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Abstract. Let p > 3 be a prime. In the ring of modular forms with q-expansions defined over
Z(p), the Eisenstein function Ep+1 is shown to satisfy

(Ep+1)
p−1 ≡ −

�−1

p

�
∆(p2−1)/12 mod (p, Ep−1).

This is equivalent to a result conjectured by de Shalit on the polynomial satisfied by all the
j-invariants of supersingular elliptic curves over Fp. It is also closely related to a result of Gross
and Landweber used to define a topological version of elliptic cohomology.

Introduction

In [6], Gross and Landweber proved the following supersingular congruence in the ring of
holomorphic modular forms for SL2(Z) with q-coefficients in the ring of p-local integers Z(p) for
a prime p > 3:

(0.1) u2 ≡
(−1

p

)
∆(p2−1)/12 mod (p, u1).

The regular sequence p, u1, u2 is defined using the canonical formal group law F associated to
the universal Weierstraß cubic whose p-series has the form

[p]F (X) = pX + · · ·+ u1X
p + · · ·+ u2X

p2
+ (higher order terms)

≡ u1X
p + · · ·+ u2X

p2
+ (higher order terms) mod (p)

≡ u2X
p2

+ (higher order terms) mod (p, u1).(0.2)

In fact, u1 is essentially the Eisenstein function Ep−1, in the sense that u1 ≡ Ep−1 mod (p).
The main result of this paper is the following supersingular congruence for Ep+1 which is

closely related to Equation (0.1):

(0.3) (Ep+1)p−1 ≡ −
(−1

p

)
∆(p2−1)/12 mod (p,Ep−1).

These congruences are equivalent to equations that hold in the field of definition of a super-
singular elliptic curve over a finite field of characteristic greater than 3, and our proof is couched
in terms of this interpretation.

It turns out that our result is related to one conjectured by de Shalit [12] and described
by Kaneko and Zagier in [4]. In fact, our original attempt at proving Theorem 1.4 involved a
reduction to Equation (6.1). This unsuccessful strategy was aborted when Don Zagier pointed
out the equivalence of the two results!

Our original motivation in studying this question and more generally isogenies of supersing-
ular elliptic curves, lies in elliptic cohomology. Inspired by results of Robert [8] and of Gross
and Landweber, we have determined the precise relationship between the category of isogenies
and the stable operation algebra of supersingular elliptic cohomology. The details will appear
in [1] which is currently in preparation. Like the present work, this makes use of Tate’s theory,
particularly that of the p-primary Tate module (never formally published by him but described
in [17], see also the Woods Hole Notes [7]).
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1. Recollections on modular forms and elliptic curves over finite fields

Background material for this section can be found in the articles of Serre [10, 11], Katz [5]
and Tate [14]; see also the books by Husemoller and Silverman [3, 13].

Throughout, let p > 3 be a prime and let S(Z(p))∗ (respectively M(Z(p))∗) denote the graded
ring of modular forms for SL2(Z), holomorphic (respectively meromorphic) at ∞ and with
q-coefficients in the ring of p-local integers Z(p).

We will make use of the following modular forms which are determined by their q-expansions.

P = E2 = 1− 24
∑

16r

σ1(r)qr,

Q = E4 = 1 + 240
∑

16r

σ3(r)qr,

R = E6 = 1− 504
∑

16r

σ5(r)qr,

∆ =
Q3 −R2

1728
,

j =
Q3

∆
,

A = Ep−1 = 1− 2(p− 1)
Bp−1

∑

16r

σp−2(r)qr,

B = Ep+1 = 1− 2(p + 1)
Bp+1

∑

16r

σp(r)qr.

Here, Q and R are modular forms of weights 4 and 6, while P is ‘almost’ modular of weight 2.

Theorem 1.1. As graded rings,

S(Z(p))∗ = Z(p)[Q,R],

M(Z(p))∗ = Z(p)[Q,R,∆−1].

Also,

S(Z(p))0 = Z(p),

M(Z(p))0 = Z(p)[j].

There is a derivation ∂ on M(Z(p))∗ which restricts to S(Z(p))∗ and satisfies

∂P = −Q− P 2,

∂Q = −4R,

∂R = −6Q2,

∂∆ = 0,

∂j = −12
Q2R

∆
.

Theorem 1.2. For the prime p > 3,
(1) In the ring S(Fp)∗ = S(Z(p))∗/(p), ∆ is not a factor of A.
(2) In the ring S(Fp)∗ each irreducible factor of A has multiplicity one, hence the same is

true in the ring M(Fp)∗ = M(Z(p))∗/(p).
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(3) In each of the rings S(Fp)∗ and M(Fp)∗, every irreducible factor of A has one of the
forms

Q, R, Q3 − α∆, Q6 + β∆Q3 + γ∆2,

where α, β, γ ∈ Fp with α 6= 0 and X2 + βX + γ ∈ Fp[X] irreducible.

