→ Endk(V ) which makes V a U(L)-module.

Since U(L) is a cocommutative Hopf algebra, given two L-representations U, V , their tensor

product U ⊗ V becomes a U(L)-module, where for ℓ ∈ L ⊆ U(L) and u ∈ U , v ∈ V .

ℓ(u⊗ v) = (ℓu)⊗ v + u⊗ (ℓv).
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Similarly, the dual V ∗ has a natural U(L)-module structure satisfying

ℓf = −f(ℓ(−)).

If K ⊆ L is a subLie algebra then U(K) ⊆ U(L) is a subHopf algebra so we can define

induction coinduction and restriction functors ind
U(L)
U(K), coind

U(L)
U(K) and res

U(L)
U(K). All of this is

familiar structure in Lie theory. When L is a semisimple Lie algebra we can induce up 1-

dimensional representations of Borel subalgebras to get irreducible representations.

4.5. Hopf module algebras and coalgebras

A Hopf algebra (H,φ, η, ψ, ε) can act or coact on other things such as algebras and coalge-

bras.

Definition 4.31. An H-module algebra is a k-algebra (A,φA, ηA) which is an H-module

with multiplication denoted by h · a for h ∈ H and a ∈ A, which satisfies

h · (ab) =
∑

(h(1) · a)(h(2) · b), h · 1 = ε(h) (h ∈ H, a, b ∈ A).

An H-module coalgebra is a k-coalgebra (C,ψC , εC) which is an H-module with multiplication

denoted by h · a for h ∈ H and a ∈ A, which satisfies

ψC(h · c) =
∑

(h(1) · c(1))⊗ (h(2) · c(2)), εC(h · c) = ε(h)εC(c), (h ∈ H, c ∈ C).

An H-module bialgebra/Hopf algebra is a bialgebra/Hopf algebra that is both an H-module

algebra and a H-module coalgebra.

Example 4.32. An important example is provided by the left adjoint action of H on itself:

for h, x ∈ H,

h · x = adlh(x) =
∑

h(1)xχ(h(2)).

This makes H into an H-module Hopf algebra. To see that the product formula holds, let

a, b, h ∈ H. Using a modified version of Sweedler notation where h(ij) = (h(i))(j), we have

h · (ab) =
∑

h(1)abχ(h(2))

=
∑

h(11)(ε(h(12))1)abχ(h(2))

=
∑

h(11)a(ε(h(12))1)bχ(h(2))

=
∑

h(11)aχ(h(121))h(122)bχ(h(2))

=
∑

h(11)aχ(h(12))h(21)bχ(h(22))

=
∑

(h(1) · a)(h(2) · b),

where we have used coassociativity to rewrite the penultimate sum. Verifying the formula

h · 1 = ε(h)1 requires a simpler calculation.

If H is commutative then

h · x =
∑

h(1)χ(h(2))x = ε(h)x

so in this case the action is trivial.

If A ⊆ H is a subalgebra which is closed under the left adjoint action (i.e., for all h ∈ H,

adlhA ⊆ A) then the adjoint action restricted to A makes it into an H-module subalgebra.
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Example 4.33. Let kG be the group algebra of a group G and N◁G. Then for g ∈ G ⊆ kG
and n ∈ N ⊆ kN ⊆ kG, the adjoint action is given by

g · n = gng−1

so kN is a kG-module Hopf algebra. This case is very important in representation theory and

cohomology of finite groups.

Example 4.34. Suppose that K/k is a Galois extension with Galois group G = Gal(K/k).
Then we can view K as a k-algebra and each g ∈ G acts on K as an algebra automorphism. The

group algebra kG also acts on K making it a kG-module algebra since for g ∈ G and x, y ∈ K,

g · (xy) = (g · x)(g · y).

Example 4.35 (Cross product algebras). Given a Hopf algebra H and an H-module algebra

A, we can form a new algebra A♯H called the cross product algebra of A and H as follows. The

underlying vector space is A⊗H and we multiply basic tensors using the rule

(a′ ⊗ h′)(a′′ ⊗ h′′) =
∑

(a′(h′(1) · a
′′))⊗ h′(2)h

′′ =
∑

(a′ρ(h′(1) ⊗ a
′′))⊗ h′(2)h

′′,

where ρ : H ⊗ A → A is the action map. So the product is the composition shown in the

following commutative diagram.

A⊗H ⊗H ⊗A⊗HOO

Id⊗ Id⊗T⊗Id
��

(A⊗H)⊗ (A⊗H)

--

A⊗H ⊗A⊗H

Id⊗ψ⊗Id⊗ Id
33

A⊗H ⊗A⊗H ⊗H

Id⊗ρ⊗Id⊗ Id

��
A⊗A⊗H ⊗H

φA⊗Id⊗φ
��

A⊗H
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CHAPTER 5

Finite dimensional Hopf algebras

In this chapter we survey some of the main results in the theory of finite dimensional Hopf

algebras, some of which are recognisable as generalisations of the special case of group algebras

of finite groups. The proofs tend to be quite technical so we will sometimes refer to sources

such as Radford [Rad12] for details.

5.1. The Nichols-Zoeller Theorem

Here is an important result about finite dimensional Hopf algebras. Earlier versions of this

for arbitrary graded connected Hopf algebras were due to Milnor & Moore [MM65]. More

general results are known, for example when K is finite dimensional.

Theorem 5.1 (Nichols & Zoeller). Let H be a finite dimensional Hopf algebra and let K be

a subHopf algebra. Then when viewed as a left or right K-module, H is free. Hence

dimkH = (dimkK)(rankK H).

Proof. Proofs seem to require considerable background in module theory and can be found

in [Rad12, theorem 9.3.3] or [Mon93, chapter 3]. □

The dimension formulae is of course a generalisation of Lagrange’s Theorem: For a finite

group G and H ⩽ G, kG is a finite dimensional Hopf algebra and kH is a subHopf algebra,

with dimk kG = |G| and dimk kH = |H|. Here is another nice generalisation.

