
OPERATIONS AND COOPERATIONS IN ELLIPTIC COHOMOLOGY,
PART I: GENERALIZED MODULAR FORMS AND THE COOPERATION

ALGEBRA
(Version 25: 17/07/2001)

ANDREW BAKER

Abstract. This is the first of two interconnected parts: Part I contains the geometric theory
of generalized modular forms and their connections with the cooperation algebra for elliptic
cohomology, E``∗E``, while Part II is devoted to the more algebraic theory associated with
Hecke algebras and stable operations in elliptic cohomology.

We investigate the structure of the stable operation algebra E``∗E`` by first determining the
dual cooperation algebra E``∗E``. A major ingredient is our identification of the cooperation
algebra E``∗E`` with a ring of generalized modular forms whoses exact determination involves
understanding certain integrality conditions; this is closely related to a calculation by N. Katz
of the ring of all ‘divided congruences’ amongst modular forms. We relate our present work
to previous constructions of Hecke operators in elliptic cohomology. We also show that a
well known operator on modular forms used by Ramanujan, Swinnerton-Dyer, Serre and Katz
cannot extend to a stable operation.

Introduction

This paper is in two interelated parts: Part I contains the geometric theory of generalized
modular forms and their connections with the cooperation algebra E``∗E``, while Part II will be
devoted to the more algebraic theory associated with Hecke algebras and operations in elliptic
cohomology.

In our earlier paper [6], we defined operations in the ‘level 1’ version of elliptic cohomology
E``∗( ) which restricted to the classical Hecke operators on the coefficient ring E``∗ (defined
to be a ring of modular forms for the full modular group SL2(Z)). In the present paper we
investigate the structure of the operation algebra E``∗E`` by determining the dual cooperation
algebra E``∗E``, thus following the pattern established in the case of K-theory; we also describe
a category of modules (dually comodules) over these which are closely related to modules over
Hecke algebras associated to the group SL2(Z); this points to a generalisation from K-theory
to elliptic cohomology of work by A. K. Bousfield in [12], [13]. A recent paper of F. Clarke and
K. Johnson [14] has also considered the analogous cooperation algebra for the level 2 version of
elliptic cohomology, and we in effect prove their conjecture on the structure of their analogue
of E``∗E``.

A particular ingredient is our identification of the cooperation algebra E``∗E`` with a ring of
‘generalized modular forms’. The most significant aspect of this involves understanding certain
integrality conditions, and this is closely related to the calculation by N. Katz in [23] of the
ring of all ‘divided congruences’ amongst modular forms (in 1 variable). Indeed, Katz’s work
amounts to a calculation of the topological gadget KU∗E`` rather than E``∗E``; however, we
use his results to determine the latter. We also wish to point out that the construction by
G. Nishida [32] of Hecke operators appears to be closely related to the ideas of the present
work.
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We will assume the reader is familiar with the apparatus of algebraic topology contained in [1]
and [33], to which the reader is referred for all basic ideas on complex oriented cohomology
theories and their associated formal group laws. As basic references on elliptic cohomology
theories, P. S. Landweber’s two articles [28] and [29] are highly recommended although their
main emphasis is on level 2 theories. A more recent reference is that of J. Francke [15]. A
convenient source for all the basic notions of Hecke algebras is [26].

In detail, Part I is structured as follows. §1 contains a brief resumé of modular forms and
elliptic cohomology. §2 gives details of the formal group law associated to elliptic curves in
Weierstrass form and the canonical complex orientation of elliptic cohomology. §3 introduces
the cooperation Hopf algebroid E``∗E``. §4 introduces our notion of generalized modular form.
In §5 and §6 we describe certain categories of isogenies and their realisation as stable operations
on elliptic cohomology. §7 recalls the properties of the classical rings of stably numerical polyno-
mials numerical, familiar in the context of the stable cooperation Hopf algebroid for K-theory,
KU∗KU . In §8 and §9 we describe a major result of N. Katz and apply it to the calculation
of our ring of generalized modular forms which is isomorphic to E``∗E``. In §10 and §11 we
complete the description of E``∗E`` by considering its coproduct structure and use duality to
construct stable operations, particularly operations which generalize the classical Hecke opera-
tors. Finally, in §12 we discuss an important operation ∂ on modular forms which is a derivation
and plays a major rôle in the arithmetic theory of Swinnerton-Dyer, Serre and Katz; we show
this cannot extend to a stable operation in elliptic cohomology.

I would like to thank the following for help and advice on this work and related topics over
many years: Francis Clarke, Mark Hovey, John Hunton, Keith Johnson, Peter Landweber, Jack
Morava, Goro Nishida, Serge Ochanine, Doug Ravenel, Nigel Ray, Robert Stong and Charles
Thomas.

1. Modular forms and elliptic cohomology

Let L denote the set of all oriented lattices in C, i.e., discrete free subgroups L ⊆ C such
R⊗ L = C as oriented real vector spaces. This set can be identified with the coset space

SL2(Z)\V,

where V is the set of all oriented bases {ω1, ω2} in the real vector space C and we use the
convention that for an oriented (ordered) basis {ω1, ω2},

ω1/ω2 ∈ H = {τ ∈ C : im τ > 0}.
The action of SL2(Z) is the obvious one,

(
a b
c d

)
· {ω1, ω2} = {aω1 + bω2, cω1 + dω2}.

This of course induces the usual action on the upper half plane H on passage from {ω1, ω2} to
ω1/ω2. Thus L possesses a natural 2-dimensional complex analytic structure.

Notice that the group of non-zero complex numbers C× acts compatibly on both V and L by

λ · {ω1, ω2} = {λω1, λω2}
and

λ · 〈ω1, ω2〉 = 〈λω1, λω2〉 ,
where 〈ω1, ω2〉 denotes the lattice spanned by the basis {ω1, ω2}.

We will follow [22] and [25] in defining a modular form of weight k to be a holomorphic
function F : L −→C which satisfies the functional equation

F (λ · L) = λ−kF (L)

whenever λ ∈ C×. To avoid excessively elaborate notation, we will sometimes regard such a
function as having as its domain V and being invariant under the action of SL2(Z). We can
associate to such an F a function f : H −→ C defined by f(τ) = F (〈τ, 1〉) for τ ∈ H the upper
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half plane. After setting q = e2πiτ , we say that F is holomorphic at infinity (i.e., at i∞) if the
Fourier series expansion

f(τ) =
∑

−∞<n<∞
anqn

has an = 0 for n < 0; if also a0 = 0, then F is a cusp form. We say that F is meromorphic
at infinity if the Fourier series of F has an = 0 for n ¿ 0. If the coefficients an lie in some
subring K ⊆ C, then we say that F is defined over K. Throughout this paper we will assume
as we did in [6] that Z[1/6] ⊆ K, the reader is referred to [22] and [42] for details on the reasons
for this. We will denote by S(K)k the set of all weight k modular forms holomorphic at infinity
and by M(K)k the set of all weight k modular forms meromorphic at infinity; of course we
have S(K)k ⊆ M(K)k. Thus there are two strictly commutative graded rings S(K)∗ and M(K)∗
with a homomorphism of graded rings S(K)∗ −→M(K)∗. The following classical result describes
the structure of such rings. Elementary accounts of this result can be found in [25, 39]; for a
discussion of rigidity under base change, see [22].

Theorem 1.1. If 1/6 ∈ K, then as graded rings we have

S(K)∗ = K[E4, E6],

and
M(K)∗ = S(K)∗[∆−1] = K[E4, E6,∆−1],

where E2n ∈ S(K)2n ⊆ M(K)2n is the 2nth Eisenstein function and

∆ =
1

1728
(
E3

4 −E2
6

)

is the discriminant function.

We recall the following q-expansions defined over Q:

E2n(q) = 1− 4n

B2n

∑

k>1

σ2n−1(k)qk for n > 1 (1.1)

∆ = q
∏

n>1

(1− qn)24 (1.2)

where σm(k) =
∑

d|k dm. Whenever n > 1, the q-expansion E2n(q) corresponds to a modular
form of weight 2n, which we will denote by E2n. Notice that for any subring K ⊆ C, we have
E4, E6 ∈ S(K)∗ ⊆ M(K)∗. Following [40, 41], we will use the notation Q = E4 and R = E6.

For each n > 0, define a basis {Fn,a} of S(K)n over K as follows. For 0 6 n 6 14, set

F0,0 = 1,

F4,0 = Q = E4,

F6,0 = R = E6,

F8,0 = Q2,

F10,0 = QR,

F12,0 = Q3,

F12,1 = ∆,

F14,0 = Q2R.

For n > 16, inductively define the basis so that Fn,0 = Q3Fn−12,0, and if a > 1, Fn,a =
∆Fn−12,a−1. Notice that we have

Fm,aFn,b =

{
Fm+n,0 + (cusp form) if a = b = 0,
(cusp form) otherwise.

(1.3)

We will refer to the basis {Fn,a} as the standard basis of the graded K-module S(K)∗. We can
lexicographically order this basis by the index (n, a).
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We next introduce the following topologically motivated notation:

e``2n = S(Z[1/6])n,

E``2n = M(Z[1/6])n.

We define elliptic cohomology to be the functor (on the category of finite CW complexes or
spectra)

E``∗( ) = E``∗ ⊗
MU∗

MU∗( ). (1.4)

In Landweber’s papers [28, 29] and also [6], it is shown that this a cohomology theory. There is
also a connective theory e``∗( ) whose coefficient ring is e``∗, although we make no use of it in
this paper. However, its representing spectrum e`` is not the connective covering of E``, even
if the notation may suggest this.

We end this section with some further remarks on elliptic cohomology, intended to highlight
its properties as a cohomology theory. In [8] we observed that after a suitable completion, the
spectrum E`` carries a unique topological A∞ ring structure (in unpublished work we have also
shown that this is true for E`` itself). An important consequence of this is that for any A∞
module spectrum M over E`` and any spectrum X, there are Künneth and Universal Coefficient
spectral sequences for M∗(X) and M∗(X), This depends upon work of C. A. Robinson [35, 36,
37]. An alternative approach to such spectral sequences comes from recent work of M. J. Hopkins
and J. R. Hunton [20, 21], whose methods yield the following theorem.