We also note the following calculational result.

Proposition 1.3. For a prime p > 3, in the ring M(Fp)∗ we have the identities modulo p:

B ≡ ∂A, ∂B ≡ −QA.

Now let Fq be the finite field of order q = pd where we continue to assume that p > 3. An
elliptic curve E over Fq is determined by its Weierstraß form,

E : y2 = 4x3 − ax− b.

The non-singularity of E is equivalent to the existence of a classifying ring homomorphism
θE : M(Fp) −→ Fq for which θE(Q) = 12a and θE(R) = −216b. The curve is supersingular if
θE(A) = 0, or equivalently θE factors through a homomorphism M(Fp)∗/(A) −→ Fq (which we
will also denote by θE). For x ∈ M(Z(p))∗ or M(Fp)∗/(A) we will often write x(E) = θE(x).

Given u ∈ Fq, the curve
Eu : y2 = 4x3 − au2x− bu3

is the u-twist of E . It is isomorphic (as an abelian variety over Fq) to E if and only if u is a
square in Fq and in that case, an isomorphism is provided by the completion of the affine map
ϕv : (x, y) 7−→ (v2x, v3y) where v2 = u.

Associated to the Weierstraß form is the canonical invariant differential

ωE =
dx

y
.

Notice that when u = v2,
ϕ∗vωEu = v−1ωE .

Also, if F ∈ M(Z(p))k, then

F (Eu) = vkF (E).

Using the above notation we restate our main result as the following:

Theorem 1.4. For the prime p > 3, in each of the rings S(Z(p))∗ and M(Z(p))∗ we have the
congruence

Bp−1 ≡ −
(−1

p

)
∆(p2−1)/12 mod (p,A).

Equivalently, for a supersingular elliptic curve E over a finite field Fpd,

B(E)p−1 = −
(−1

p

)
∆(E)(p

2−1)/12.

2. Some supersingular isogeny invariants

Recall that for two elliptic curves E1, E2 defined over a field k, an isogeny ϕ : E1 −→ E2 over
k is a non-zero morphism of abelian varieties. Using the dual isogeny ϕ̂ : E2 −→ E1, it is easily
seen that the existence of an isogeny E1 −→ E2 is equivalent to the existence of an isogeny
E2 −→ E1. Hence the notion of isogeny defines an equivalence relation on elliptic curves.

The next important result due to Tate [15], see also [3] Chapter 3 Theorem 8.4, allows us to
determine isogeny classes of supersingular curves.

Theorem 2.1. Two elliptic curves E1, E2 defined over a finite field Fq are isogenous over Fq if
and only if

|E1(Fq)| = |E2(Fq)|.
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In particular, a supersingular curve defined over the prime field Fp has |E(Fp)| = 1+ p, hence
all such curves are isogenous over Fp. For a more detailed analysis of the possible isogeny classes,
see [16, 9].

For supersingular elliptic curves over finite fields, it turns out that there are some interesting
isogeny invariants. In [6], Gross and Landweber in effect showed for two such curves E1, E2

defined and separably isogenous over Fp2 ,
(−1

p

)
∆(E1)(p

2−1)/12 =
(−1

p

)
∆(E2)(p

2−1)/12.

This follows from the facts that these two quantities are actually in Fp and by Equation (0.2)
can be identified with the coefficients of the leading terms T p2

in the [p]-series of the isomorphic
canonical formal group laws associated to the local parameter −2x/y.

In order to identify another isogeny invariant, we will need Théorème B/Lemme 7 of Robert
[8].

Lemma 2.2. Let ϕ : E1 −→ E2 be a separable isogeny between supersingular elliptic curves.
Then if ϕ∗ωE2 = λωE1,

B(E2) = λ−(p+1) deg ϕB(E1).

Corollary 2.3.
B(E2)p−1 = λ−(p2−1)B(E1)p−1.

In particular, if E1, E2 and ϕ are all defined over Fp2, then

B(E2)p−1 = B(E1)p−1.

Using this corollary, together with the fact that for a supersingular curve E over a finite field
Fpd , j(E) ∈ Fp2 and there is supersingular curve E ′ defined over Fp2 and an isomorphism E ∼= E ′
defined over Fpd , we can reduce the proof of our main theorem to the case of curves defined over
Fp2 .