Corollary 5.2. Let H be a finite dimensional Hopf algebra. Then the grouplike elements

form a finite subgroup G(H) ⩽ H× and |G(H)| divides dimkH.

Proof. By Lemma 2.31, G(H) is linearly independent so it must be finite with |G(H)| ⩽
dimkH. In fact G(H) spans the subHopf algebra kG(H) ⊆ H, so |G(H)| | dimkH by Theo-

rem 5.1. □

5.2. Antipodes and finite dimensionality

In general the antipode of a Hopf algebra need not be bijective. But it often is, for example

when the Hopf algebra is commutative or cocommutative. Here is another important case.

Theorem 5.3. Let H be a finite dimensional Hopf algebra. Then its antipode χ : H → H

is bijective.

The proof will require a lemma which does not require H to be finite dimensional.

Lemma 5.4. Let H be a Hopf algebra and suppose that K = χH ⊆ H. If the restriction

χ|K : K → K is a bijection then χ is a bijection.

Proof. The linear mapping H → K given by χ is surjective and χ|K : K → K is injective,

so H = kerχ⊕K as vector spaces. Let π : H → K be projection onto the second factor; then

kerχ = kerπ and π|K = IdK .
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By Proposition 2.32, K ⊆ H is a subHopf algebra and kerχ is a Hopf ideal of H. Hence

ε kerπ = {0} and

ψ kerχ ⊆ kerχ⊗H +H ⊗ kerχ = kerπ ⊗H +H ⊗ kerχ,

so for h ∈ kerχ and working with the convolution in hom(H,H),

(π ∗ χ)(h) = 0 = ε(h)1.

For k ∈ K we have

(π ∗ χ)(k) =
∑

π(k(1))χ(k(2)) =
∑

k(1)χ(k(2)) = ε(k)1.

It follows that π is the convolution inverse of χ, but this is IdH . So in fact π = IdH and χ is

surjective with kerχ = 0, hence χ is a bijection. □

Proof of Theorem 5.3. We will prove this is stages using a ‘downward induction’ argu-

ment. See Radford [Rad12, theorem 7.1.14] for more details on this.

Since χ : H → H is a linear mapping and H is finite dimensional, Fitting’s Lemma implies

that for some large enough n,

H = imχn ⊕ kerχn.

where K = imχn = χnH ⊆ H is a subHopf algebra on which the restriction of χ is injective.

Since K = χK = χ(χn−1H), we can apply Lemma 5.4 to the subHopf algebra χn−1H ⊆ H

to deduce that χ is bijective on χn−1H. Now we can repeat this argument to show that χ is

bijective on each χkH with 1 ⩽ k ⩽ n− 1 and then show that it is bijective on H itself. □

A finite submonoid of a group is always a subgroup (this is a routine consequence of the

Pigeonhole Principle). A related result holds for Hopf algebras although the proof seems to

require a more involved argument.

Proposition 5.5. Let H be a Hopf algebra and let B ⊆ H be a subbialgebra that is finite

dimensional. Then the antipode of H restricts to an antipode B, therefore B is a subHopf

algebra.

Proof. Consider the convolution monoids hom(B,B), hom(B,H) and hom(H,H); since B

is a subbialgebra of H, hom(B,B) ⊆ hom(B,H) is a submonoid and the inclusion incB : B →
H induces a monoid homomorphism incB : hom(H,H) → hom(B,H). Let χ′ = χ ◦ incB ∈
hom(B,H) be the restriction of the antipode χ : H → H to B. The restriction of the identity

IdH to B is just the inclusion incB : B → H, and

χ′ ∗ incB = inc∗B(χ ∗ IdH) = inc∗B(1H)

which is the identity in hom(B,H). So χ′ is the ∗-inverse of incB ∈ hom(B,H).

Now hom(B,B) ⊆ hom(B,H) is a submonoid and (incB)∗(IdB) = incB ◦ IdB = incB. But

hom(B,B) and hom(B,H) are also algebras with hom(B,B) ⊆ hom(B,H) a subalgebra. Let

Λ: hom(B,B)→ hom(B,B) be the k-linear endomorphism given by left multiplication by IdB.

Since (incB)∗(IdB) = incB ∈ hom(B,H) has a left inverse, it is injective, hence so is Λ. As B

is finite dimensional so is hom(B,B) and therefore Λ must be invertible. It follows that IdB
is invertible in hom(B,B) under ∗, hence B has antipode χB making it a Hopf algebra. By

construction, χB = χ ◦ incB so B is a subHopf algebra. □
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5.3. Hopf modules

The theory of Hopf modules is nowadays central in the study of finite dimensional Hopf

algebras and its Fundamental Theorem provides a key ingredient for proofs of results such as

the Larson-Sweedler Theorem.

Let (H,φ, η, ψ, ε, χ) be a Hopf algebra (not necessarily finite dimensional). Then H and

H ⊗H are both left H-modules and the coproduct ψ : H → H ⊗H is a module homomorphism

since H is a bialgebra. Similarly, if M is a left H-module H ⊗M is also an H-module.

Definition 5.6. Suppose thatM is a left H-module which is also a left H-comodule (M,µ).

Then (M,µ) is a (left) H-Hopf module if µ : M → H ⊗M is an H-module homomorphism.

A homomorphism of H-Hopf modules θ : (M,µ)→ (N, ν) is a k-linear mapping θ : M → N

which is both an H-module homomorphism and an H-comodule homomorphism.

If W is any vector space then H ⊗W is both a left H-module and a left H-comodule and

it is easy to check it is a Hopf module.

For a Hopf module (M,µ) we define its subspace of coinvariants to be

Mcoinv = {m ∈M : µ(m) = 1⊗m} ⊆M.

This vector subspace of M can be identified with the cotensor product k□HM where we view k
as a right H-comodule.

Here is the main result about Hopf modules, again we do not assume finite dimensionality.