Theorem 1.2. For any d ∈ Z, let Ω∞−dE`` denote the term in the Ω-spectrum E`` which repre-
sents the elliptic cohomology group E``d( ). Then the ordinary homology H∗(Ω∞−dE``;Z[1/6])
is torsion free. Similarly, E``∗(Ω∞−dE``) is free over E``∗. Consequently, the spectrum E`` is
a colimit of finite CW spectra Eα each having the property that both E``∗(Eα) and E``∗(DEα)
are free over E``∗.

Recall the conditions for Adams’ universal coefficient spectral sequence of [1], Part III.

Corollary 1.3. The conditions for Adams’ universal coefficient spectral sequence are satisfied
by the spectrum E``. Hence the Künneth and Universal Coefficient spectral sequences exist for
any module spectrum over E`` and any spectrum X, and have the usual forms:

{
E2∗,∗(X) =⇒ M∗(X)
E2∗,∗(X) = Tor∗,∗E``∗ (E``∗(X),M∗)

and
{

E∗,∗2 (X) =⇒ M∗(X)
E∗,∗2 (X) = Ext∗,∗E``∗ (E``∗(X), M∗)

Thus, elliptic homology and cohomology possess the usual battery of computational technol-
ogy. However, the fact that the coefficient ring E``∗ is not a principal ideal domain suggests
that serious calculations will usually be of greater difficulty than they would in say K-theory.
For reductions modulo invariant ideals and relations with Morava K(1) and K(2), see [8, 9, 10].

We end this section by describing a modified version of elliptic cohomology which is 2-periodic.
We take as its coefficient ring

E``∗ = E``∗[Λ]/(Λ12 −∆),

where Λ ∈ E``2. Then the natural homomorphism E``∗ −→E``∗ allows us to define the functors
(on finite CW complexes or spectra)

E``∗( ) = E``∗ ⊗
MU∗

MU∗( ) ∼= E``∗ ⊗
E``∗

E``∗( ), (1.5)

E``∗( ) = E``∗ ⊗
MU∗

MU∗( ) ∼= E``∗ ⊗
E``∗

E``∗( ), (1.6)
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This ring E``∗ can be interpreted as a ring of meromorphic modular forms with character in the
finite cyclic group Hom(SL2(Z),Q/Z) ∼= Z/12. In other words, the usual modularity conditions
on a holomorphic function F : V −→C are replaced by

F (λ · {ω1, ω2}) = λ−kF ({ω1, ω2}), (1.7)

F ({aω1 + bω2, cω1 + dω2}) = χF (A)F ({ω1, ω2})∀A =
(

a b
c d

)
∈ SL2(Z), (1.8)

for some character χF : SL2(Z) −→Q/Z. Then Λ = η2 is the square of Dedekind’s η-function [25]
and has character of order 12 which generates the finite cyclic group Hom(SL2(Z),Q/Z). Be-
cause of this, we may identify such a ring of ‘twisted’ modular forms with the extension E``∗
of E``∗. Although we make no use of this here, there are advantages in having a 2-periodic
cohomology theory rather than one of period 24.

2. Elliptic curves, Weierstrass formal group laws and complex orientations in
elliptic cohomology

Given an analytic torus C/L, we can construct a Weierstrass cubic (elliptic curve) (thought
of as a projective cubic curve)

CW(L) : Y 2Z = 4X3 − 1
12

E4(L)XZ2 +
1

216
E6(L)Z3,

where the function E2n is the 2nth Eisenstein function of Section 1, regarded as a function of
the lattice L. The classical theory of the Weierstrass function gives us an explicit uniformisation
of this curve. We define an analytic isomorphism

Φ: C/L −→CW(L)

z + L 7−→
{

[℘(z, L), ℘′(z, L), 1], if z /∈ L,
[0, 1, 0], otherwise.

Here the Weierstrass function is normalised as in [6], so that for the lattice L = 2πi 〈τ, 1〉 with
τ ∈ H, we have

℘(z, L) =
1(

ez/2 − e−z/2
)2 +

∑

n>1

[
qnez

(1− qnez)2
+

qne−z
(
1− qne−z

)2

]
.

The local parameter

T (z, L) =
−2℘(z, L)
℘′(z, L)

is an elliptic function on CW(L) which has a simple zero at each lattice point. The multiplication
on CW(L) gives rise to a formal group law

FE``
L (T1, T2) ∈ Z[1/6][E4(L), E6(L)][[T1, T2]]

which we call the Weierstrass formal group law associated to the lattice L, and is determined
by the relation

T (z1 + z2, L) = FE``
L (T (z1, L), T (z2, L)).

Of course, the universal example for such formal group laws is furnished by the power series

FE``(T1, T2) ∈ Z[1/6][Q,R,∆−1][[T1, T2]] = E``∗[[T1, T2]]

which is the canonical formal group law in elliptic cohomology. The natural choice of orien-
tation for the canonical complex line bundle η −→ CP∞ then corresponds to T ∈ E``∗[[T ]] ∼=
E``∗(CP∞). See [6] for further details on these points. Evaluation of q-expansions gives rise to
a homomorphism

E``∗ = Z[1/6][Q,R, ∆−1] −→KU [1/6]∗((q)) = Z[1/6][t, t−1]((q)),

in which we use the Bott generator t ∈ KU2 to keep track of the weight which is half the
topological grading. This an analogue of the classical Chern character, essentially discussed as
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such in [30], which focuses on modular forms of level 2 and uses the ring KO[1/2]∗. One major
advantage to the use of level 2 modular forms and the original definition of elliptic cohomology
is that the formal group law and its logarithm can be displayed more explicitly in terms of
natural algebra generators of the coefficient ring; see [14] for some calculational observations.

3. The Hopf algebroid E``∗E``

In this section we will give some algebraic results on the cooperation algebra E``∗E`` =
E``∗(E``). The construction of the functors E``∗( ) and E``∗( ) depends crucially on the
following consequence of the Landweber Exact Functor Theorem [27] (the last statement follows
from an argument similar to one for E(n) in [31]).

Theorem 3.1. There is an isomorphism of bimodules over E``∗
E``∗E`` ∼= E``∗ ⊗

MU∗
MU∗MU ⊗

MU∗
E``∗

where we use the natural genus MU∗ −→E``∗ associated to the formal group law FE`` to form
tensor products. Moreover, E``∗E`` is flat as both a left and right module over E``∗.

Corollary 3.2. The pair (E``∗E``, E``∗) is a Hopf algebroid over Z[1/6].
More generally, for any subring R of Q containing Z[1/6], the pair

(E``∗E`` ⊗
Z[1/6]

R, E``∗ ⊗
Z[1/6]

R)

is a Hopf algebroid over R.

The term Hopf algebroid is thoroughly explained in [33]. The structure maps of E``∗E``
are derived ultimately from those of the ‘universal’ Hopf algebroid (MU∗MU,MU∗). Let
ηL, ηR : E``∗ −→ E``∗E`` be the left and right units; we will often abuse notation and write
X = ηL(X).

Working over the rational numbers Q we have a simple description. First we note a conse-
quence of the Landweber Exact Functor Theorem, which implies that multiplication by a prime
p is a monomorphism on E``∗E``; this was also noted in [14] for example.

Proposition 3.3. The rationalisation map E``∗E`` −→E``∗E``⊗Q is injective.

Proposition 3.4. As graded Q algebras we have

E``∗E``⊗Q = Q[Q,R,∆−1, ηR(Q), ηR(R), ηR(∆)−1].

We also have a well known relationship between the two natural formal group laws over
E``∗E`` and E``∗E``⊗Q. Let logE`` T and logE``′ T denote the logarithms of the images over
E``∗E``⊗Q of the canonical formal group law induced by ηL and ηR.

Proposition 3.5. Let B(T ) =
∑

k>0 BkT
k+1 denote the strict isomorphism from the formal

group law on E``∗E``⊗Q induced from ηL to that induced from ηR. Then we have:
(1) as algebras over E``∗ ⊗Q = ηL(E``∗ ⊗Q),

E``∗E``⊗Q = E``∗ ⊗Q[ηR(Q), ηR(R), ηR(∆)−1];

(2) logE`` T = logE``′(B(T ));
(3) for each n > 0, we have Bn ∈ E``2nE``;
(4) as an E``∗ = ηL(E``∗) algebra, E``∗E`` is generated by the elements Bn with n > 1

together with ηR(∆−1).

We can describe (E``∗E``, E``∗) as a universal object.

Proposition 3.6. Let R∗ be any graded commutative ring, let F1, F2 be formal group laws
over R∗ induced from E``∗ by the ring homomorphisms θ1, θ2 : E``∗ −→R∗, and let H : F1

∼= F2

be a strict isomorphism over R∗. Then there is a unique ring homomorphism Θ: E``∗E`` −→R∗
such that

Θ ◦ ηL = θ1 and Θ ◦ ηR = θ2
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and the series Θ(B(X)) =
∑

n>0 Θ(Bn)Xn+1 satisfies

H(X) = Θ(B(X)).

This follows from the analogous universality of (MU∗MU,MU∗).

4. Generalized modular forms

We continue to use the notation established in Section 1. Recall the left principal bundle

V −→L;

{ω1, ω2} 7−→ 〈ω1, ω2〉
with structure group SL2(Z).

For any natural number N > 0, we denote by M2(N) the set of 2 × 2 integer matrices with
determinant N and set

(1/N)M2(N) = {(1/N)A : A ∈ M2(N)} .

