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String Diagrams



Set Up

We work in an arbitrary

• monoidal category (𝖢, ⊗, 𝐼, 𝛼, 𝜆, 𝜌); or
• braided/symmetric monoidal category (𝖢, ⊗, 𝐼, 𝛼, 𝜆, 𝜌, 𝜎)

as needed.

Goal: an alternative notation to commutative diagrams
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A Horrible Commutative Diagram

𝐶

𝐶 ⊗ 𝐶 (𝐶 ⊗ 𝐶) ⊗ 𝐶 𝐶 ⊗ (𝐶 ⊗ 𝐶) 𝐶 ⊗ 𝐶

𝐴 ⊗ 𝐴 (𝐴 ⊗ 𝐴) ⊗ 𝐴 𝐴 ⊗ (𝐴 ⊗ 𝐴) 𝐴 ⊗ 𝐴

𝐴

Δ Δ

(𝑓 ∗ 𝑔) ∗ ℎ = 𝑓 ∗ (𝑔 ∗ ℎ)

Δ ⊗ id𝐶

(𝑓 ∗ 𝑔) ⊗ ℎ

𝛼

(𝑓 ⊗ 𝑔) ⊗ ℎ 𝑓 ⊗ (𝑔 ⊗ ℎ)

id ⊗ Δ

𝑓 ⊗ (𝑔 ∗ ℎ)

𝜇

𝜇 ⊗ id
𝛼

id ⊗ 𝜇

𝜇
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Morphisms

𝑓∶ 𝐴 → 𝐵 ⟿ 𝑓

𝐴

𝐵
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Identity/Object

id𝐴 ∶ 𝐴 → 𝐴 ⟿

𝐴

𝐴
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Composition

𝑓∶ 𝐴 → 𝐵
𝑔∶ 𝐵 → 𝐶

} 𝑔 ∘ 𝑓∶ 𝐴 → 𝐶 ⟿
𝑓

𝑔

𝐴

𝐵

𝐶

7



Monoidal Product

id𝐴 ⊗ id𝐵 = id𝐴⊗𝐵 ∶ 𝐴 ⊗ 𝐵 → 𝐴 ⊗ 𝐵

⟿

𝐴

𝐴

𝐵

𝐵

=

𝐴 ⊗ 𝐵

𝐴 ⊗ 𝐵
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Monoidal Product

𝑓∶ 𝐴 → 𝐵
𝑔∶ 𝐶 → 𝐷

} 𝑓 ⊗ 𝑔∶ 𝐴 ⊗ 𝐶 → 𝐵 ⊗ 𝐷 ⟿ 𝑓

𝐴

𝐵

𝑔

𝐶

𝐷
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More Complicated Morphism

𝑓∶ 𝐴 ⊗ 𝐵 → 𝐶 ⊗ 𝐷 ⊗ 𝐸 ⟿ 𝑓

𝐴 𝐵

𝐶 𝐷 𝐸
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Rules

• Wires are “pinned” at the top and bottom

• Move things around, but don’t cross wires
• Can’t leave the bounding box of the diagram (so no going
over the top of a wire)

• Don’t write anything for the coherence morphisms (𝛼, 𝜆, 𝜌)
or for 𝐼
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Notation Encapsulates Monoidal Structure

Theorem (Coherence Theorem (roughly))
Any reasonable diagram made only from 𝛼, 𝜆, 𝜌, their inverses,
id, ⊗, and ∘ commutes.

Theorem (Coherence Theorem (strictification version))
Every monoidal category is monoidally equivalent to a strict
monoidal category.

Theorem (Correctness of the Graphical Calculus)
A well-typed equation between morphisms in a monoidal
category follows from the axioms if and only if it holds in the
the graphical language up to planar isotopy.
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Braiding

𝜎𝐴,𝐵 ∶ 𝐴 ⊗ 𝐵 → 𝐵 ⊗ 𝐴 ⟿
𝐵

𝐵

𝐴

𝐴

𝜎−1
𝐴,𝐵 ∶ 𝐵 ⊗ 𝐴 → 𝐴 ⊗ 𝐵 ⟿

𝐵

𝐵

𝐴

𝐴
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Inverse Braiding

𝜎−1
𝐴,𝐵 ∘ 𝜎𝐴,𝐵 = id𝐴⊗𝐵 ⟿

𝐵𝐴

𝐵𝐴

=

𝐴

𝐴

𝐵

𝐵
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Braided Monoidal Category

𝜎𝐵,𝐴 ∘ 𝜎𝐴,𝐵 ≠ id𝐴⊗𝐵 ⟿

𝐵𝐴

𝐴 𝐵

≠

𝐴

𝐴

𝐵

𝐵
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Symmetry

𝜎𝐴,𝐵 = 𝜎−1
𝐵,𝐴 ∶ 𝐴 ⊗ 𝐵 → 𝐵 ⊗ 𝐴 ⟿

𝐵

𝐵

𝐴

𝐴
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Rules

• Braided: Wires can pass under/over each other

• Symmetric: Wires can pass through each other

Theorem (Correctness of the Graphical Calculus)
A well-typed equation between morphisms in a braided
monoidal category follows from the axioms if and only if it
holds in the the graphical language up to spatial isotopy.