Theorem 5.7 (Fundamental Theorem of Hopf Modules). Let M be an H-Hopf module.

Then there is an isomorphism of Hopf modules

H ⊗Mcoinv
∼=−−→M.

Hence every H-Hopf module is a free H-module.

Proof. We start by defining the linear mapping

Θ: H ⊗Mcoinv
∼=−→M ; Θ(h⊗m) = hm.

Since Mcoinv is just a vector space, this is a homomorphism of H-modules.

Let h ∈ H and m ∈Mcoinv. The coaction applied to the element hm ∈M gives

µ(hm) =
∑

h(1)1⊗ h(2)m =
(∑

h(1) ⊗ h(2)
)
(1⊗m) = hµ(m),

so this is a homomorphism of H-comodules.

Now for m ∈M , let

µ(m) =
∑

m(1) ⊗m(2) ∈ H ⊗M.

Then

µ
(∑

χ(m(1))m(2)

)
=
∑

χ(m(1))µ(m(2))

=
∑

χ(m(1))(1)(m(2))(1) ⊗ χ(m(1))(2)(m(2))(2)

=
∑

χ(m(12))(m(21))⊗ χ(m(11))(m(22))

=
∑

χ(m(121))(m(122))⊗ χ(m(11))(m(2))

=
∑

ε(m(12))⊗ χ(m(11))(m(2))

=
∑

1⊗ ε(m(12))χ(m(11))(m(2))

=
∑

1⊗ χ(m(1))(m(2)),
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hence
∑
χ(m(1))m(2) ∈Mcoinv.

Now consider the k-linear map Ψ: M → H ⊗Mcoinv given by

Ψ(m) =
∑

m(1) ⊗ χ((m(2))(1))(m(2))(2).

Since H acts trivially on Mcoinv, this is an H-module homomorphism and an H-comodule

homomorphism by coassociativity. Also,

ΘΨ(m) = Θ
(∑

m(1) ⊗ χ((m(2))(1))(m(2))(2)
)

= Θ
(∑

(m(1))(1) ⊗ χ((m(1))(2))m(2)

)
=
∑

(m(1))(1)χ((m(1))(2))m(2)

=
∑

ε(m(1))m(2)

= m,

and when µ(m) = 1⊗m,

ΨΘ(h⊗m) = Ψ(hm) =
∑

h(1) ⊗ χ((h(2))(1))(h(2))(2)m

=
∑

h(1) ⊗ ε(h(2))m

=
∑

ε(h(2))h(1) ⊗m

= h⊗m.

Therefore Ψ and Θ are inverse functions.

If we choose a k-basis forMcoinv then we get anH basis forH⊗Mcoinv, henceM ∼= H⊗Mcoinv

is a free H-module. □

This result tells us that for a non-trivial Hopf module M , Mcoinv is also non-trivial. But we

can say more when we have appropriate finiteness conditions.

Corollary 5.8. If Mcoinv is finite dimensional then

rankHM = dimkMcoinv,

and if H is also finite dimensional then

dimkM = dimkH dimkMcoinv.

Here is another interesting application. For a Hopf algebra H, a subspace L ⊆ H is a left

coideal if the image of the coproduct applied to L satisfies ψL ⊆ H ⊗L, so L is a subcomodule

of H.

Corollary 5.9. If H is finite dimensional and a non-zero left ideal I ⊆H is also a left

coideal, then I = H.

Proof. The conditions imply that I is a Hopf module which is a subHopf module of H.

By the Fundamental Theorem,

I ∼= H ⊗ Icoinv

as H-modules, so dimk I ⩾ dimkH which is only possible if I = H. □
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5.4. Applications to finite dimensional Hopf algebras

Now we will apply our results on Hopf modules to study finite dimensional Hopf algebras.

Theorem 5.10. If H is a finite dimensional Hopf algebra then its dual H∗ is an H-Hopf

module which is free of rank 1 as an H-module, i.e., H∗ ∼= H as left H-modules.

Proof. The dual H∗ = hom(H, k) is both a left H-module where for h ∈ H and f ∈ H∗,

h · f = f(χ(h)−).

It is also an algebra where the product is obtained by dualising the coproduct of H, i.e., it is

the composition

H∗ ⊗H∗ oo
∼=
//

ψ†

))
(H ⊗H)∗

ψ∗
// H∗

In fact this is a homomorphism of left H-modules where we use the antipode and the left

multiplication on the domains of H∗ = hom(H,k) and (H ⊗ H)∗ = hom(H ⊗ H,k) to define

their module structures.

Now we make H∗ into a Hopf module over H by defining the coaction µ : H∗ → H ⊗H∗ as

follows: for f ∈ H∗,

µ(f) =
∑

f(1) ⊗ f(2) ∈ H ⊗H∗

where the terms f(1) are characterised by requiring that for all g ∈ H∗, the product fg ∈ H∗

satisfies

fg =
∑

g(f(1))f(2).

A verification that this is an H-module homomorphism can be found in the proof of [Lor18,

theorem 10.9].

The Fundamental Theorem tells us that H∗ is a free module and since dimkH
∗ = dimkH

it must have rank 1, i.e., H∗ ∼= H as H-modules. □

Since H∗ is an injective H-module this result says that H is also injective as well as projec-

tive, i.e., it is self-injective.

We can also give another proof of Theorem 5.3. For if z ∈ kerχ ⊆ H then for any f ∈ H∗,

z · f = f(χ(z)−) = 0,

but since H∗ ∼= H, this is only possible if z = 0.

We now have an important result on finite dimensional Hopf algebras. A graded analogue

of this was proved by Browder & Spanier [BS62], then the ungraded case was proved by Larson

& Sweedler [LS69].

Theorem 5.11 (Larson & Sweedler). If H is a finite dimensional Hopf algebra then it is a

Frobenius algebra.