Of course, these are isomorphic as right and left SL2(Z) sets. The associated bundle

πV(N) : V(N) = (1/N)M2(N) ×
SL2(Z)

V −→L

has fibre (1/N)M2(N). Given an oriented basis {ω1, ω2} for a lattice L and A ∈ M2(N) with

A =
(

a b
c d

)

we have an oriented basis {
aω1 + bω2

N
,
cω1 + dω2

N

}

for the lattice

L′ =
〈

aω1 + bω2

N
,
cω1 + dω2

N

〉

which contains L with index N . Notice that each of the projection maps

V(N)
πV(N)−−−→ L

is an infinite covering, with fibre isomorphic to the set (1/N)M2(N) ∼= M2(N).
Factoring out by the left action of any subgroup G 6 SL2(Z) on V(N), and we obtain a

covering V(N) −→ G\V(N). If the subgroup G contains the congruence subgroup Γ(N), then
this is a finite covering. We will be particularly interested in the two extreme cases G = SL2(Z)
and G = Γ(N). We set

L(N) = SL2(Z)\V(N),

F(N) = Γ(N)\V(N),

which admit finite covering maps

L(N)π : L(N) −→L,

F(N)π : F(N) −→L,

whose fibres are the sets

SL2(Z)\(1/N)M2(N) ∼= SL2(Z)\M2(N),

Γ(N)\(1/N)M2(N) ∼= Γ(N)\M2(N).

Of course, these maps are holomorphic maps of complex analytic manifolds. The projection
maps are also equivariant with respect to the obvious action of the complex units C× by mul-
tiplication.
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The space L(N) can be viewed as the space of pairs of lattices L ⊆ L′ with index N . Similarly,
we can interpret F(N) as the space of pairs (L, {ω′1 + L, ω′2 + L}), where

ω′1 =
aω1 + bω2

N
,

ω′2 =
cω1 + dω2

N

for an oriented basis {ω1, ω2} of L and

A =
(

a b
c d

)
∈ M2(N).

Thus {ω′1, ω′2} is an oriented basis of the module L′/L over the ring Z/N . We will frequently
make use of these interpretations without further comment.

Now we can make the following definition of a notion of level N modular forms.

Definition 4.1. Let G 6 SL2(Z) be a subgroup containing Γ(N). Then a holomorphic map

F : G\V(N) −→C

is a modular form of level N for G of weight k if for λ ∈ C×,

F (G[(1/N)A, {λω1, λω2}]) = λ−kF (G[(1/N)A, {ω1, ω2}]).
If G = Γ(N), then we frequently refer to such a modular form as a modular form of level N .

Notice that for such a G and a subgroup G′ containing Γ(N), a modular form of weight k for
G is also one for G′. Holomorphic functions L(N) −→C for which the composite

Γ(N)\V(N) −→L(N) −→C

is a modular form of level N will often be met in this work; we will loosely refer to these as
level N modular forms on L(N).

Given such a modular form F of level N , we can evaluate F on the fibres over the lattices of
the form 〈τ, 1〉, where τ ∈ H. For each pair (r, s) with 0 < r, s and rs = N , there is a function

fF,r,s : τ 7−→ F

(
G

[(
r/N 0

0 s/N

)
, 〈τ, 1〉

])
,

with Fourier expansion of the form
∑

−∞<n<∞
aF,r,s

n qn/N where q1/N = e2πiτ/N .

We will refer to these q-expansions as the q-expansions of F along the fibres.
For each coset BG ∈ SL2(Z)/G, we also have the holomorphic function

F|B (G[(1/N)A, {ω1, ω2}]) = F (BGB−1[(1/N)BA, {ω1, ω2}]).
Definition 4.2. The modular form F for G is holomorphic at infinity if for each coset GB ∈
G\SL2(Z) and (r, s) as above, the functions

τ 7−→ F|B

(
G

[(
r/N 0

0 s/N

)
, 〈τ, 1〉

])

have q-expansions ∑
−∞<n<∞

aF,r,s,B
n qn/N

with aF,r,s,B
n = 0 for n < 0; similarly, it is meromorphic at infinity if its q-expansions have

aF,r,s,B
n = 0 for n ¿ 0.

We will refer to the collection of q-expansions along the fibres of the functions F|B as the
q-expansions of F at the cusps.

Now let K ⊆ C be a subring which contains 1/6, and let ζN be a primitive Nth root of 1.
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Definition 4.3. The modular form F for G is defined over the ring K if all the q-expansion
coefficients of all the functions F|B , with BG ∈ SL2(Z)/G, are in the ring K[1/N, ζN ].

We now want to define a generalized modular form as a function on all of the spaces L(N)
simultaneously in such a way that the restriction to each L(N) depends upon N in a controlled
fashion. To do this we require that for each N we have a holomorphic function FN : L(N) −→C
which is simultaneously a modular form for each of the two lattices associated to each point of
L. Thus we will require that our function is induced from a suitable type of function upon the
product space L × L via the product V(N)πV(N) of the two projection maps to L. Finally, we
will do this uniformly by requiring that these functions L × L −→C are independent of N .

Remark 4.4. The following definitions may appear somewhat forced in that we need to work
with certain proper subsets of Map(X × Y,C). In fact, in the examples we consider, the spaces
X and Y can be given the structures of complex analytic spaces Xh, Yh as discussed in [38]
and also more briefly in [17], Appendix B (in fact they are obtained as the analytic spaces
associate to algebraic varieties over C). Hence, we could characterise these sets of functions as
analytic functions on the product Xh×Yh. The case of L itself follows since there is an analytic
isomorphism between L and the affine variety{

(x, y) ∈ C2 : x3 − y2 6= 0
} ⊆ C2.

In order to avoid excessive technicalities, we proceed along the route below even though it may
seem somewhat laboured to those well versed in algebraic geometry.

Recall that given two spaces X,Y , there is an embedding

Map(X,C)⊗
C

Map(Y,C) −→Map(X × Y,C),

which sends the element f ⊗ g to the pointwise product function

f · g : (x, y) 7−→ f(x)g(y).

We will identify Map(X,C)⊗CMap(Y,C) with its image in Map(X × Y,C). More generally,
given two vector subspaces A ⊆ Map(X,C) and B ⊆ Map(Y,C), we may identify the subspace
A⊗CB ⊆ Map(X,C)⊗CMap(Y,C) with a subpace of Map(X × Y,C).

Let MF(C)k denote the set of all weight k modular forms, i.e., holomorphic functions L −→C
satisfying the modularity condition

F (λ · L) = λ−kF (L) ∀λ ∈ C×.

Given a subring K ⊆ C, let MF(K)k denote the set of all modular forms whose associated
q-expansions have coefficients in K.

We now make a series of definitions.

Definition 4.5. A modular form of weight k on L × L is a holomorphic map F : L × L −→ C
such that for λ ∈ C×,

F (λ · L1, λ · L2) = λ−kF (L1, L2),
and

F ∈
∑

r∈Z
MF(C)r ⊗C MF(C)k−r ⊆ Map(L × L,C).

We can now give our definition of a generalized modular form.

Definition 4.6. A generalized modular form of level 1 and weight k is the coproduct F• =∐
N>1 FN of a family of holomorphic maps of the form

FN : L(N)
V(N)π×πV(N)−−−−−−−−→ L× L F−→ C

where F : L × L −→C is a fixed modular form of weight k on L × L .

Notice that for each N > 1, FN is a modular form of level N for SL2(Z) of weight k.

Definition 4.7. The generalized modular form F• is defined over K if for each N > 1, the
modular form FN of level N for SL2(Z) is defined over K.
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Definition 4.8. The generalized modular form F• is holomorphic at infinity if for each N > 1,
the modular form FN of level N is holomorphic at ∞; similarly, F• is meromorphic at infinity
if each FN is meromorphic at ∞.

Now let us consider the groups of all holomorphic (resp. meromorphic) generalized modular
forms of weight k and defined over K, which we will denote by GenS(K)k (resp. GenM(K)k).
These can be combined into two graded rings GenS(K)∗ and GenM(K)∗ which are algebras over
the rings S(K)∗ and M(K)∗ of Section 1. Since both of these rings are torsion free, we have

GenS(K)∗ ⊆ GenS(KQ)∗
GenM(K)∗ ⊆ GenM(KQ)∗,

where KQ is the smallest subring of C containing both K and Q. We can easily prove the next
result.

Theorem 4.9. As graded algebras over the rings S(Q)∗ and M(Q)∗ we have
GenS(Q)∗ = S(Q)∗[E′

4, E
′
6]

GenM(Q)∗ = M(Q)∗[E′
4, E

′
6, ∆

′−1],

where for each N > 1,

E′
2n = E2n ◦ L(N)π,

∆′ = ∆ ◦ L(N)π

as functions L(N) −→C.

Recall from the definition of elliptic cohomology that M(Z[1/6])∗ = E``∗. By Proposition 3.4,
we obtain the following.

Corollary 4.10. As graded algebras over E``Q∗ ∼= E``∗ ⊗Q,
GenM(Q)∗ ∼= E``Q∗E`` ∼= E``∗E``⊗Q.

This suggests that we ought to be able to describe E``∗E`` in terms of the ring GenM(Z[1/6])∗.
The crucial question is of course what effect integrality conditions have on the existence of gener-
alized modular forms. The complete algebraic calculations of GenS(Z[1/6])∗ and GenM(Z[1/6])∗
will be given later, using work of N. Katz [23].

We will now discuss a multiplicative structure on the space
∐

n>1 L(N), which induces co-
products on the rings of generalized modular forms.

For M, N > 1, there is a partial product map

(1/M)M2(M) ×
SL2(Z)

V ×
L

(1/N)M2(N) ×
SL2(Z)

V −→ (1/MN)M2(MN) ×
SL2(Z)

V (4.1)

which is defined on elements by the formula([
A, {ω′1, ω′2}

]
, [B, {ω1, ω2}]

) 7−→ [ATB, {ω1, ω2}] , (4.2)

where we have
{ω′1, ω′2} = TB{ω1, ω2}

for some T ∈ SL2(Z). Here the symbol ×
L

implies that we form the pullback of the diagram

(1/M)M2(M) ×
SL2(Z)

V πV−→ L Vπ←− (1/N)M2(N) ×
SL2(Z)

V.

It is easily verified that this partial product is then compatible with the action of SL2(Z) in the
sense that it passes down to a partial product

L(M)×
L
L(N) −→L(MN).