Theorem (Correctness of the Graphical Calculus)
A well-typed equation between morphisms in a symmetric
monoidal category follows from the axioms if and only if it
holds in the the graphical language up to graphical
equivalence1.
1probably 4-dimensional isotopy, certainly 3-dimensional isotopy plus the
ability to pass wires through each other
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Monoids



Multiplication

𝜇∶ 𝑀 ⊗ 𝑀 → 𝑀 ⟿
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Unit

𝜂∶ 𝐼 → 𝑀 ⟿ 𝜂

𝑀

𝐼

=
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Monoid Laws

Associativity:

𝑎(𝑏𝑐) = (𝑎𝑏)𝑐 ⟿ =

Unit law:

1𝑎 = 𝑎 = 𝑎1 ⟿ = =
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Comonoids



Comultiplication

Just flip everything upside down!

Δ∶ 𝐶 → 𝐶 ⊗ 𝐶 ⟿
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Counit

𝜀∶ 𝐶 → 𝐼 ⟿ 𝜂

𝐶

𝐼

=
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Comonoid Laws

Turn them upside down!

Coassociativity:

= ⟿ (id ⊗ Δ) ∘ Δ = 𝛼 ∘ (Δ ⊗ id) ∘ Δ

Unit law:

= = ⟿
𝜆𝐶 ∘ (𝜀 ⊗ id) ∘ Δ

= id =
𝜌𝐶 ∘ (id ⊗ 𝜀) ∘ Δ
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Monoidal Product of Comonoids

Theorem
Work in a braided monoidal category. Let (𝐶, Δ, 𝜀) and
(𝐶′, Δ′, 𝜀′) be comonoids. Then (𝐶 ⊗ 𝐶′, Δ̃, ̃𝜀) is a comonoid
where

Δ̃ = 𝛼−1 ∘ (id ⊗ 𝛼) ∘ (id ⊗ 𝜎 ⊗ id) ∘ (id ⊗ 𝛼−1) ∘ 𝛼 ∘ (Δ ⊗ Δ′)

and
̃𝜀 = 𝜆𝐼 ∘ (𝜀 ⊗ 𝜀′)

(Without coherence morphisms (i.e., in a strict braided
monoidal category) we have Δ̃ = (id ⊗ 𝜎 ⊗ id) ∘ (Δ ⊗ Δ′), and
̃𝜀 = 𝜀 ⊗ 𝜀′)
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Monoidal Product of Comonoids

Proof.
Let Δ = , 𝜀 = , Δ′ = , and 𝜀′ = . Then

Δ̃ =

and ̃𝜀 = . These two comonoid structure sit on top of each
other and don’t interact, therefore the comonoid laws of each
comonoid hold separately, and thus 𝐶 ⊗ 𝐶′ inherits these laws
from 𝐶 and 𝐶′.
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Monoid Homomorphism

𝑓∶ 𝑀 → 𝑁 is a monoid homomorphism if

• 𝑓(𝑎𝑏) = 𝑓(𝑎)𝑓(𝑏); and
• 𝑓(1𝑀) = 1𝑁;

in diagrams:

𝑓
= 𝑓 𝑓 and 𝑓 =
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Comonoid Homomorphism

𝑓∶ 𝐶 → 𝐷 is a comonoid homomorphism if

𝑓 =
𝑓 𝑓

and 𝑓 =
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Bialgebras



Bialgebra

Recall that a bialgebra, (𝐵, 𝜇, 𝜂, Δ, 𝜀),is

• an algebra, (𝐵, 𝜇, 𝜂);
• a coalgebra, (𝐵, Δ, 𝜀);

in such a way that 𝜇∶ 𝐵 ⊗ 𝐵 → 𝐵 and 𝜂∶ 𝐼 → 𝐵 are coalgebra
homomorphisms.

Let 𝜇 = , 𝜂 = , Δ = , and 𝜀 = .

Then (𝐵 ⊗ 𝐵, , ) is a coalgebra and (𝐼, 𝜆−1
𝐼 , id𝐼) is the

trivial coalgebra.
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𝜇 is a Coalgebra Homomorphism

𝜇

𝐵 ⊗ 𝐵

Δ𝐵

=
𝜇 𝜇

𝐵 ⊗ 𝐵

Δ𝐵⊗𝐵
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𝜇 is a Coalgebra Homomorphism

𝜇

𝐵 𝐵

=
𝜇 𝜇

𝐵𝐵
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𝜇 is a Coalgebra Homomorphism

=
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𝜂 is a Coalgebra Homomorhpism

Δ𝐼 = 𝜆−1
𝐼 =
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𝜂 is a Coalgebra Homomorhpism

=
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𝜀 is an Algebra Homomorphism