Proof. The existence of a leftH-module isomorphismH
∼=−→ H∗ gives us an element λ ∈ H∗

which is the image of 1 ∈ H. By definition of the module structure on H∗, the image of h ∈ H
is then hλ ∈ H∗ where

(hλ)(x) = λ(xh).

If this λ is trivial on some simple left submodule S ⊆ H then for any non-zero element s ∈ S,
sλ = 0, contradicting the definition of λ. It follows that λ is a Frobenius form and so H is a

Frobenius algebra. □
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This result has many interesting consequences. An algebra A is called a Kasch algebra if

every left or right simple A-module is isomorphic to a minimal left or right ideal of A (so these

are its simple submodules).

If S is a (non-trivial) simple left or right A-module, then by Schur’s Lemma its endomor-

phism algebra EndA(S) is a central division algebra over k. It is easy to see that the sum of all

the submodules of A isomorphic to S is actually a finite direct sum

S1 ⊕ S2 ⊕ · · · ⊕ Sm,

where for each i, Si ∼= S. The number m is well-defined and is called the multiplicity of S in A.

Proposition 5.12. Every Frobenius algebra A is a Kasch algebra. In particular, if S is a

simple A-module then its multiplicity in A is equal to dimEndA(S) S.

Proof. When S is a non-trivial simple left A-module, the opposite division algebra E =

EndA(S)
op acts on HomA(S,A) by precomposition making it a left E-module. There are iso-

morphisms of E-vector spaces

HomA(S,A) ∼= HomA(S,A
∗) = HomA(S, hom(A,k))

∼= Homk(A⊗A S, k)
∼= Homk(S, k).

Every non-trivial A-module homomorphism S → A must be injective by simplicity, so the

multiplicity of S is

dimEHomA(S,A) = dimEndA(S) S ̸= 0. □

If dimk S = 1, then EndA(S) = k and dimkHomA(S,A) = 1, so S occurs with multiplicity 1,

i.e., there is a unique submodule of A isomorphic to S.

Definition 5.13. Of course Proposition 5.12 applies to any finite dimensional Hopf algebra.

In particular the counit ε : H → k gives us a 1-dimensional simple left or right module and each

of these occurs as a unique submodule. These 1-dimensional subspaces are called the spaces of

left or right integrals of H:

∫ lH = {z ∈ H : ∀h ∈ H, hz = ε(h)z}, ∫ rH = {z ∈ H : ∀h ∈ H, zh = ε(y)z}.

In general, ∫ lH ̸= ∫ rH , but if ∫ lH = ∫ rH then H is called unimodular and we set ∫H = ∫ lH = ∫ rH .
In general,

χ∫ lH = ∫ rH , χ∫ rH = ∫ lH ,
so when H is unimodular,

χ∫H = ∫H .

We can generalise Proposition 5.12.

Proposition 5.14. For a Frobenius algebra A, the following are true.

(a) If M is a cyclic left A-module then its k-dual M∗ is a right A-module isomorphic to a

submodule of A viewed as a right A-module.

(b) If N ⊆ A is a right A-submodule then its k-dual N∗ is a cyclic left A-module.

Furthermore these results hold with left and right interchanged throughout.

Proof. (a) The right module structure on M∗ = hom(M, k) is given by

(f · a)(x) = f(ax) (x ∈M)

for a ∈ A and f ∈ hom(M, k).
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SinceM is cyclic there is an epimorphism of A-modules A→M and on applying hom(−, k)
we obtain a homomorphism of right A-modulesM∗ → A∗ which is an injective k-linear mapping.

(b) This is similar to (b) and is left as an exercise. □

Remark 5.15. Recall that the antipode of a Hopf algebra H is a homomorphism H → Hop

which must be an isomorphism when H is finite dimensional. This allows us to treat a right

module as a left module and vice versa. In particular we can use the antipode to make the dual

of a left H-module into a left H-module, so we can apply this result to deduce that the dual of

a cyclic left module is isomorphic to a left submodule of H, and the dual of a left submodule

of H is cyclic.

We mention that for infinite dimensional Hopf algebras things are very different.

Proposition 5.16. Let H be an infinite dimensional Hopf algebra. Then H has no non-

trivial finite dimensional left or right ideals. In particular, H is not a Kasch algebra.

Proof. See Lorenz [Lor18, proposition 10.6]. Since the trivial module is simple and does

not embed in H, hence H is not a Kasch algebra. □

Although we know that a finite dimensional Hopf algebra H has a Frobenius form we have

not yet explained how to find a suitable element of H∗.

Lemma 5.17. Let H a finite dimensional Hopf algebra. Then in the dual Hopf algebra H∗,

any non-zero right integral λ ∈ ∫ rH∗ is a Frobenius form for H.

Proof. See Radford [Rad12, theorem 10.2.2(e)] or the proof of Montgomery [Mon93,

theorem 2.1.3(4)]. □

Example 5.18. Let kG be the group algebra of a finite group. Every element can be

uniquely written as
∑

g∈G tgg where tg. The element z0 =
∑

g∈G g satisfies

(
∑
g∈G

tgg)z0 = (
∑
g∈G

tg)z0 = ε(
∑
g∈G

tgg)z0 = z0(
∑
g∈G

tgg),

so kG is unimodular and

∫kG = {tz0 : t ∈ k}.
Define the form λ ∈ (kG)∗ by

λ
(∑
g∈G

tgg
)
= t1,

so λ = δ1, the Dirac function of (3.1). For any g ∈ G,

δgλ = δgδ1 =

{
δ1 = λ if g = 1,

0 if g ̸= 1,

which shows that λ is a left and a right integral for the dual Hopf algebra (kG)∗, hence it is a

Frobenius form for kG.

Example 5.19 (Taft algebras). Recall the Taft Hopf algebra Hn,ζ of Section 3.12:

Hn,ζ = k⟨u, v⟩/(un − 1, vn, vu− ζuv).