This product can be viewed as making the space

L• =
∐

N>1

L(N)
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into a ‘monoid over L’. It is clearly associative and the space L(1) acts via the identity. Taking
functions on this space we obtain a coproduct which sends the function F : L• −→ C to the
function

L•×
L
L• −→L• F−→ C.

The space L• over L appears to play a rôle in elliptic cohomology analogous to that of the
non-zero integers in K-theory, where they index (stable) Adams operations. We will make this
more explicit in future work, but in this paper we will only demonstrate its connections with
stable operations. In Section 5, we will describe the space L• in a more algebraic fashion.

5. Isogenies of elliptic curves and cooperation algebras

By an elliptic curve C over the complex numbers C we will mean a non-singular Riemann
surface of genus 1 with a distinguished basepoint OC. It is known that this can be uniformised,
i.e., there is an analytic isomorphism

Φ: C ∼= C/L

Φ(OC) = 0 + L,

where L ⊆ C is a lattice. Particular examples are furnished by the Weierstrass cubics of
Section 5. Moreover, the torus C/L is unique up to an analytic isomorphism of the form

[λ] : C/L −→C/L′

where [λ] is induced by multiplication by λ and λ · L = L′. We can scale L so that it has
the form L = 〈τ, 1〉 for some τ ∈ H (the upper half plane); then Φ is unique up to analytic
automorphism of C/L. Of course, there is a canonical abelian group structure on C/L which is
transferred to C by Φ, and C is an analytic group with OC as its zero element.

Given two elliptic curves C1, C2 over C, an isogeny from C1 to C2 is an analytic homomorphism
of groups Θ: C1 −→ C2 such that kerΘ is finite (it is then necessarily surjective). Let deg Θ =
|kerΘ|, the degree of Θ, and KΘ ⊆ C be the unique lattice such that KΘ/L1 = kerΘ. For
C1 = C/L1 and C2 = C/L2 such an isogeny has to be of the form [λ] with

λ ·KΘ = L2,

and thus there is a unique factorisation

C/L1 −→C/KΘ
[λ]−→ C/L2 (5.1)

where the first map is induced by the canonical inclusion L1 −→KΘ. We will say that an isogeny
is strict if λ = 1. Notice that for a strict isogeny,

L1 ⊆ L2

has finite index and also
L2/L1 = ker([1] : C/L1 −→C/L2).

From the above discussion, we see that the category of elliptic curves over C with isogenies as
morphisms, is naturally equivalent to the category of tori C/L and isogenies, which will denote
by IsoC. We will restrict attention to elliptic curves of the form C/L and work with the category
SIsoC of all such elliptic curves together with their strict isogenies as morphisms.

We can decompose these categories IsoC and SIsoC into disjoint unions

IsoC =
∐

N>1

IsoC(N)

SIsoC =
∐

N>1

SIsoC(N)

where IsoC(N) consists of isogenies with degree N and we have the equation SIsoC(N) =
IsoC(N) ∩ SIsoC. Of course, the set SIsoC(1) can be viewed as the set of objects in the
categories IsoC and SIsoC.
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We can identify the morphism sets SIsoC(N) with the underlying sets of the spaces L(N)
defined in Section 4, since by construction a point of L(N) is equivalent to an inclusion of
lattices L ⊆ L′ of index N . Moreover, the two projections πL(N), L(N)π : L(N) −→ L simply
pick out these two lattices, which are the domain and codomain of a unique morphism in
SIsoC(N) ⊆ SIsoC. Thus, we have the following result.

Proposition 5.1. There is an isomorphism of small categories

SIsoC ∼= L•
under which

SIsoC(N) ∼= L(N)
for each N > 1. The category SIsoC is therefore naturally topologised and is the union of
countably infinitely many complex manifolds SIsoC(N).

This result together with the ideas of Section 4 gives us an interesting class of functions
on SIsoC, which are analytic when restricted to the spaces SIsoC(N) ∼= L(N). We will freely
interpret generalized modular forms as functions on the category SIsoC. Of course, the structure
maps of the category SIsoC correspond to the partial monoid structure on L•; thus there will
be a coproduct structure on the ring of generalized modular forms. This structure becomes
interesting when we tensor up with a subring R ⊆ Q and force morphisms to become invertible;
we then obtain the structure of a Hopf algebroid on an appropriate ring of generalized modular
forms.

Now most of the morphisms in IsoC and SIsoC are not invertible and we will need to form
various categories of fractions for these. Let R ⊆ Q be a subring of the rational numbers and
let R×

+ denote the subgroup R× ∩ Q+ of all positive units in R. We wish to invert the strict
isogenies [1] : C/L1 −→C/L2 with |L2/L1| ∈ R×

+. To do this we replace the Z lattices L1 and L2

by the R lattices RL1
∼= R⊗Z L1 and RL2

∼= R⊗Z L2, and consider ‘isogenies’ of the form

[u] : C/RL1 −→C/RL2

where u ∈ R×
+. Notice that such an isogeny has trivial kernel, and has inverse

[u−1] : C/RL2 −→C/RL1.

Such morphisms lie in a category Iso
R×+
C whose objects are those of IsoC and where for any

two lattices L1 and L2 for which RL1 = RL2, there is unique morphism [u] : C/L1 −→ C/L2

whenever u ∈ R×
+. We will call such a morphism an R-isogeny; furthermore, if u = 1, then we

say that it is a strict R-isogeny. The strict R-isogenies form a subcategory SIso
R×+
C of Iso

R×+
C . If

two lattices L1 and L2 satisfy RL1 = RL2, then we will say that they are R-commensurable. It
is easy to see that the notion of being R-commensurable is an equivalence relation. Notice that
if L1 and L2 are R-commensurable, then the lattice L1 ∩ L2 is R-commensurable with both L1

and L2; moreover, the unique diagram

C/L1 ←−C/L1 ∩ L2 −→C/L2

in SIsoC gives rise to a unique diagram

C/L1 −→C/L1 ∩ L2 −→C/L2

in SIso
R×+
C .

Theorem 5.2. The functor SIsoC −→ SIso
R×+
C which is the identity on objects and sends the

strict isogeny C/L1 −→ C/L2 to the strict R isogeny [1] : C/L1 −→ C/L2 is the localization
of SIsoC with respect to all morphisms [1] : C/L′ −→C/L′ for which | ker[1]| ∈ R×

+.

Notice that in particular this means that a strict isogeny C/L −→ C/(1/N)L for which N ∈
R×

+ ∩ N always has an inverse C/(1/N)L −→C/L in SIso
R×+
C .

In practise, we will work with rings R for which Z[1/6] ⊆ R, although this restriction is only

important when we consider rings of modular forms as rings of functions on IsoC and Iso
R×+
C .
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We end this section by introducing another collection of categories. Let SL Iso
R×+
C denote the

category whose objects are lattices L ∈ L, and where whenever RL1 = RL2, the morphisms
from L1 to L2 are the orientation preserving monomorphisms L1 −→ L2 which induce R-linear
isomorphisms RL1

∼= RL2. In particular, when R = Z, there are morphisms L1 −→ L2 if and
only if L1 = L2; on the other hand, when R = Q, there are morphisms L1 −→ L2 if and only

if QL1 = QL2. In the case R = Z, we may identify SL IsoC = SL Iso
R×+
C with the space

V• =
∐

N>1

V(N).

6. The action of isogenies on Weierstrass formal groups and operations in
elliptic cohomology

Given a strict isogeny [1] : C/L1 −→ C/L2 of degree N , together with a modular form F of
level 1, the function

([1] : C/L1 −→C/L2) 7−→ F (L2)
is a modular form in the variable L2. If we choose an oriented basis for L1 and use this to make
the identifications

SL(L1) ∼= SL2(Z) (6.1)

and

SL((1/N)L1) ∼= SL2(Z), (6.2)

then we can interpret this function as a modular form for the subgroup of SL2(Z) corresponding
to

SL(L1) ∩ SL(L2) ⊆ SL((1/N)L1) ∼= SL2(Z)
under the isomorphism of (6.2). The proof of the following key result is similar to arguments
of [6, 9].

Proposition 6.1. The formal group laws FE``
L1

and FE``
L2

are strictly isomorphic over the ring
of level N modular forms on L(N) defined over the ring Z[1/6].

Proof. The coefficients of FE``
L1

and FE``
L2

considered as functions of the pair L1 ⊆ L2 are level N
modular forms. In fact they lie in the rational subalgebra Q[E4(L1), E6(L1), E4(L2), E6(L2)] ⊆
C generated by the complex numbers Er(Ls). The series T (X, L1) and T (X,L2) provide strict
isomorphisms from the additive group law to FE``

L1
and FE``

L2
, hence there is a strict isomorphism

ϕL1,L2 : FE``
L1

−→FE``
L2

with coefficients in the latter ring. Now by specialising to the case where L1 = 〈τ, 1〉 (τ ∈ H)
the series ϕL1,L2(X) gives a q-expansion

ϕ〈τ,1〉,L2
(X) ∈ Q[ζN ][[q1/N ]][[X]].

Following [6], we can use the theory of Tate curves described in [22] to deduce that the coefficients
of FE``

〈τ,1〉 and FE``
L2

actually lie in the rings Z[1/6][[q]] and Z[1/6N, ζN ][[q1/N ]]. Hence

ϕ〈τ,1〉,L2
(X) ∈ Z[1/6N, ζN ][[q1/N ]][[X]],

showing that the coefficients of ϕL1,L2(X) are level N modular forms on L(N) defined over
Z[1/6N ]. ¤

Let ϕL1,L2(X) be the unique strict isomorphism from FE``
L1

to FE``
L2

used in the proof of this
result; we will write ϕ when the isogeny is understood. The following Corollary makes use of the
fact that the considerations of the above proof are essentially independent of L ⊆ L′. Indeed,
the coefficients of ϕL1,L2(X) are rational polynomials in the coefficients of the formal group laws
FE``

L1
and FE``

L2
, independently of the lattices L1 ⊆ L2 and the index N .
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Corollary 6.2. The coefficient of Xn+1 in ϕL1,L2(X) when considered as a function of pairs
L1 ⊆ L2 for arbitrary N > 1, is a holomorphic generalized modular form of weight n, i.e., is
contained in GenS(Z[1/6])n ⊆ GenM(Z[1/6])n.