=
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Hopf Algebras



Hopf Algebras

𝐻 ⊗ 𝐻 𝐻 ⊗ 𝐻

𝐻 𝐼 𝐻

𝐻 ⊗ 𝐻 𝐻 ⊗ 𝐻

𝜒⊗id

𝜇Δ

Δ

𝜀 𝜂

id⊗𝜒

𝜇
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Hopf Algebras

𝐻 ⊗ 𝐻 𝐻 ⊗ 𝐻

𝐻 𝐼 𝐻

𝐻 ⊗ 𝐻 𝐻 ⊗ 𝐻

𝜒⊗id

𝜇Δ

Δ

𝜀 𝜂

id⊗𝜒

𝜇
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Hopf Algebras

𝜇 ∘ (𝜒 ⊗ id) ∘ Δ

𝜂 ∘ 𝜀

𝜇 ∘ (id ⊗ 𝜒) ∘ Δ
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Hopf Algebras

𝜒 = = 𝜒
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Convolution Monoid



Definition

• Algebra (𝐴, 𝜇, 𝜂);
• Coalgebra (𝐶, Δ, 𝜀);

Equip the vector space hom𝕜(𝐶, 𝐴) with multiplication, ∗, given
by

𝑓 ∗ 𝑔 = 𝜇 ∘ (𝑓 ⊗ 𝑔) ∘ Δ

or in diagrams,

𝑓 ∗ 𝑔 = 𝑓 𝑔
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The Convolution Monoid is a Monoid

Lemma
(hom𝕜(𝐶, 𝐴), ∗, 𝜂 ∘ 𝜀) is a monoid.
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Associativity

(𝑓 ∗ 𝑔) ∗ ℎ = 𝑓 ∗ 𝑔 ℎ = 𝑓 𝑔 ℎ
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Associativity

(𝑓 ∗ 𝑔) ∗ ℎ = 𝑓 𝑔 ℎ = 𝑓 𝑔 ℎ
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Associativity

(𝑓 ∗ 𝑔) ∗ ℎ = 𝑓 𝑔 ℎ = 𝑓 𝑔 ∗ ℎ = 𝑓 ∗ (𝑔 ∗ ℎ)
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No More Horrible Commutative Diagram

. 𝐶 .

𝐶 ⊗ 𝐶 (𝐶 ⊗ 𝐶) ⊗ 𝐶 𝐶 ⊗ (𝐶 ⊗ 𝐶) 𝐶 ⊗ 𝐶

𝐴 ⊗ 𝐴 (𝐴 ⊗ 𝐴) ⊗ 𝐴 𝐴 ⊗ (𝐴 ⊗ 𝐴) 𝐴 ⊗ 𝐴

. 𝐴 .

Δ Δ

(𝑓 ∗ 𝑔) ∗ ℎ = 𝑓 ∗ (𝑔 ∗ ℎ)

Δ ⊗ id𝐶

(𝑓 ∗ 𝑔) ⊗ ℎ

𝛼

(𝑓 ⊗ 𝑔) ⊗ ℎ 𝑓 ⊗ (𝑔 ⊗ ℎ)

id ⊗ Δ

𝑓 ⊗ (𝑔 ∗ ℎ)

𝜇

𝜇 ⊗ id
𝛼

id ⊗ 𝜇

𝜇
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Right Unit

𝑓 ∗ (𝜂 ∘ 𝜀) = 𝑓 = 𝑓
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Left Unit

(𝜂 ∘ 𝜀) ∗ 𝑓 = 𝑓 = 𝑓
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No More Horrible Commutative Diagram

𝐶

𝐶 ⊗ 𝐶 𝐶 ⊗ 𝐶

𝐼 ⊗ 𝐶 𝐶 𝐶 ⊗ 𝐼

𝐼 ⊗ 𝐴 𝐴 𝐴 ⊗ 𝐼

𝐴 ⊗ 𝐴 𝐴 ⊗ 𝐴

𝐴

Δ Δ

id

𝜀 ⊗ id id ⊗ 𝜀
𝜆𝐶

id ⊗ 𝑓 𝑓

𝜌𝐶

𝑓 ⊗ id
𝜆𝐴

𝜂 ⊗ id

id

𝜌𝐴

id ⊗ 𝜂

𝜇 𝜇

(𝜂 ∘ 𝜀) ∗ 𝑓 𝑓 ∗ (𝜂 ∘ 𝜀)
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Yang Baxter Equation

=
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𝑅-Matrices

𝑅

𝑅

𝑅

= 𝑅

𝑅

𝑅
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Resources



Resources

• Categories for Quantum Theory by Chris Heunen and
Jamie Vicary (and the course Chris taught at Edinburgh)
(diagrams read bottom to top)

• Categories for the Working Mathematician by Saunders
Mac Lane for the coherence theorem (Part VII Chapter 2)

• Physics, Topology, Logic and Computation: A Rosetta Stone
by John Baez and Mike Stay https://arxiv.org/abs/0903.0340
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