
1. Some category theory odds and ends

We assume basic familiarity with categories, functors etc.

Given a category C, we identify objects with their identity morphisms and write C(c, d) for

the set of morphisms c → d.

Definition 1.1. Let C be a category.

An object t ∈ C is terminal if for each c ∈ C, C(c, t) has exactly one element.

An object i ∈ C is initial if for each c ∈ C, C(i, c) has exactly one element.

If C has a terminal object and an initial object which are isomorphic then any such object

is a null object.

It is easy to see that any two terminal objects are isomorphic, and similarly for initial objects.

When there is a null object, it is isomorphic to every terminal and initial object. Initial and

terminal objects are typically denoted 0 and 1.

The category of sets Set has ∅ as its unique initial object, and any set with one element as

a terminal object.

The category of based (pointed) sets Set∗ has any with one element as a null object.

The categories of groupsGp and abelian groupsAbGp have the trivial groups as null objects.

The category of (unital) rings Ring has Z as an initial object. If we allow a trivial ring {0}
then it is a terminal object.

In any abelian category there is a null object, also called a zero object. For example, this

applies the category of abelian groups or modules over a ring or sheaves of modules over a ring

on a space.

Definition 1.2. Let C be a category.

Suppose that we have a set of morphisms {c pi−→ ci : i ∈ I} in C where I is some indexing

set. Then c is a product of the ci (or for the pi) if given any set of morphisms {d fi−→ ci : i ∈ I}
there is a unique morphism f : d → c such that for all i ∈ I, fi = pif . If I = ∅ the product is

a terminal object.

Suppose that we have a set of morphisms {ci
ji−→ c : i ∈ I} in C where I is some indexing set.

Then c is a coproduct of the ci (or for the ji) if given any set of morphisms {ci
gi−→ d : i ∈ I}

there is a unique morphism g : c → d such that for all i ∈ I, gi = gji. If I = ∅ the coproduct is

an initial object.

When the indexing set is I = {1, 2} we can express this diagrammatically: Given the diagram

of solid arrows

d

f1

((

f2

��

∃!f

��
c

p1

��

p2 // c2

c1

there is a unique dotted arrow f making the whole diagram commute. A similar diagram with

all arrows reversed applies for the coproduct.

Given two products {c pi−→ ci : i ∈ I} and {c′
p′i−→ ci : i ∈ I} it turns out that there is an

isomorphism c ∼= c′ so it is usual to refer to the product and denote it
∏

I ci; when I = {1, 2}
this is written c1

⨿

c2. Similarly the coproduct is unique up to isomorphism and denoted
∐

I ci
and c1 ⨿ c2.

1

It is also important that products and coproducts are functorial in their variables: Given

products {c pi−→ ci : i ∈ I} and {d qi−→ di : i ∈ I} and morphisms fi : ci → di, there is a unique

morphism
∏

I fi :
∏

I ci →
∏

I di such that for every i0 ∈ I,

qi0(
∏
I

fi) = fi0pi0 .

A similar result holds for coproducts.

In the category Set, the categorical product is the Cartesian product, the coproduct is disjoint

union.

In Gp the categorical product is the Cartesian product, the coproduct is free product.

In an abelian category, finite products and coproducts agree and are denoted with
⊕

and ⊕.

Proposition 1.3. Suppose that in the category C all products of two objects exist and there is

a terminal object 1. Then all finite products exist, and for each object c,

1

⨿

c ∼= c ∼= c

⨿

1.

Similarly if all coproducts of two objects exist and there is an initial object 1, then all finite

coproducts exist, and for each object c,

0⨿ c ∼= c ∼= c⨿ 0.

Remark 1.4. In an abelian category, finite products and coproducts exist and are essentially

equivalent notions. That is why when discussing vector spaces or modules, × and ⊕ are often

used interchangeably since M ×N ∼= M ⊕N .

Monoids and comonoids. Let’s recall the notion of a monoid in algebra. A set M together

with a product/multiplcation µ : M ×M → M and a map ι : 1 → M (where 1 is a one element

set) defines a monoid (M,µ, ι) if the following diagrams commute (in Set).

M ×M ×M

µ×Id

yy

Id×µ

%%
M ×M

µ
%%

M ×M

µ
yy

M

1×M

ι×Id

��

A
∼=oo

Id

��

∼= // M × 1

Id×ι

��
M ×M

µ

M ×M

µ
~~

M

If the following diagram commutes then M is commutative.

M ×M

µ
$$

oo T

∼=
// M ×M

µ
zz

M

Of course a group is a monoid together with a self-map χ : M → M that satisfies some additional

commutative diagrams defining left and right inverses.
2

Now let’s generalise to a category C with finite products and terminal objects. A monoid

in C is a triple (M,µ : M

⨿

M → M, ι : 1 → M) where the following diagrams in C commute.

(1.1) M

⨿

M

⨿

M

µ

⨿

Id

yy

Id

⨿

µ

%%
M ×M

µ
%%

M

⨿

M

µ
yy

M

1×M

ι

⨿

Id

��

A
∼=oo

Id

��

∼= // M

⨿

1

Id

⨿

ι

��
M

⨿

M

µ

M

⨿

M

µ
~~

M

If the following diagram commutes then M is commutative.

(1.2) M ×M

µ
$$

oo T

∼=
// M ×M

µ
zz

M

Now one of the magical tricks of Category Theory is that any definition involving commutative

diagrams can be dualised by reversing arrows, replacing products by coproducts and terminal

objects by initial objects. So if C has finite coproducts and initial objects then a comonoid

in C is a triple (C, γ : C → C ⨿ C, ε : C → 0) making the following diagrams commute.

(1.3) C ⨿ C ⨿ C88
γ⨿Id

ff
Id⨿γ

C ⨿ Cff

γ

C ⨿ C88

γ

C

0⨿ COO

ε⨿Id

C//
∼=
OO

Id

oo
∼=

C ⨿ 0OO

Id⨿ε

C ⨿ Caa

γ

C ⨿ C==

γ

C

If the following diagram commutes then C is cocommutative.

(1.4) C ⨿ Ccc

γ

oo T

∼=
// C ⨿ C;;

γ

C

Note that comonoids don’t exist in Set, but do exist in other settings such as the homotopy

category of based spaces (where they are called co-H-spaces). A monoid in a category C gives

rise to a comonoid in the opposite category Cop and vice versa.

We can also introduce notions of monoids and comonoids in a monoidal category (C,⊗,1).

A monoid M then has morphisms M ⊗M → M and 1 → M fitting into commutative diagrams

like (??) while a comonoid C has morphisms C → C ⊗ C and C → 1 with diagrams like (??).

Here is a really important and illuminating example.

Example 1.5. Let AbGp be the abelian category of abelian groups made symmetric monoidal

using the tensor product ⊗. The unit object here is Z since for any abelian group M ,

Z⊗M ∼= M ∼= M ⊗ Z.

A monoid here is an abelian group R equipped with a homomorphism φ : R ⊗ R → R which

gives a map

R×R → R⊗R → R; (x, y) 7→ xy = φ(x⊗ y)

and this is associative. The unit homomorphism η : Z → R satisfies

η(1)x = x = xη(1),
3

so 1R = η(1) behaves like a unity in a ring should.

The distributive laws are hidden in the fact that φ is a homomorphism and the tensor product

is constructed to be bilinear so that

(x1 + x2)⊗ y = x1 ⊗ y + x2 ⊗ y, x⊗ (y1 + y2) = x⊗ y1 + x⊗ y2.

So a monoid in (AbGp,⊗,Z) is a (unital) ring and a commutative monoid is just a commu-

tative (unital) ring.

4