Now given any R isogeny [u] : C/L1 −→ C/L2, we can assume that L2 ⊆ (1/N)L1 for some
N ∈ R×

+ and then an easy calculation gives

T (uz, L2) = [u]F E``
L2

(T (z, L2)) (6.3)

= ϕ
(
[u]F E``

(1/N)L1

T (z, (1/N)L1)
)

= ϕ
(
(1/N)[uN ]F E``

L1

T (z, L1)
)

.

But this is a power series in T (z, L1) with coefficients in the ring of level N modular forms on
L(N) defined over R. Hence, any strict isogeny [u] as above induces an isomorphism between
the formal group law associated with the elliptic curve C/L1 and a ‘twisted version’ of that
associated to C/L2. In the case where [u] = [1] is strict, so is the induced isomorphism of formal
group laws. Notice that this implies that for each strict R-isogeny [1] : C/L1 −→ L2, there is a
ring homomorphism ΨL1,L2 with domain MU∗MU and extending the two homomorphisms

MU∗
ϕL1−−→ R[1/6][E4(L1), E6(L1)],

MU∗
ϕL2−−→ R[1/6][E4(L2), E6(L2)]

which classify the formal group laws FE``
L1

and FE``
L2

; this takes values which are level N modular
forms when considered as functions of L1 ⊆ L2.

It is now immediate that there is a unique homomorphism

E``∗ ⊗
MU∗

MU∗MU ⊗
MU∗

E``∗ −→E``∗E`` −→GenM(R)∗

which specialises for each pair L1 ⊆ L2 to give ΨL1,L2 , using Corollary 6.2. In the case of a strict
R-isogeny of the form [1] : L −→ (1/N)L, we find that the left unit on an element F ∈ E``2n

is sent to NnF by this homomorphism; in this case we can produce a multiplicative stable
operation in elliptic cohomology:

ψN : E``∗( ) ∼= (S0 ∧ E``)∗( ) −→ (E`` ∧ E``)∗( ) (6.4)
∼=−→ E``∗E`` ⊗

E``∗
E``∗( )

ΨL1,L2−−−−→ E``R∗ ⊗
E``R∗

E``R∗( )

−−−−→ E``R∗( ),

which makes use of the above homomorphism E``∗E``R −→E``R∗. This is the Adams opera-
tion ψN mentioned in [6], and has a unique extension to a stable operation

ψN : E``R∗( ) −→E``R∗( ).

For a fixed L and N ∈ R×
+, we can take all of the induced ring homomorphisms E``∗ −→

E``R∗ and average them (i.e., sum up and divide by N). This gives rise to a left E``∗-linear
homomorphism

T̃: E``∗E`` −→E``R∗
which yields a stable operation

TN : E``∗( ) ∼= (S0 ∧ E``)∗( ) ∼= E``∗E`` ⊗
E``∗

E``∗( ) (6.5)

eT−→ E``R∗ ⊗
E``∗

E``∗( )

∼= E``R∗( )
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that is merely additive; again there is a unique extension to a stable operation TN : E``R∗( ) −→
E``R∗( ). This is the extension of the Nth Hecke operator constructed in [6]. This type of
operation requires that we use not just the ring E``R∗ but the larger ring of modular forms of
level N to build enough multiplicative operations over which we symmetrise to get an operation
within the theory E``R∗( ) itself. This sort of consideration is not necessary in K-theory, and
represents a considerable complication in understanding the operations in elliptic cohomology.

Of course, the above discussion can also be interpreted in the light of the observation in Sec-
tion 5 that the rings of generalized modular forms may be viewed as functions on the categories

Iso
R×+
C and SIso

R×+
C . Indeed, given an R-isogeny [u] : C/L1 −→C/L2, the coefficients of the power

series discussed above can be viewed as functions on the category Iso
R×+
C and hence as elements

of GenS(C)∗ ⊆ GenM(C)∗. A careful consideration of q-expansions actually shows that they lie in
GenS(R)∗ ⊆ GenM(R)∗ provided that we make the standard assumption that Z[1/6] ⊆ R. This
provides us with a natural homomorphism E``∗E`` −→ GenM(R)∗. Later we will demonstrate
the following theorem.

Theorem 6.3. For each subring R ⊆ Q containing 1/6, there is an isomorphism of graded
rings

E``∗E``R ∼= E``∗E``⊗R −→GenM(R)∗,

and moreover this is an isomorphism of Hopf algebroids over R.

The antipode in GenM(R)∗ is induced by the inverse map in the category Iso
R×+
C , and corre-

sponds under this isomorphism to the antipode in E``∗E``R.

7. Some rings of numerical Laurent polynomials and K-theory cooperations

In this section we review the properties of some rings of numerical (Laurent) polynomials in
sufficient detail for our purposes in calculating the rings of generalized modular forms contained
in Section 9. The present section owes much to previous joint work with Francis Clarke, see [11]
and [4]; for more on the topological connections, see [3, 2].

Let K ⊆ Q be a subring. Then we define the ring of numerical polynomials over K to be

A(w;K) = {f(w) ∈ Q[w] : f(r) ∈ K ∀r ∈ Z}.
Similarly, we define the ring of stably numerical (Laurent) polynomials over K to be

AS(w; K) = {f(w) ∈ Q[w,w−1] : f(r) ∈ K[1/r]∀r ∈ Z, 0 6= r}.
Finally we define the subring of semistable numerical polynomials over K by

AS
0(w;K) = AS(w; K) ∩Q[w].

We set A(w) = A(w;Z), AS(w) = AS(w;Z) and AS
0(w) = AS

0(w;Z).

Proposition 7.1. As a module over K, A(w; K) has a basis consisting of the binomial co-

efficient polynomials Cn(w) =
(

w

n

)
for n > 0. Hence we have an isomorphism of algebras

over K,
A(w; K) ∼= A(w)⊗

Z
K.

As algebras over K,
AS(w; K) = A(w; K)[w−1].

Proofs of these results are given in [11].
Let us now assume that K = Z(p), the ring of p-local integers for a prime p. Let ordp(h(w))

be the minimum value of ordp on the coefficients of a Laurent polynomial h(w), or equivalently

ordp(h(w)) = min{ordp(h(a)) : a ∈ Z×(p)}.
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We define increasing filtrations on AS(w;Z(p)) and AS
0(w;Z(p)) as follows. Let

Mk = {f(w) ∈ AS(w;Z(p)) : pkf(w) ∈ Z(p)[w, w−1]},
Mk

0 = {f(w) ∈ AS
0(w;Z(p)) : pkf(w) ∈ Z(p)[w]} = Mk ∩AS

0(w;Z(p)).

Clearly we have M0 = Z(p)[w, w−1] and M0
0 = Z(p)[w]; also the two filtrations

M0 ⊆ M1 ⊆ · · · ⊆ Mk ⊆ · · · ⊆ M∞ = AS(w;Z(p))

M0
0 ⊆ M1

0 ⊆ · · · ⊆ Mk
0 ⊆ · · · ⊆ M∞

0 = AS
0(w;Z(p))

are exhaustive. Let us investigate the successive quotients Mk/Mk−1 and Mk
0 /Mk−1

0 for k > 1.
By Proposition (7.1), any element f(w) ∈ AS(w;Z(p)) has the form

f(w) =
∑

06i6d(f)

hi(w)Ci(w) (7.1)

where hi(w) ∈ Z(p)[w,w−1] and we assume that hd(f)(w) 6= 0. The p-adic ordinal of n! is given
by

ordp(n!) =
n− αp(n)

p− 1
, (7.2)

where αp(n) is the sum of the p-adic digits of n. In particular,

ordp(pr!) =
pr − 1
p− 1

= 1 + p + · · ·+ pr−1. (7.3)

Now Cn(w) represents non-zero elements in the quotients

Mordp(n!)/Mordp(n!)−1 and M
ordp(n!)
0 /M

ordp(n!)−1
0 .

Thus for a general element f(w), we see that f(w) ∈ Mk if and only if

k > max{ordp(n!)− ordp(hn(w)) : 0 6 n 6 d(f)}
and moreover it represents a non-zero element in Mk/Mk−1 if and only if the last inequality is
actually an equality.

It will be convenient to use a different basis for the p-local numerical polynomial ring
A(w;Z(p)). We require the following results taken from [4].

Proposition 7.2. Define the following sequence of polynomials in Q[w]:

θ0(w) = w,

θ1(w) =
(θ0(w)− θ0(w)p)

p
,

θ2(w) =
(θ0(w)− pθ1(w)p − θ0(w)p2

)
p2

,

...

θr(w) =
θ0(w)− pr−1θr−1(w)p − pr−2θr−2(w)p2 − · · · − θ0(w)pr

pr
,

...

Then
(1) for each r > 0, θr(w) ∈ A(w;Z(p)) and moreover defines a function θr : Z(p) −→Z(p);
(2) we have

ordp(θr(w)) =
pr − 1
p− 1

= 1 + p + p2 + · · ·+ pr−1;
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(3) the monomials

θ0(w)s0θ1(w)s1 · · · θd(w)sd for 0 6 sr < p

form a Z(p)-basis for A(w;Z(p));
(4) the monomials

θ1(w)s1 · · · θd(w)sd for 0 6 sr < p

span AS(w;Z(p)) as a module over Z(p)[w, w−1];
(5) for each k > 1, the monomials

θ0(w)s0θ1(w)s1 · · · θd(w)sd for 0 6 sr < p and 0 6 s0 < p− 1

form a Z/pk-basis for AS(w;Z(p))/(pk), which can also be identified with the ring of
functions Z×(p) −→Z/pk which are continuous with respect the p-adic norm on the domain
and the discrete topology on the range.

We will set θr(w) = w−1θr(w) ∈ AS
0(w;Z(p)) for r > 1.