The element ∑
0⩽i⩽n−1

uivn−1

is a left integral and ∑
0⩽i⩽n−1

ζiuivn−1 =
∑

0⩽i⩽n−1

vn−1ui
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is a right integral.

Any linear map λ : Hn,ζ → k for which

λ
( ∑
0⩽i⩽n−1

aiu
ivn−1

)
= a0

for ai ∈ k is a Frobenius form – of course there are many choices!

5.5. Semisimplicity for finite dimensional Hopf algebras

For a finite dimensional algebra A it is important to know whether it is semisimple and so

its modules are completely reducible (i.e., direct sums of simple modules). Semisimplicity is

equivalent to the triviality of the Jacobson radical of the algebra, and more generally, for any

finite dimensional algebra A, the quotient algebra A/ radA is semisimple and so it is isomorphic

to a product of matrix rings over division algebras; this is the main content of Artin-Wedderburn

Theory. Before stating a version of Maschke’s Theorem for finite dimensional Hopf algebras we

give a preliminary result which contains the main ingredients.

Lemma 5.20 (Maschke Lemma). Let H be a finite dimensional Hopf algebra and suppose

that the space of left integrals satisfies ε∫ lH ̸= 0.

(a) The space of left integrals ∫ lH contains a unique non-zero idempotent element e which also

has ε(e) = 1.

(b) Let M be a left H-module. Then the space of H-invariants satisfies

MH = eM = {em : m ∈M}

and there is a direct sum splitting of vector spaces

M = eM ⊕ (1− e)M =MH ⊕ (1− e)M

where

(1− e)M = {(1− e)m : m ∈M}.
(c) Let

0→ L
f−→M

g−→ N → 0

be a short exact sequence of H-modules. Then there is an induced short exact sequence

0→ LH
f ′−→MH g′−→ NH → 0.

Proof. (a) Let z ∈ ∫ lH with ε(z) ̸= 0. Then z2 = ε(z)z and so

(ε(z)−1z)2 = ε(z)−2(z2) = ε(z)−2(ε(z)z) = ε(z)−1z.

So we may take e = ε(z)−1z. Uniqueness involves a routine calculation.

(b) If m ∈M then

h(em) = (he)m = ε(h)em

so em ∈MH . On the other hand, if n ∈MH then

en = ε(e)n = n,

so n ∈ eM . Together these containments show that MH = eM .

Since e is an idempotent, so is 1−e, and a standard linear algebra argument gives the direct

sum decomposition.

(c) Since f and g are H-module homomorphism the images of their restrictions to LH = eL

and MH = eM are contained in eM = MH and eN = NH respectively. There is a natural

isomorphism of functors

(−)H ∼= HomH(k,−)
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where the latter is left exact, so we obtain an exact sequence

0→ LH
f ′−→MH g′−→ NH .

Let n ∈ NH . Then by short exactness of the original sequence, there is an element m ∈M with

g(m) = n. But then

g′(em) = g(em) = eg(m) = en = n.

Therefore g′ is also surjective. □

Here is a result which is a generalisation of a fundamental result in group representation

theory.

Theorem 5.21 (Maschke’s Theorem). Let H be a finite dimensional Hopf algebra. The

following conditions are equivalent:

(a) Every left H-module is completely reducible, so H is left semisimple.

(b) For any non-zero left integral z ∈ ∫ lH , ε(z) ̸= 0.

(c) For any non-zero right integral z ∈ ∫ rH , ε(z) ̸= 0.

(d) Every right H-module is completely reducible, so H is right semisimple.

If these conditions hold then H is semisimple and unimodular.

Proof. For detailed discussions see Radford [Rad12, theorem 10.8.2] or Montgomery [Mon93,

theorem 2.2.1].

The underlying idea is to use our Maschke Lemma 5.20 to show that given a short exact

sequence of H-modules

0→ L
f−→M

g−→ N → 0

the induced (split) short exact sequence of vector spaces

0→ hom(N,L)
f∗−→ hom(N,M)

g∗−→ hom(N,N)→ 0

is actually a short exact sequence of H-modules, where we defined the module structure in

Section 4.4 and in (4.6) showed that for H-modules U, V ,

hom(U, V )H = HomH(U, V ).

Applying part (b) of the Maschke Lemma we get a short exact sequence

0→ HomH(N,L)
f∗−→ HomH(N,M)

g∗−→ HomH(N,N)→ 0.

So if we take any ℓ ∈ hom(N,M) with g∗(ℓ) = IdN ∈ HomH(N,N) we find that in the last

sequence, e · ℓ ∈ HomH(N,M) and g∗(e · ℓ) = IdN . This provides an H-module splitting

homomorphism e · ℓ : N →M for the original sequence of H-modules. □

A finite dimensional Hopf algebra which is semisimple has a representation theory very

similar to that of a finite group over a field whose characteristic does not divide its order. In

the setting of Example 5.18,

ε(z0) = ε
(∑
g∈G

g
)
= |G| ∈ k,

so kG is semisimple if and only if the characteristic of k does not divide |G| and in that case

the idempotent e is given by

e =
1

|G|
∑
g∈G

g.

Of course this is a well-known fact in the representation theory of finite groups and is a conse-

quence of Maschke’s Theorem; the action of e on a linear section is used to give a formula for

the splitting which is equivalent the one above.
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For a semisimple finite dimensional Hopf algebra H, every simple submodule of H is a direct

summand and 1 ∈ H can be expressed as a unique sum of central primitive idempotents.

Of course not all finite dimensional Hopf algebras are semisimple.

Example 5.22. An important class of non-semisimple examples is provided by Hopf algebras

which are local. Such an algebra has a unique maximal left/right ideal which must agree with its

Jacobson radical. A local algebra also has a unique simple left/right module. For a local finite

dimensional Hopf algebra H, the unique simple module is the trivial module k and this occurs

in H with multiplicity 1. Examples of this are provided by group algebras of finite p-groups

over fields of characteristic p.

