1. SOME CATEGORY THEORY ODDS AND ENDS

We assume basic familiarity with categories, functors etc.
Given a category C, we identify objects with their identity morphisms and write C(c, d) for
the set of morphisms ¢ — d.

Definition 1.1. Let C be a category.

An object t € C is terminal if for each ¢ € C, C(c,t) has exactly one element.

An object ¢ € C is initial if for each ¢ € C, C(i, ¢) has exactly one element.

If C has a terminal object and an initial object which are isomorphic then any such object
is a null object.

It is easy to see that any two terminal objects are isomorphic, and similarly for initial objects.
When there is a null object, it is isomorphic to every terminal and initial object. Initial and
terminal objects are typically denoted 0 and 1.

The category of sets Set has @ as its unique initial object, and any set with one element as
a terminal object.

The category of based (pointed) sets Set, has any with one element as a null object.

The categories of groups Gp and abelian groups AbGp have the trivial groups as null objects.

The category of (unital) rings Ring has Z as an initial object. If we allow a trivial ring {0}
then it is a terminal object.

In any abelian category there is a null object, also called a zero object. For example, this
applies the category of abelian groups or modules over a ring or sheaves of modules over a ring
on a space.

Definition 1.2. Let C be a category.
Suppose that we have a set of morphisms {c Byiiiel } in C where I is some indexing

set. Then c is a product of the ¢; (or for the p;) if given any set of morphisms {d ER ci:i€l}
there is a unique morphism f: d — ¢ such that for all i € I, f; = p;f. If I = @ the product is
a terminal object.

Suppose that we have a set of morphisms {¢; Lciiel } in C where I is some indexing set.
Then ¢ is a coproduct of the ¢; (or for the j;) if given any set of morphisms {¢; Sdiiel }
there is a unique morphism ¢: ¢ — d such that for all ¢ € I, g; = gj;. If [ = & the coproduct is
an initial object.

When the indexing set is I = {1, 2} we can express this diagrammatically: Given the diagram
of solid arrows

1

there is a unique dotted arrow f making the whole diagram commute. A similar diagram with
all arrows reversed applies for the coproduct.

Given two products {¢ 25 ¢; : i € I} and {¢ Pyeiie I} it turns out that there is an
isomorphism ¢ = ¢ so it is usual to refer to the product and denote it []; ¢;; when I = {1, 2}
this is written ¢ I[Icp. Similarly the coproduct is unique up to isomorphism and denoted [[; ¢;

and ¢ I ¢o.
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It is also important that products and coproducts are functorial in their variables: Given
products {c Pieiiie I} and {d B d; i€ I} and morphisms f;: ¢; — d;, there is a unique
morphism [[; fi: [I; ¢ — [1; di such that for every ig € I,

iy (H fl) = fioPio-
I

A similar result holds for coproducts.

In the category Set, the categorical product is the Cartesian product, the coproduct is disjoint
union.

In Gp the categorical product is the Cartesian product, the coproduct is free product.

In an abelian category, finite products and coproducts agree and are denoted with € and .

Proposition 1.3. Suppose that in the category C all products of two objects exist and there is
a terminal object 1. Then all finite products exist, and for each object c,

1IIc=EcE clll.

Similarly if all coproducts of two objects exist and there is an initial object 1, then all finite
coproducts exist, and for each object c,

Ollc=Ec=cllO.
Remark 1.4. In an abelian category, finite products and coproducts exist and are essentially
equivalent notions. That is why when discussing vector spaces or modules, x and @ are often
used interchangeably since M x N 2 M & N.
Monoids and comonoids. Let’s recall the notion of a monoid in algebra. A set M together

with a product/multiplcation p: M x M — M and a map ¢: 1 — M (where 1 is a one element
set) defines a monoid (M, u,¢) if the following diagrams commute (in Set).

M x M x M IxM~<—A—"Mx1

uxId Id xp
vxId Id x¢

M M x M MxM 14 M x M
M M

If the following diagram commutes then M is commutative.

M x

;%

M x M M x M

A

Of course a group is a monoid together with a self-map x: M — M that satisfies some additional

commutative diagrams defining left and right inverses.
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Now let’s generalise to a category C with finite products and terminal objects. A monoid
in C is a triple (M, u: MIIM — M,.: 1 — M) where the following diagrams in C commute.

(1.1) MIMIIM 1xM~<—A—>MI1
II 14 1d I1
‘/ \f LHIdi LIdHL
M x M MM MIOM 1 MIIM

S N

If the following diagram commutes then M is commutative.

T

(1.2) M x M M x M
M
Now one of the magical tricks of Category Theory is that any definition involving commutative
diagrams can be dualised by reversing arrows, replacing products by coproducts and terminal

objects by initial objects. So if C has finite coproducts and initial objects then a comonoid
in C is a triple (C,v: C — CII C,e: C' — 0) making the following diagrams commute.

(1.3) cucuce 0IIC —>C < CII0
ellld T T Id IIe

caucC u cuc
\ / A
C

If the following diagram commutes then C' is cocommutative.

(1.4) ledife; E CIC

N

Note that comonoids don’t exist in Set, but do exist in other settings such as the homotopy
category of based spaces (where they are called co-H-spaces). A monoid in a category C gives

rise to a comonoid in the opposite category C°P and vice versa.

We can also introduce notions of monoids and comonoids in a monoidal category (C,®,1).
A monoid M then has morphisms M ® M — M and 1 — M fitting into commutative diagrams
like (??7) while a comonoid C' has morphisms C — C ® C and C — 1 with diagrams like (77).

Here is a really important and illuminating example.

Example 1.5. Let AbGp be the abelian category of abelian groups made symmetric monoidal
using the tensor product ®. The unit object here is Z since for any abelian group M,
ZOQM=ZM=M®Z.
A monoid here is an abelian group R equipped with a homomorphism ¢: R ® R — R which
gives a map
RXR—-R®R—R;, (r,y)—zy=epxey)

and this is associative. The unit homomorphism 7: Z — R satisfies

n(l)z =z = an(1),
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so 1r = n(1) behaves like a unity in a ring should.
The distributive laws are hidden in the fact that ¢ is a homomorphism and the tensor product
is constructed to be bilinear so that

(T1+22)RY=21QYy+72RYy, T@[HY1+Y2)=TRY1+TQYs.

So a monoid in (AbGp, ®,Z) is a (unital) ring and a commutative monoid is just a commu-
tative (unital) ring.