Now consider an element of AS
0(w;Z(p)) of the form

f(w) = cθ0(w)s0θ1(w)s1 · · · θd(w)sd

where 0 6 sr < p, 0 6 s0 < p− 1 and c ∈ Z(p). Then the p-adic ordinal of this polynomial is

ordp(f(w)) = ordp(c)−
∑

16j6d

sj
(pj − 1)
(p− 1)

,

and so f(w) ∈ Mk
0 if and only if

k >
∑

16j6d

sj
(pj − 1)
(p− 1)

− ordp(c),

and represents a non-zero element of Mk
0 /Mk−1

0 if and only if this is actually an equality.
We end this section by recalling the topological significance of the ring of stably numerical

polynomials. This involves the determination of the cooperation algebra for complex K-theory,
KU∗KU , discussed in [3, 11].

Theorem 7.3. Let u = ηL(t) and v = ηR(t) be the images of the Bott generator t ∈ KU2 under
the left and right units KU∗ −→KU∗KU , and let w = vu−1 ∈ KU0KU . Then the image of the
(monomorphic) rationalisation map

KU0KU −→KU0KUQ ∼= KU0KU ⊗Q
is equal to the ring of stably numerical polynomials AS(w). More generally, if R ⊆ Q is any
subring, then the image of the localization KU0KUR ∼= KU0KU ⊗R under the rationalisation
map

KU0KUR −→KU0KU ⊗Q
is equal to the ring of stably R-numerical polynomials AS(w;R).

The natural Hopf algebroid structure on the pair (KU∗KU,KU∗) is then induced by the left
and right units together with the maps

u 7−→ u⊗ 1; v 7−→ 1⊗ v; w 7−→ w ⊗ w; (coproduct)

u 7−→ v; v 7−→ u; w 7−→ w−1, (antipode)

where the coproduct is a ring homomorphism

KU∗KU −→KU∗KU ⊗
KU∗

KU∗KU

into the tensor product of bimodules obtain using the right-left KU∗ module structures.

This result provides a model for our description of the cooperation algebra E``∗E``.
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8. Katz’s work on divided congruences amongst modular forms

In this section we will describe briefly results from N. Katz’s paper [23], especially section 5.
These will be applied to determine the rings of generalized modular forms.

Let p > 3 be a prime. We will work with the ring S(Z(p))∗ of holomorphic modular forms
defined over the ring of p-local integers Z(p). For the remainder of this section we let S(Z(p))⊕
denote the subring of Z(p)[[q]] generated by the images of all of the individual gradings S(Z(p))k

under the homomorphism

S(Z(p))k
eval−−→ Z(p)[[q]]; F 7−→ F̃ (q)

which assigns to each modular form its q-expansion. Clearly this is a polynomial subring
Z(p)[Q̃, R̃] of Z(p)[[q]]. However, it is not a direct summand as a Z(p)-module, as the congruence
1− Ẽp−1 ≡ 0 (mod p) shows. For each k > 1, we will describe the kernel of the composition

evalpk : S(Z(p))⊕
eval−−→ Z(p)[[q]]

red−−→ Z/pk[[q]].

Definition 8.1. Define the numerical function h by

h(r) =
pr − 1
p− 1

if r > 1,

and h(0) = 0.

Theorem 8.2. There is sequence of elements R0 = p,R1, . . . , Rk, . . . in S(Z(p))⊕ such that

(1) each Rk is a sum of the q-expansions of modular forms of weight at most pk − 1;
(2) for each k > 1 there is a element R′

k ∈ Z(p)[[q]] such that

Rk = ph(k)R′
k

in Z(p)[[q]];
(3) the evaluation modulo pk map, evalpk , has as its the kernel the ideal Ik / S(Z(p))⊕ gen-

erated by the elements

Rr0
0 Rr1

1 · · ·Rrd
d

for which

r0 +
∑

16j6d

rjh(j) > k.

In fact, in his theorem 5.5, Katz gives gives an explicit construction for the elements R′
k and

Rk, and we will make use of this in Section 9. We define the ring of (p-local) divided congruences
to be

DCp =
{

Θ ∈ Q[Q̃, R̃] : Θ(q) ∈ Z(p)[[q]]
}

.

Theorem 8.3. The Z(p)-algebra DCp is generated by the elements Q̃, R̃ and the R′
k (k > 0).

As a Z(p)[Q̃, R̃]-module, it is spanned by the elements

R′r0
0 R′r1

1 · · ·R′rd
d

for which
r0 +

∑

16j6d

rjh(j) > k.

There is an action of the p-local units Z×(p) on the ungraded ring of modular forms Q[Q̃, R̃] ⊆
Q[[q]], namely that given by

a ·
(∑

k

F̃k

)
=

∑

k

akF̃k,
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where Fk has weight k. This action ultimately comes from the operation of including each
lattice L into (1/N)L, for any natural number N , and is related to the elliptic cohomology
Adams operations of [6].

Proposition 8.4. The action of Z×(p) on Q[Q̃, R̃] restricts to an action on the subring DCp.
Moreover, the eigenspaces of this action are the submodules of homogeneous weight modular
forms.

This is implicitly demonstrated by Katz in [23]. The second statement means that for X ∈
Q[Q̃, R̃],

∀a ∈ Z×(p), a ·X = akX ⇐⇒ X is the image of a weight k modular form over Q.

We may view each element Θ ∈ DCp as defining a function

Z×(p) −→Z(p)[[q]],

and thus we have
(a ·Θ)(q) =

∑

n>0

cn(a)qn,

where the coefficient functions cn are rational polynomial functions in a taking values in Z(p),
i.e., each cn lies in the ring of semi-numerical polynomials AS

0(w;Z(p)). One interpretation of
this is in terms of the embedding DCp −→ Q[w][[q]] which sends Θ to

∑
n>1 cn(w)qn, and has

image in the subring AS
0(w;Z(p))[[q]]. Thus there is an embedding of rings

DCp −→AS
0(w;Z(p))[[q]]. (8.1)

Notice that we can modify the definition of the ring of divided congruences to give a global
version, namely

DC =
{

Θ ∈ Q[Q̃, R̃] : ∀a ∈ Z− {0}, (a ·Θ)(q) ∈ Z[1/6a][[q]]
}

,

where we define the action of a ∈ Z − {0} similarly to the above action of Z×(p). By viewing
each Θ as a function Z− {0} −→Q[[q]], we see that there is an embedding of rings

DC −→AS
0(w;Z[1/6])[[q]]. (8.2)

Of course, for either of rings DCp and DC, we can get back from subrings of AS
0(w;Q)[[q]] to

subrings of Q[[q]] by evaluating w at 1.
We end this section by remarking that although the element θ1(w) = (1−wp−1)/p can appear

as the constant term of an element of DCp, there is no element whose constant term is

w−1 (w − wp)/p− ((w − wp)/p)p

p
.

This is related to the fact that
(1− Ep−1)/p− ((1−Ep−1)/p)p

p

is not a modular form modulo p in the sense of Serre, see [40].
We suspect that a direct proof of Katz’s results (and equivalently of ours) should be possible

making use of the ring of stably numerical polynomials, however at present this eludes us.

9. Calculation of the rings of generalized modular forms

In this section we determine the algebraic structure of the two rings of generalized modular
forms

GenS(Z[1/6])∗ and GenM(Z[1/6])∗.
Our approach to this makes use of Katz’s work which we have described in Section 8.

We are primarily interested in the (graded) ring GenM(Z[1/6])∗, but it clearly suffices to
consider the subring GenS(Z[1/6])∗ consisting of holomorphic generalized modular forms. Now
by Corollary 4.10, it suffices to determine the subring of Q[Q,R,Q′, R′] consisting of those
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homogeneous elements whose q-expansions lie in Z[1/6N, ζN ][[q, q′]] whenever we evaluate on a
pair of the form L = 〈τ, 1〉 ⊆ L′ with index N . Here Q(L ⊆ L′) = E4(L), R(L ⊆ L′) = E6(L)
(a modular form in L alone), Q′(L ⊆ L′)) = E4(L′) and R′(L ⊆ L′)) = E6(L′) (a modular form
in L′ alone). Let us examine these conditions in more detail.

Now let Φ ∈ GenS(Z[1/6])n and N > 1. Let us evaluate Φ at a pair of lattices L = 〈τ, 1〉 ⊆ L′
with [L;L′] = N and τ ∈ H; notice that L′ ⊆ 〈τ/N, 1/N〉. Our data gives rise to an element of
Z[1/6N, ζN ]((q1/N )). It is easily seen that

L′ =
〈

rτ + t

N
,

s

N

〉

for 0 6 r, s, t ∈ Z satisfying rs = N and 0 6 t < s. Notice that given L, τ is unique to within
an integer summand, and hence the element τ ′ = (rτ + t)/N ∈ H is unique up to a summand
of the form kr/N . Now suppose that we have the following expression for Φ ∈ Q[Q,R, Q′, R′]n,

Φ =
∑

m,a,b

cm,a,bFm,aF
′
n−m,b, (9.1)

with cm,a,b ∈ Q, and Fm,a ∈ M(Z[1/6])m, F ′
n−m,b ∈ S(Z[1/6])n−m being taken from the standard

basis of Section 1 evaluated on L and L′. Then we have

Φ(L ⊆ L′) =
∑

m,a,b

cm,a,br
n−mevalq(Fm,a)evalq′(F ′

n−m,b),

where
q′ = e2πiτ ′ .

Thus our integrality condition on Φ amounts to the requirement that this series in q, q′ has
coefficients in Z[1/6N ] for all r|N .

For a modular form F : L −→ C, let F̃ : H −→ C denote the q-series of the corresponding
function on the upper half plane. Thus we have

Φ(〈τ, 1〉 ⊆ L′) =
∑

m,a,b

cm,a,br
n−mF̃m,a(q)F̃n−m,b(q′). (9.2)

Notice that τ and q vary over infinite sets, and given τ , we may vary τ ′, and hence q′, over infinite
sets. Thus we can view Φ(L, L′) as an element of Z[1/6N ][[q, q′]]. The coefficients of monomials
qiq′j are rational polynomials gi,j(r) in r which also live in Z[1/6N ] for all r|N . Since N (hence
r) ranges over an infinite set, the polynomials gi,j(w) ∈ Q[w] are uniquely determined by Φ; in
fact they are in AS

0(w;Z[1/6]) (consider the case r = N). We have established the next theorem.