Example 5.23. Let p be a prime number and r ⩾ 1. For a field k of characteristic p the

cyclic group Cpr = ⟨γ⟩ of order pr has group algebra kCpr . We can replace the usual basis of

powers of γ by the powers of γ̃ = γ − 1,

1, γ̃, γ̃2, . . . γ̃p
r−1.

Then as an algebra,

kCpr ∼= k[X]/(Xpr); γ̃k ↔ Xk + (Xpr).

If we set x = X + (Xpr) the coproduct on k[X]/(Xpr) is given by

ψ(x) = x⊗ 1 + 1⊗ x+ x⊗ x.

Of course this algebra is commutative and its unique maximal ideal is (x) ◁ k[X]/(Xpr). The

space of integrals is the 1-dimensional subspace

∫k[X]/(Xpr ) = k{xpr−1}.

Example 5.24. For the Taft algebra Hn,ζ , the left and right integrals identified in Exam-

ple 5.19 satisfy

ε
( ∑
0⩽i⩽n−1

uivn−1
)
= 0 = ε

( ∑
0⩽i⩽n−1

ζiuivn−1
)

so Hn,ζ is not semisimple; its Jacobson radical is the ideal generated by v.
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CHAPTER 6

A brief introduction to quantum groups

This chapter is meant to provide some indicators of what the study of quantum groups

involves and it is certainly very incomplete. The literature on the subject is enormous and

certainly extends outside of purely algebraic contexts.

As Hopf algebras, quantum groups are the opposite of classical Hopf algebras: they are

neither commutative nor cocommutative. Many examples arise as ‘deformations’ of classical

ones, typically obtained by inserting a parameter q so that in the limit as q → 1 the classical

case is recovered. Alternatively, a parameter ℏ is used so that q = eℏ and passing to the limit

ℏ→ 0 recovers the classical version. All of this is of course suggested by phenomena in Quantum

Mechanics which is itself involves a kind of ‘deformation’ of Classical Mechanics.

6.1. q-combinatorics

Suppose that we are working in a non-commutative ring R where q, x, y ∈ R with q ̸= 1 in

the centre of R and the other elements satisfy

yx = qxy.

What is the analogue of the usual binomial expansion of (x+ y)n when n ⩾ 1?

To describe the answer we introduce analogues of standard combinatorial expressions. We

will set

[n]q =
qn − 1

q − 1
= qn−1 + qn−2 + · · ·+ q + 1,

so

lim
q→1

[n]q = n.

First we have the q-factorials; these are defined recursively for n ⩾ 0:

[0]q! = 1, [n]q! = [n]q([n− 1]q!) =
qn − 1

q − 1
[n− 1]q!,

so

[n]q! =
∏

1⩽k⩽n

(qk−1 + qk−2 + · · ·+ q + 1).

Notice that

lim
q→1

[n]q! = n!.

Next we have the q-binomial coefficients for 0 ⩽ k ⩽ n:[
n

k

]
q

=
[n]q!

[k]q![n− k]q!

These satisfy

lim
q→1

[
n

k

]
q

=

(
n

k

)
.

77



as well as two generalisations of Pascal’s Triangle which are easily verified:[
n

k

]
q

=

[
n− 1

k − 1

]
q

+ qk
[
n− 1

k

]
q

,(6.1) [
n

k

]
q

= qn−k
[
n− 1

k − 1

]
q

+

[
n− 1

k

]
q

.(6.2)

Now working in the non-commutative ring R we have

Proposition 6.1. For n ⩾ 1,

(x+ y)n =
∑

0⩽k⩽n

[
n

k

]
q

xkyn−k.

Proof. This can be proved by induction on n using one of the identities

(x+ y)(x+ y)n−1 = (x+ y)n = (x+ y)n−1(x+ y)

and one of the identities (6.1) or (6.2). □

Here is an application. Suppose that z ∈ R is nilpotent; the q-exponential of z is

expq(z) =
∑
k⩾0

1

[k]q!
zk

which is of course a finite sum. Notice that

lim
q→1

expq(z) = exp(z).

Now suppose that x, y ∈ R as above are also nilpotent; then for some large enough m, for any

0 ⩽ i ⩽ m we have xiym−i. So we have

(6.3) expq(x+ y) = expq(x) expq(y).

To see this, expand out the left hand side to obtain

expq(x+ y) =
∑
k⩾0

1

[k]q!
(x+ y)k

=
∑
k⩾0

1

[k]q!

 ∑
0⩽i⩽k

[
k

i

]
q

xiyk−i


=
∑
k⩾0

∑
0⩽i⩽k

1

[i]q!
xi

1

[k − i]q!
yk−i

=
∑
i⩾0

∑
j⩾0

1

[i]q!
xi

1

[j]q!
yj

= expq(x) expq(y),

where the sums are really finite.

For polynomials in a variable X, there is a q-derivative ∂q given by

∂qf(X) =
f(qX)− f(X)

(q − 1)X
,

so for example,

∂qX
n = [n]qX

n−1.

For nilpotent z, we have

∂q expq(z) = expq(z).
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6.2. The Quantum Plane

Recall the Quantum Plane of Example 2.12, the non-commutative bialgebra Oq(k2) where
q ̸= 1, generated by two elements x, y satisfying yx = qxy. The coproduct ψ and counit ε are

given by

ψ(x) = x⊗ x, ψ(y) = y ⊗ 1 + x⊗ y, ε(x) = 1, ε(y) = 0.

The quantum version of the general linear group for 1 ̸= q ∈ k× is a Hopf algebra GLq(2)
which we will now define. As an algebra, GLq(2) is generated by a, b, c, d, e satisfying the

relations

ca = qac, ba = qab, db = qbd,

dc = qcd, cb = bc da− ad = (q − q−1)bc,

(ad− q−1bc)e = 1.

It turns out that (ad− q−1bc) is in the centre of GLq(2), hence so is

e = (ad− q−1bc)−1.

We can also define the quotient Hopf algebra SLq(2) where we have the additional relations

ad− q−1bc = 1 = e.

