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Introduction

In his seminal paper [2] Mukai proved that the Poincare bundle on A× Â, where A is an abelian variety and

Â its dual abelian variety, defines an equivalence between the derived categories of coherent sheaves on A
and Â. Since the two varieties are in general not isomorphic this so called Fourier–Mukai transform provides
a new geometrical invariant. Generalizing this special case one calls two varieties X and Y Fourier–Mukai
partners (FMP) or derived equivalent if there is an exact C-linear equivalence between the derived categories
of coherent sheaves on X resp. Y , denoted by Db(X) resp. Db(Y ). Usually only smooth projective varieties
are considered since in this case the derived category is reasonably big and by a theorem of Orlov every
equivalence is induced by an object on the product. So from now on every variety will be assumed to be
smooth and projective.
Similarly to the example above one expects a FMP of a variety X to be somehow geometrically related to
X or, more precisely, be a moduli space of certain objects on X. Here are some cases where this relation has
been completely understood.

• Two curves are derived equivalent if and only if they are isomorphic.

• If the canonical bundle of X is ample or anti-ample then any FMP of X is isomorphic to X.

• Two abelian varieties A and B are derived equivalent if and only if there exists an isomorphism between
A× Â and B × B̂ (respecting an additional quadratic form).

Another important and much investigated case is that of K3 surfaces and this is the topic of my current
work. My goal is to understand whether a certain geometric construction provides a FMP of a given K3
surface.

By definition, a K3 surface is a connected compact complex surface X such that ωX ∼= OX and
H1(X,OX) = 0. A concrete example, the so called Fermat quartic, is given by the set of points in P3

satisfying the equation x4
0 + . . .+x4

3 = 0. Another important class of K3 surfaces are Kummer surfaces which
are constructed by blowing up a two-dimensional complex torus in the 16 2-torsion points and then dividing
out the induced involution.
K3 surfaces are usually studied by their periods, i.e. the second cohomology group with integral coefficients
H2(X,Z) with its Hodge structure, and we have the Torelli theorem which says that two K3 surfaces are
isomorphic if and only if their second cohomology groups are Hodge-isometric.

Derived equivalences of K3 surfaces

We have the following theorem due to Orlov, see [4].

Theorem 1 The following conditions are equivalent (the trivial case X ∼= Y is omitted):

• Two K3 surfaces X and Y are derived equivalent.

• There exists a Hodge isometry between T (X) and T (Y ).

• There exists a Hodge isometry between H∗(X,Z) and H∗(Y,Z).

• Y is a fine moduli space of stable vector bundles on X with respect to a certain polarization.

Here T (X) and H∗(X,Z) denote the transcendental lattice and the full cohomology group of X (with a
certain Hodge-structure) respectively and the third condition can be reformulated by saying that the periods
of X and Y lie in the same orbit of a certain group O(Γ̃).
Furthermore in some cases one can compute the number of non-isomorphic FM-partners of a given K3 surface
X, see [1].

Theorem 2 Denote by NS(X) = Pic(X) the Picard group and by ρ(X) the Picard number of X, i.e. the
rank of Pic(X).

• If ρ(X) ≥ 12 then X does not have any non-trivial FM-partners.

• If ρ(X) ≥ 3 and the determinant of Pic(X) is square-free then X does not have any non-trivial FM-
partners.

• If ρ(X) = 1, so NS(X) = ZH with H2 = 2n > 0, then the number of non-isomorphic FM-partners of
X is equal to 2τ(n)−1, where τ(n) is the number of distinct primes dividing n.

However explicit constructions of derived equivalent K3 surfaces are known essentially only in two cases:

• In [5] all possible FM-partners of a K3 surface of Picard rank 1 were computed by using the fourth
condition of the above theorem and describing the moduli spaces arising in this case. Lattice theory
gives that the degree of the polarization is the same for all of these.

• In [3] and later in [5] it was proved that for a given natural number N there are at least N non-
isomorphic K3 surfaces which are FM-partners. This result is proved in the second paper by describing
N non-isometric rank 2 lattices Li, which are the Picard groups of the wanted surfaces Xi, having
Hodge-isometric transcendental lattices, i.e. T (Xi). In contrast to the Picard rank 1 case these K3
surfaces have different polarizations.

Conjugate K3 surfaces

Let X be a K3 surface and consider σ, an arbitrary automorphism of C. Then we have the conjugate K3
surface Xσ given by the fibre square

Xσ //

��

X

��
Spec(C) σ∗ // Spec(C)

As abstract schemes X and Xσ are isomorphic (in particular their Picard groups are isomorphic), so their
categories of coherent sheaves are equivalent and therefore there is an exact equivalence between Db(X) and
Db(Xσ) but this equivalence is a priori only Q-linear. Since the above process changes the complex structure
(consider e.g. the conjugation and observe that it just changes the complex structure on X by a sign) the
question whether there exists a C-linear equivalence is interesting and this is exactly what I am thinking
about:

Does there exist an example of a K3 surface X and σ, an automorphism of C, such that X and Xσ

are derived equivalent but not isomorphic as complex varieties?

Thus we want to understand the connection between the actions of the groups Aut(C) and O(Γ̃) on the
moduli space of projective K3 surfaces.

Theorem 2 above provides some restrictions on the K3 surfaces which can be considered. Moreover, in
this special case of conjugation we can not take into considerations K3 surfaces X having an uni-modular
Picard group since in this case H2(X,Z) ∼= Pic(X)⊕ T (X) and any derived equivalent Xσ is isomorphic to
X by the Torelli theorem.

In the following I will sketch two possibilities to approach the above question:

• Consider a K3 surface over a number field K. By using two different embeddings α1, α2 of K into Q we
get two K3 surfaces over Q and then over C. Using this we can search for a K3 surface over K such
that there exists a conjugate non-isomorphic derived equivalent K3 surface Xϕ over K and try to lift
this situation to C (in the above notation α2 = α1 ◦ ϕ).

• Consider the moduli space of all K3 surfaces with a fixed polarization and try to find a curve C in this
moduli space such that there exists an element g in the above mentioned group O(Γ̃) which leaves C
invariant but acts non-trivially on it. Geometrically this means that we have two families of K3 surfaces
which generically have derived equivalent fibers. Of course, one wants non-isomorphic FM-partners so
C must fulfill another condition which can also be stated in terms of the action of a certain group.
In fact, we want this curve to be defined over Q and the idea is that over the generic point of C we
would then get two K3 surfaces which are conjugate, non-isomorphic and derived equivalent over Q(t)
(or some function field) and through different embeddings Q(t) ↪→ C we would then get the desired
conjugate K3 surfaces over C.
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