Theorem 9.1. Evaluation at pairs L ⊆ L′ of index N and having the form

L = 〈τ, 1〉 ⊆ L′ =
〈

rτ + t

N
,

s

N

〉
⊆ 〈τ/N, 1/N〉 (0 6 r, s, t, rs = N, 0 6 t < s),

induces embeddings of (ungraded) rings
GenS(Z[1/6])∗ −→AS

0(w;Z[1/6])[[q, q′]],
GenM(Z[1/6])∗ −→AS(w;Z[1/6])((q, q′)),

which in weight n yield embeddings
GenS(Z[1/6])n −→AS

0(w;Z[1/6])[[q, q′]],
GenM(Z[1/6])n −→AS(w;Z[1/6])((q, q′)).

Setting the variable q equal to zero gives homomorphisms into the ring of divided congruences
DC of Section 8. After localizing at a prime p > 3, we obtain Z(p)-module homomorphisms

GenS(Z(p))n −→DCp ⊆ AS
0(w;Z(p))[[q

′]], (9.3)
GenM(Z(p))n −→DCp[∆̃−1] ⊆ AS(w;Z(p))((q

′)). (9.4)
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The rings generated by the images of all these maps are equal to the ring of divided congruences
and its localization at powers of ∆̃−1, as we shall see.

Now from Section 2, we see that there is a unique ring homomorphism

MU∗MU −→GenS(Z[1/6])∗ ⊆ GenM(Z[1/6])∗
extending the two homomorphisms

MU∗ −→ S(Z[1/6])∗
ηL−→
−→
ηR

GenS(Z[1/6])∗ ⊆ GenM(Z[1/6])∗

and classifying the universal isomorphism H(T ) ∈ GenS(Z[1/6])∗[[T ]] between the two Weier-
strass formal group laws induced by the latter. Let

logE`` T =
∑

n>1

Ln

n + 1
Tn+1,

logE``′ T =
∑

n>1

L′n
n + 1

Tn+1

be the logarithms of these two formal group laws over GenS(Z[1/6])∗. It is well-known that Ln

and L′n lie in GenS(Z[1/6])n.
Now there is a unique expression

B(T ) =
E``′∑

k>1

HkT
k+1 ∈ GenS(Z[1/6])∗[[T ]], (9.5)

with Hk having weight k. The Hk can be determined inductively using the equation

logE``′ H(T ) = logE`` T,

which yields

Ln−1 =
∑

m|n

n

m
L′m−1H

m
n/m−1. (9.6)

In particular, if p is a prime, we have

Lpr−1 =
∑

06s6r

pr−sL′ps−1H
ps

pr−s−1
(9.7)

in GenS(Z[1/6])∗ ⊆ GenS(Z(p))∗.
This motivates us to define (for given prime p > 3)

Ar = Lpr−1,

A′r = L′pr−1,

Dr = Hpr−1.

Thus we have in GenS(Z[1/6])∗ ⊆ GenS(Q)∗,

D0 = 1,

D1 =
A1 −A′1

p
,

D2 =
A2 − pA′1D

p
1 −A′2

p2
,

...

Dr =
Ar − pr−1A′1D

p
r−1 − pr−2A′2D

p2

r−2 − · · · −A′r
pr

,

... (9.8)
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The following is closely related to Katz [23], theorem 5.5, and is easily established by induction
on r.

Proposition 9.2. For r > 1,

D′
r = ph(r)Dr ∈ Z[1/6][Q,R,Q′, R′] ⊆ GenS(Z[1/6])∗.

Notice also that if we expand Dr(〈τ, 1〉 ⊆ L′) where 〈τ, 1〉 ⊆ L′ with index N as above, in the
form of Equation 9.2, we obtain

∑

06n6pr−1

cpr−1−n,0,0w
n = θr(w). (9.9)

and we also obtain a series in Z[1/6N ][[q, q′]] which on setting q = 0 yields an element of
Z[1/6N ][[q′]]. This maps each Dr to an element R′

r which is Katz’s choice of generator as
explained in Section 8 (with q replaced by q′).

We will prove the following theorem.

Theorem 9.3. For each prime p > 3, the ring GenS(Z(p))∗ is generated as an algebra over
S(Z(p))∗ by the elements Dr, r > 1, together with Q′ and R′. Similarly, as an algebra over
M(Z(p))∗, GenM(Z(p))∗ is generated by the elements Dr, r > 1 together with Q′, R′ and ∆′−1,
i.e.,

GenM(Z(p))∗ = GenS(Z(p))∗[Q′, R′, ∆−1,∆′−1].

Proof. We will prove Theorem 9.3 for GenS(Z(p))∗ by induction upon the weight wt Φ of an
element. Clearly the weight 0 case is true, so assume that whenever wt Φ < n, Φ is expressible
as a polynomial in the generators indicated.

Now assume that wtΦ = n. Then Φ can be expressed in the form indicated in Equation 9.1
and 9.2:

Φ =
∑

m,a,b

cm,a,bFm,aF
′
n−m,b.

On taking q-expansions in the manner of Theorem 9.1, we have

Φ̃ =
∑

m,a,b

cm,a,bw
n−mF̃m,aF̃

′
n−m,b.

By setting q = 0, we obtain a q′-expansion

Φ̃(0, q′) =
∑

m,a,b

cm,a,bF̃
′
n−m,b

lying in DCp ⊆ AS
0(w;Z(p))[[q′]]. Now by Theorem 8.3, this can be expressed as a polynomial

in the elements Q̃, R̃ and R̃′
k (k > 1) (evaluated at q′ rather than q). Now construct a (non-

homogeneous) element of GenS(Z(p))∗ as follows.
First replace each occurrence of R′

k in Φ̃(0, q′) by the element Dk ∈ GenS(Z(p))∗ defined in
Equation 9.8. This will be a sum of homogeneous terms Θd of weights d in the range 0 6 d 6 n.
Now multiply Θd by the basis element Fn−d,0 to get an element Fn−d,0Θd which has weight n.
Let

Φ0 =
∑

06d6n

Fn−d,0Θd.

Notice that we have
Φ̃(0, q′)− Φ̃0(0, q′) = 0,

and hence we have
Φ = Φ0 + ∆Φ′

in the ring GenS(Z(p))∗. Hence, we can appeal to the inductive assumption to express Φ′ ∈
GenS(Z(p))n−12 in the required form. Thus, Φ is also of the required form and we have completed
the inductive step.

This completes the proof of Theorem 9.3. ¤
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As an immediate consequence we obtain our desired global result.

Theorem 9.4. As an algebra over S(Z[1/6])∗, the ring GenS(Z[1/6])∗ is generated by the ele-
ments Hn, n > 1; similarly, as an algebra over M(Z[1/6])∗, GenM(Z[1/6])∗ is generated by the
elements Hn, n > 1 together with ∆′−1, i.e.,

GenM(Z[1/6])∗ = GenS(Z[1/6])∗[∆−1, ∆′−1].

Hence there is an isomorphism of algebras over E``∗ ∼= M(Z[1/6])∗,

E``∗E`` ∼= GenM(Z[1/6])∗.

The proof of Theorem 9.3 actually shows the following, which should be compared with the
result of Katz, Theorem 8.2. Recall the element D′

r = ph(r)Dr of Proposition 9.2.

Theorem 9.5. An element Φ ∈ E``∗E``(p) has q, q′-expansion in pkZ((q, q′)) if and only if Φ
is in the ideal generated by

pr0D′
1
r1 · · ·D′

d
rd

for which

r0 +
∑

16j6d

rjh(j) > k.

10. The cooperation algebra as a Hopf algebroid

In this section we complete our description of the cooperation algebra by describing the Hopf
algebroid structure in terms of generalized modular forms. The existence of the Hopf algebroid
structure over Z[1/6] follows the topological result for E``∗E``. An element Φ ∈ E``2nE`` is
equivalent to a generalized modular form

(F• : L• −→C) ∈ GenM(Z[1/6])n

with certain properties. At the end of Section 4, a partial monoid structure

µ : L•×
L
L• −→L•

was described. This induces a coproduct

F• 7−→ F• ◦ µ

which is actually a ring homomorphism

ψ : GenM(Z[1/6])∗ −→GenM(Z[1/6])∗ ⊗
M(Z[1/6])∗

GenM(Z[1/6])∗,

where the tensor product involves the right and left M(Z[1/6])∗-module structures. This is
derived ultimately from the composition of lattice inclusions L ⊆ L′ and L′ ⊆ L′′ to give
L ⊆ L′′; then

F•µ(L′ ⊆ L′′, L ⊆ L′) = F•(L ⊆ L′′).
There is also an antipode map, which arises as follows. Let L ⊆ L′ with index N . Then there

is a dual isogeny L′ ⊆ (1/N)L, also of index N , and this can be scaled to give the inclusion
N · L′ ⊆ L. We can evaluate a generalized modular form F• of weight n on this inclusion to
obtain a function of the form

(L ⊆ L′) 7−→ F•(N · L′ ⊆ L).

Writing
F• =

∑
r

FrF
′
n−r,

where
F•(L,L′) =

∑
r

Fr(L)F ′
n−r(L

′),
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this is the same as the function

(L ⊆ L′) 7−→
∑

r

N−rFr(L′)F ′
n−r(L).

We then define action of the antipode χ on F• by

χF•(L,L′) = F•(N · L′ ⊆ L).

Thus we may loosely say that the antipode is induced by inverting each inclusion L ⊆ L′ and
evaluating on its inverse.

