SMSTC Supplementary module An introduction to Hopf algebras over fields

Andrew Baker (University of Glasgow)

last updated 01/10/2023

Andrew Baker (University of Glasgow) An introduction to Hopf algebras

Prerequisites: As background, basic knowledge of rings, modules and representation theory of groups would be useful, as well some familiarity with category theory, commutative diagrams and homological algebra.

Learning outcomes: As well as exposure to important topics in modern abstract algebra, this is a good place to gain familiarity with the use of category theory in mathematics.

Who might be interested: Likely to be of interest to mathematicians working on topics such as representation theory of finite dimensional algebras and finite groups, knot theory, Lie theory, algebraic topology, algebraic geometry, non-commutative geometry.

Practicalities: There may be an opportunity for participants to give short talks on topics that particularly interest them; this can be discussed during the course.

Quick introduction

A \Bbbk -algebra (A, φ, η) over a field \Bbbk is a monoid in the monoidal category (**Vect**_{\Bbbk}, \otimes), i.e., a \Bbbk -vector space A with a product $\varphi: A \otimes A \to A$ and unit $\eta: \Bbbk \longrightarrow A$, which make the following diagrams in **Vect**_{\Bbbk} commute.

A is commutative if in addition the following diagram commutes.

The dual notion is that of a \Bbbk -coalgebra, which is a triple (C, ψ, ε) , with C a \Bbbk -vector space, a coproduct $\psi \colon C \to C \otimes C$, and a counit $\varepsilon \colon C \to \Bbbk$ fitting into the commutative diagrams shown.

This says that (C, ψ, ε) is a *comonoid* in **Vect**_k. If the following diagram commutes then C is *cocommutative*.

A \Bbbk -Hopf algebra H is a \Bbbk -vector space which is both an algebra and a coalgebra together with an antipode $\chi: H \to H$, so that all of this structure interacts in a certain way. A Hopf algebra is a group object in the category of coalgebras or a cogroup object in the category of algebras, so Hopf algebras generalise groups! **Some examples:**

- The group algebra k[G] of a group G is a cocommutative Hopf algebra with the elements of G as a basis, product φ(g₁ ⊗ g₂) = g₁g₂, coproduct ψ(g) = g ⊗ g and antipode χ(g) = g⁻¹.
- If G is a compact Lie group or more generally an H-space, H_{*}(G; k) and H^{*}(G; k) are Hopf algebras.
- If g is a Lie algebra, its universal enveloping algebra U(g) is a cocommutative Hopf algebra.
- Quantum groups are Hopf algebras which are neither commutative nor cocommutative.
- Affine group schemes have associated commutative Hopf algebras.
- Examples from combinatorics.

Depending on time and the audience's interests, I expect to discuss most of the topics below, depending on the audience's interests.

- Some category theory: monoidal categories (vector spaces over a field as an important example), adjoint functors.
- Algebras and coalgebras over a field; bialgebras and Hopf algebras.
- Lots of examples.
- SubHopf algebras, adjoint actions and normal subHopf algebras.
- Modules and comodules, representation theory of a Hopf algebra.
- Hopf modules and finite dimensional Hopf algebras; every finite dimensional Hopf algebra is Frobenius.
- Quantum Groups.
- Homological algebra for modules over Hopf algebras.