This is called the quantum special linear group. The coproduct, counit and antipode are given

by

ψ(a) = a⊗ a+ b⊗ c, ψ(b) = b⊗ d+ a⊗ b, ψ(c) = c⊗ a+ d⊗ b, ψ(d) = d⊗ d+ c⊗ b,
ε(a) = 1 = ε(d), ε(b) = 0 = ε(c),

χ(a) = d, χ(d) = a, χ(b) = c, χ(c) = b.

Just as the special linear group acts linearly on the plane, so the quantum special linear

group coacts on the quantum plane, i.e., there is a coaction ρ : Oq(k2)→ SLq(2)⊗Oq(k2). This
is given on the generators by

ρ(x) = a⊗ x+ b⊗ y, ρ(y) = c⊗ x+ d⊗ y.

6.3. Quasitriangular Hopf algebras

For a non-cocommutative Hopf algebra H, its module category ModH is monoidal under

tensor product but not always symmetric monoidal since in general M ⊗N need not be isomor-

phic to N ⊗M as H-modules. One way to ‘correct’ this is to impose extra structure. There are

detailed discussions of this and examples in the books [BG02,Maj95,Maj02] with the last

being particularly suitable for a quick introduction.

Definition 6.2. A quasitriangular Hopf algebra (H,R) is a Hopf algebraH with an element

R ∈ H ⊗H satisfying the following conditions.

• R is a unit in the algebra H ⊗H and for all h ∈ H,

T ◦ ψ(h) = R(ψ(h))R−1.

• In the algebra H ⊗H ⊗H we have the identities

(ψ ⊗ IdH)(R) = R13R23, (IdH ⊗ψ)(R) = R13R12,

where Rij ∈ H ⊗ H ⊗ H means the image of R under the algebra homomorphism

H ⊗H → H ⊗H ⊗H obtained by including the i and j factors (so R12 = R⊗ 1 and

R23 = 1⊗R for example).
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Lemma 6.3. Suppose that (H,R) is a quasitriangular Hopf algebra.

(a) We have

(ε⊗ IdH)(R) = 1 = (IdH ⊗ε)(R),

(χ⊗ IdH)(R) = R−1,

(IdH ⊗χ)(R−1) = R,

and therefore

(χ⊗ χ)(R) = R,

so R is χ-invariant.

(b) (H,R−1
21 ) is also a quasitriangular Hopf algebra where

R−1
21 = T(R−1).

(c) The Yang-Baxter identity holds in H ⊗H ⊗H, i.e.,

R12R13R23 = R23R13R12.

Notice that the Yang-Baxter equation is similar to the following identity in the symmetric

group S3:

(1 2)(1 3)(2 3) = (1 3) = (2 3)(1 3)(1 2).

It is also a relation in the 3-rd braid group so is sometimes called the braid relation.

Theorem 6.4. Suppose that (H,R) is a quasitriangular Hopf algebra. Then

(a) the antipode of H is a bijection;

(b) there is a unit u ∈ H× such that

χ2 = u(−)u−1,

and moreover

ψ(u) = (T(R)R)−1(u⊗ u).

Proof. See Majid [Maj02, theorem 5.7]. □

Corollary 6.5. The element v = χ(u) has the following properties.

• For all h ∈ H, χ−2(h) = vhv−1.

• The coproduct on v is ψ(v) = (T(R)R)−1(v ⊗ v).
• The elements u and v commute, uv = vu, and this element is central with coproduct

ψ(uv) = (T(R)R)−2(uv ⊗ uv).

• The element uv−1 = v−1u and for all h ∈ H, χ4(h) = (uv−1)h(uv−1)−1.

Proof. See Majid [Maj02, corollary 6.1]. □

Given this result we make a definition.

Definition 6.6. A quasitriangular Hopf algebra (H,R) is called ribbon if uv has a central

square root ν called a ribbon element such that

ν2 = uv, ψ(ν) = (T(R)R)−1(ν ⊗ ν), ε(ν) = 1, χ(ν) = ν.
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To illustrate the impact of having a quasitriangular structure on a Hopf algebra, recall from

Lemma 4.29 that for a finite dimensional H-module M , M∗∗ ∼= (χ2)∗M . Using (b) it is easy to

see that for a quasitriangular Hopf algebra we have (χ2)∗M ∼=M and therefore M∗∗ ∼=M . We

will see far more is true.

Writing down explicit examples takes work and is the subject of a lot of literature on Quan-

tum Groups, so rather than go into details we refer the interested reader to other sources. An

good introduction is provided by Majid [Maj02], while [Maj95] and Chari & Pressley [CP94]

have even more detail. More traditional algebraic aspects of the subject can be found in Brown

& Goodearl [BG02].

6.4. Braidings on module categories of quasitriangular Hopf algebras

In the following we assume that (H,R) is a quasitriangular Hopf algebra. We will often

write R using Sweedler-style notation as a sum

R =
∑
R1 ⊗R2.

The module category ModH is monoidal under ⊗. We define

M
op
⊗ N = N ⊗M

with the usual H-action given by multiplication by T ◦ ψ(h):

h(m
op
⊗ n) = h(n⊗m) =

∑
h(1)n⊗ h(2)m =

∑
h(2)m

op
⊗ h(1)n.

Lemma 6.7. For two left H-modules M and N ,

ΨM,N : M ⊗N →M
op
⊗ N = N ⊗M ; ΨM,N (m⊗ n) =

∑
R1m

op
⊗R2n =

∑
R2n⊗R1m

defines an isomorphism of H-modules.

Proof. Notice that

ΨM,N = T ◦ R

where R means the multiplication by R function on H ⊗H. By the first part of Definition 6.2,

for h ∈ H,

ψ(h) ◦ R = T ◦ R ◦ ψ(h).