It would be interesting to give a purely algebraic proof that the coproduct ψ actually lands in
the tensor product over M(Z[1/6])∗, since although it is clear that the rationalnisation behaves
correctly, the arithmetic conditions appear subtle. Of course, we can appeal to the topological
fact that E``∗E`` is a Hopf algebroid to obtain this. A similar problem occurs with the ring of
stably numerical polynomials AS(w;Z), which is a Hopf algebra over Z, but the easiest proof of
this uses the topological gadget KU∗KU .

We can interpret this Hopf algebroid as a Hopf algebroid of functions on the category IsoC,
see Proposition 5.1. More generally, we have the following (see Theorem 5.2 for the categorical
localization result).

Theorem 10.1. Let R be a subring of Q containing 1/6. Then we may identify GenM(R)∗ with

the ring of generalized modular forms on L• which extend to functions on SIso
R×+
C ⊇ SIsoC

which have q-expansions defined over R. Morover, composition and inversion in SIso
R×+
C give

rise to the natural Hopf algebroid structure on GenM(R)∗.

It is interesting to compare this with the corresponding situation for stably numerical poly-
nomials; there we have

Proposition 10.2. For any subring K ⊆ Q,

AS(w, K) ⊆ {f(w) ∈ Q[w,w−1] : ∀u ∈ K×, f(u) ∈ K}.
In particular, for any prime p,

AS(w,Z(p)) = {f(w) ∈ Q[w, w−1] : ∀u ∈ Z×(p), f(u) ∈ Z(p)}.
Of course, Theorem 10.1 gives a similar interpretation for the Hopf algebroid E``∗E``R.

11. Operations dual to cooperations

In this section we will briefly describe how our knowledge of E``∗E`` gives information about
stable operations in elliptic cohomology. For any subring R ⊆ Q containing 1/6, the Universal
Coefficient spectral sequence described in Equation 1.3 applied to the case where M = E``R
and X = E`` gives

E∗,∗2 (E``) = Ext∗,∗E``∗ (E``∗(E``), E``R∗) =⇒ E``R∗(E``). (11.1)

As E``∗ is a ring of dimension 2, we know that

Extk,∗
E``∗ = 0 if k > 2.

Hopkins and Hunton’s work as described in 1.2 together with the Milnor exact sequence yields

E``R∗(E``) ∼= lim
α

E``R∗(Eα),

where the Eα form a cofinal collection of finite CW subspectra of E``. Thus stable operations
E``∗( ) −→E``R∗( ) determine unique morphisms of spectra E`` −→E``R from their values on
finite CW spectra.

Now to construct stable operations it suffices to write down natural transformations E``∗( ) −→
E``R∗( ) defined on the category of finite CW spectra; the most accessible type of these arise
as follows. We use the coaction map

ψ : E``∗E`` −→E``∗E`` ⊗
E``∗

E``∗E``
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which is left E``∗ linear. Given any left E``∗-linear mapping

Θ: E``∗E`` −→E``R∗
we obtain an operation as the composite

Θ: E``∗( ) ∼= (S0 ∧ E``)∗( ) −→ (E`` ∧ E``)∗( ) (11.2)
∼=−→ E``∗E`` ⊗

E``∗
E``∗( )

Θ−→ E``R∗ ⊗
E``R∗

E``R∗( )

−→E``R∗( ).

This is the construction underlying the Adams and Hecke operations described in Equations 6.4
and 6.5, based on [6]. We will return to this in Part II, where we will view E``∗E`` as a kind
of dual object to a Hecke algebra. Once again, this closely follows the situation for KU∗KU ,
which can be thought of as a sort of dual to the monoid ring Z[Z− {0}].

This approach to stable operations in elliptic cohomology becomes more manageable if we
reduce modulo an invariant ideal in the coefficient ring E``∗. Such ideals were considered in [7].
The most interesting examples are of the form

Jp,1 = (p) and Jr
p,1, r > 1

Jp,2 = (p,Ep−1) and Js
p,2, s > 1, (11.3)

where p > 3 is a prime. Actually the second example consists of ideals in the p-localization
(E``∗)(p) since E(p−1) may only exist p-locally. We can form completions with respect to such
ideals, and the reductions E``∗E``/I and their completions E``∗E``bI have interpretations as
rings of continuous functions on completions of Hecke algebras and their underlying monoids.
Again, this is parallel to known constructions for reduction modulo pk and p-adic completion
of KU∗KU which gives spaces of continuous functions on the group of p-adic units Z×(p) and its
pro-group ring Zp[Z×(p)].

We end this section with some remarks on the Adams spectral sequence in elliptic homology.
As usual for good homology theories, there is a spectral sequence of the form{

E∗,∗2 (X) =⇒ π∗(LE``X);
E∗,∗2 (X) = Ext ∗,∗E``∗E`` (E``∗, E``∗(X)) ,

(11.4)

where the Ext functor is defined on the category of comodules over E``∗E``. Using the above
families of ideals there are various ‘chromatic’ approaches to calculating this E2-term and these
may be interesting to pursue. For example, in [14], Clarke and Johnson have made some
observations on the K-theoretic part of the 1-line E1,∗

2 , using Serre’s theory of p-adic modular
forms. This p-adic theory is discussed in [41] and its elliptic cohomology version in [5]. For the
supersingular theory of modular forms, see [34], and also [7] for the topological version.

12. The operator of Halphen–Fricke–Ramanujan–Swinnerton-Dyer–Serre

The operator of the title has an interesting history; it plays a central rôle in the algebraic
theory of the ring of modular forms. For our present purposes, it is an operator ∂ on the ring
of modular forms which raises weight by 2, is a derivation and annihilates the discriminant ∆.
For an early reference see [16], and for more recent descriptions see [24, 40, 22]. The congruence
conditions in Section 9 ultimately rely upon arguments making use of ∂.

We have the following formulæ for the action of ∂:

∂(Q) = R, (12.1)

∂(R) =
3
2
Q2, (12.2)

∂(∆) = 0, (12.3)

∂(AB) = ∂(A)B + A∂(B) if A, B ∈ E``∗. (12.4)
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Notice that multiplication by ∆ (the periodicity operator in elliptic cohomology) commutes
with ∂. Thus the following conjecture may seem reasonable.

Conjecture 12.1. The derivation ∂ extends to a stable operation on elliptic cohomology E``∗( ).

The fact that ∂ plays a major rôle in the algebraic theory of the rings e``∗ and E``∗ also
make this conjecture interesting. However, Conjecture 12.1 is actually false.

Theorem 12.2. Let p > 3 be a prime. Then there is no stable operation E``∗( ) −→E``∗(p)( )
raising degree by 4 and extending ∂ on the coefficient ring E``−∗. Hence there is no stable
operation E``∗( ) −→E``∗( ) raising degree by 4 and extending ∂ on E``−∗.

Proof. Suppose that such a stable operation ∂ exists; then there is a corresponding morphism
of spectra ∂ : E`` −→Σ−4E``(p) inducing ∂ as a natural transformation of representable functors
E``∗( ) −→E``∗(p)( ). We can extend ∂ to a morphism of E`` module spectra

∂† : E`` ∧ E``
1∧∂−−→ E`` ∧ Σ−4E``(p)

µE``−−−→ E``(p)

where µE`` : E`` ∧ E`` −→ E`` is the product map and its localization. Hence, we obtain a
homomorphism of E``∗ modules

∂†∗ : E``∗(E``) −→ (E``∗)(p).

Notice that we also have a commutative diagram

S0 ∧ E``
'−−−→ E``

η∧1

y ∂

y

E`` ∧ E``
∂†−−−→ E``(p)

where η : S0 −→E`` is the unit for the ring spectrum E``. But this means that the composite

E``∗
ηR−→ E``∗(E``)

∂†∗−→ (E``∗)(p)

agrees with ∂.
Now in the ring E``∗(E``)(p) we have an element of the form

(
Ep−1 − E′

p−1

p

)
∈ E``2(p−1)(E``)

(p)
⊆ E``2(p−1)(E``)⊗Q,

where E′
p−1 = ηR(Ep−1). This follows from the well known fact that working modulo p

in (E``∗)(p), Ep−1 agrees with the image of Hazewinkel generator v1 ∈ (MU2(p−1))(p) under
the elliptic genus (MU∗)(p) −→ (E``∗)(p) (see [29] for example). But now applying the homo-
morphism ∂†∗ and we see that

∂†∗

(
Ep−1 − E′

p−1

p

)
=

∂(Ep−1)
p

∈ (E``∗)(p) ⊆ E``∗ ⊗Q,

since
∂†∗(Ep−1) = Ep−1∂

†
∗(1) = 0.

However, from [41] we have

∂(Ep−1) ≡ 1
12

Ep+1 mod p

6≡ 0 mod p.

Hence, this is an element of E``∗ ⊗Q which is not in (E``∗)(p). ¤

However, there is still the possibility of unstable extensions and we make the modified conjecture:

Conjecture 12.3. There are extensions of ∂ to unstable operations in elliptic cohomology
E``∗( ).
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What is really meant here is that for a given n ∈ Z, there might be a map

Ω∞−nE`` −→Ω∞−n+4E``

inducing the operator ∂ in homotopy; however, such a map need not deloop.
An alternative approach is to try to construct a suitable stable operation locally at each

prime. An obvious candidate would be an extension of the derivation ∂p which raises weight
by p + 1 and is given by

∂p(F ) = Ep−1∂(F )− wt(F )
p− 1

∂(Ep−1)F,

which has the property that ∂p(Ep−1) = 0 and avoids the difficulties encountered with ∂. In
fact, on q-expansions taken modulo p, ∂p agrees with the action of qd/dq; it is thus the same as
the operation θ studied by Serre and Swinnerton-Dyer on modular forms modulo p. However,
it is still not clear if this extends to an operation taking values in elliptic cohomology modulo p;
it also fails to commute with multiplication by ∆.

Finally, we note that in [18, 19], Gross and Hopkins have explored deformation theory for
Lubin–Tate formal group laws; in particular they consider certain Gauss–Manin connections.
Now it is known from [22, 24] that ∂ is also a Gauss–Manin connection, so there may well be
some relationship between their work and the above discussion. We hope to return to these
matters in future work.
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