We have for h ∈ H, m ∈M and n ∈ N ,

ΨM,N (h(m⊗ n)) = T(Rψ(h)(m⊗ n))
= T ◦ R ◦ ψ(h)(m⊗ n)
= ψ(h) ◦ R(m⊗ n)
= ψ(h) ◦ T ◦ T ◦ R(m⊗ n)
= T ◦ ψ(h) ◦ΨM,N (m⊗ n)
= hΨM,N (m⊗ n).

It is clear that ΨM,N does has an inverse, namely R−1 ◦ T. □

The existence of R makes the monoidal category (ModH ,⊗) into a braided monoidal cate-

gory. This involves Ψ−,− as well as functorial isomorphisms

ΦU,V,W : (U ⊗ V )⊗W → U ⊗ (V ⊗W )
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which obey the Pentagon Condition making the following diagram commute for all U, V,W,Z.

(U ⊗ V ) ⊗ (W ⊗ Z)

Φ

++
((U ⊗ V ) ⊗W ) ⊗ Z

Φ

33

Φ⊗Id
((

U ⊗ (V ⊗ (W ⊗ Z))

(U ⊗ (V ⊗W )) ⊗ Z
Φ

// U ⊗ ((V ⊗W ) ⊗ Z))

Id⊗Φ

66

Furthermore, Φ and Ψ must obey the Hexagon Conditions making the following diagrams
commute.

U ⊗ (V ⊗W )

id⊗Ψ

ww

Φ−1

''
U ⊗ (W ⊗ V )

Φ−1

��

(U ⊗ V ) ⊗W

Ψ

��
(U ⊗W ) ⊗ V

Ψ⊗Id ''

W ⊗ (U ⊗ V )

Φ−1ww
(W ⊗ U) ⊗ V

(U ⊗ V ) ⊗W

Φ

ww

Ψ⊗Id

''
U ⊗ (V ⊗W )

Ψ

��

(V ⊗ U) ⊗W

Φ

��
(V ⊗W ) ⊗ U

Φ ''

V ⊗ (U ⊗W )

Id⊗Ψww
V ⊗ (W ⊗ U)

Notice that we do not assume that ΨV,U = Ψ−1
U,V as it would if the tensor product were

symmetric. This is related to the fact that R2 may not be 1⊗ 1, and this means that the group

of functorial isomorphisms acting on a tensor product of H-modules M1⊗M2⊗ · · ·⊗Mn is not

the symmetric group Sn but rather the n-th braid group Brn (or the braid group on n-strings)

which admits an epimorphism πn : Brn → Sn with infinite kernel.

The group Brn has a presentation with generators b1, b2, . . . , bn−1 and relations

bibj = bjbi (|i− j| ⩾ 2),

and the Yang-Baxter equation

bibi+1bi = bi+1bibi+1.

Similarly, Sn has a presentation with generators s1, s2, . . . , sn−1 and relations

sisj = sjsi (|i− j| ⩾ 2),

and

sisi+1si = si+1sisi+1,

as well as

s2i = 1.

Here si = (i i+ 1) and πn(bi) = si.

6.5. Some examples of quasitriangular structures

We take k = C but any field containing a primitive n-th root of unity will do. Throughout

we set q = e2πi/n ∈ C.
Let Cn be the cyclic group of order n and CCn its group algebra. If g ∈ Cn is a generator

then 1, g . . . , gn−1 is a basis of group-like elements for CCn. Of course χ(g) = g−1 and ε(g) = 1.

This cocommutative Hopf algebra has the trivial quasitriangular structure with R = 1⊗1. But

we can give it a different quasitriangular structure.
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Example 6.8. Take (CqCn,R) to be the Hopf algebra CqCn = CCn with

R =
1

n

n−1∑
a,b=0

q−abga ⊗ gb ∈ CqCn ⊗ CqCn.

Then for n > 2 odd, (CqCn,R) is a ribbon quasitriangular Hopf algebra with

T(R)R =
1

n

n−1∑
a,b=0

q−abg2a ⊗ gb

and

u = v = ν =
1

n

n−1∑
c=0

ϑ(c)gc,

where

ϑ(c) =
n−1∑
d=0

q−(c+d)d ∈ C

is known as a Cn theta function.

See Majid [Maj02, Example 6.3] for the gory details.

The Lie algebra sl2 = sl2(C) consists of all 2× 2 traceless complex matrices,

sl2 =

{[
a b

c −a

]
: a, b, c ∈ C

}
,

with the usual commutator as its Lie bracket. It is usual to take as a basis

h =

[
1 0

0 −1

]
, e =

[
0 1

0 0

]
, f =

[
0 0

1 0

]
with Lie brackets

[e.f ] = h, [h, e] = 2e, [h, f ] = −2f.
We can of course form the universal enveloping Hopf algebra U(sl2) which is primitively gener-

ated by the images of these basis elements.

Now we describe the quantum version.

Example 6.9. Let n > 2 be odd and q a primitive complex n-th root of unity. We define

the algebra Uq(sl2) by

Uq(sl2) = C⟨E,F, g⟩/I
where I ◁ C⟨E,F, g⟩ is the two sided ideal generated by

gn − 1, En, Fn, [E,F ]− g − g−1

q − q−1
, gEg−1 − q2E, gFg−1 − q−2F.

This becomes a Hopf algebra with coalgebra structure given by

ψ(g) = g ⊗ g, ψ(E) = E ⊗ g + 1⊗ E, ψ(F ) = F ⊗ 1 + g−1 ⊗ F,

ε(g) = 1, ε(E) = ε(F ) = 0, χ(g) = g−1, χ(E) = −Eg−1, χ(F ) = −gF.

There is a quasitriangular structure

R =

 1

n

n−1∑
a,b=0

q−2abga ⊗ gb
(n−1∑

c=0

(q − q−1)c

[c]q−2 !
Ec ⊗ F c

)
.

Then (Uq(sl2),R) is a quasitriangular Hopf algebra.

See Majid [Maj02, Example 6.4] for yet more gory details.
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