3. Constructing supersingular curves over the prime field

For completeness, in this section we outline details of a construction which seems to be well
known but whose full details are not so readily found in the literature. A nice account of some
aspects of this can be found in Cox [2].

Let K = Q(
√−p) and OK be its ring of integers which is its unique maximal order.

Theorem 3.1. For any prime p > 11, there are supersingular elliptic curves E defined over Fp

and with j(E) 6≡ 0, 1728 mod (p) and having OK ⊆ End E.
Now OK is a lattice in C, hence we can define the torus C/OK which has a projective embed-

ding as a Weierstraß cubic EK . Since OK is an OK-module, EK admits complex multiplication
by OK .

Proposition 3.2. (1) The j-invariant j(OK) = j(EK) is an algebraic integer.
(2) The extension field L = K(j(OK)) is the Hilbert class field of K.
(3) The elliptic curve EK is defined over L.

A property of the Hilbert class field is that it is unramified at every principal prime ideal in
OK . In particular, if p is a prime in OL lying above the prime (

√−p) in OK , then the residue
field is

OL/p ∼= Fp.

Hence,

(3.1) j(OK) mod p ∈ Fp.

Since the curve EK can be defined over L, we can assume that it has the Weierstraß form

EK : y2 = 4x3 − ax− b
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where a, b ∈ OL. Unfortunately, this might have discriminant ∆ lying in some prime ideal
p over (

√−p). To overcome this problem we pass to p-adic completions K(
√−p) ⊆ Lp which

are complete local fields with maximal discrete valuation rings OK,(
√−p) ⊆ OL,p. We may

pass to some finite extension L′/Lp in which p is totally ramified and the principal prime ideal
p′ = (π) /OL′ satisfies

∆ = λπ12k

for some integer k > 0 and unit λ ∈ OL′ . The curve

E ′ : y2 = 4x3 − π−4kax− π−6kb

is now defined over OL′ ⊆ L′ and isomorphic to EK over L′. Moreover its discriminant is λ,
which reduces to a non-zero element of OL′/(π), hence the reduced curve Ẽ ′ is non-singular and
so elliptic. We also have

j(Ẽ ′) = j(E ′) mod (π)

= j(OK) mod (π)

with the latter lying in Fp. Hence, Ẽ is isomorphic over Fp to an elliptic curve E defined over
Fp.

The endomorphism ring of E is at least as big as OK . Notice that it cannot contain the
complex numbers i or ω since it would then have a commutative endomorphism ring of rank
greater than 2. Thus we must have j(OK) 6≡ 0, 1728 mod (p), and using a straightforward
change of variables, can actually assume that E has the form

E : y2 = 4x3 − 27j(OK)
j(OK)− 1728

x− 27j(OK)
j(OK)− 1728

.

In fact, End E is noncommutative since E is supersingular. To see this, notice that from general
considerations of [15, 16, 17] the action of

√−p agrees with that of the Frobenius map. Applying
Fr to the Tate module T` E for any prime ` 6= p, we easily see that

TrFr =
√−p−√−p = 0.

But this implies that
|E(Fp)| = p + 1− TrFr = p + 1,

or equivalently that E is supersingular by standard results of [3, 13].

4. The case of supersingular curves over the prime field

In [6], Gross and Landweber proved that for a supersingular elliptic curve E defined over Fp2

the following identity holds whenever j(E) 6≡ 0, 1728 mod (p).

(4.1) ∆(E)(p
2−1)/12 =

{
1 if Fr2 = [(−1/p)p]E (Case A),

−1 if Fr2 = [−(−1/p)]E (Case B).

Here Fr2 : E −→ E(p2) = E is the relative Frobenius map and the stated possibilities are the only
ones that can occur. They also observe if Case A holds, then

E [4] ⊆ E(Fp2).

Since |E [4]| = 16, this means that |E(Fp2)| ≡ 0 mod (16). In case B, a modification of their
discussion shows that none of the elements of order 4 can be in E(Fp2). On the other hand, in
all cases,

E [2] ⊆ E(Fp2).
Let us now consider the case of such a curve actually defined over the prime Fp. Then it is

well known that the number of points over Fp is |E(Fp)| = 1 + p. Using the form of the zeta
function over Fp given by the Weil Conjectures, we easily find that

|E(Fp2)| = 1 + 2p + p2 = (1 + p)2 ≡
{

4 mod (8), if p ≡ 1 mod (4),
0 mod (8), if p ≡ 3 mod (4).

Hence, for such a curve, we have
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Case A holds ⇐⇒ p ≡ 3 mod (4),
Case B holds ⇐⇒ p ≡ 1 mod (4).

Since B(E) ∈ Fp

B(E)p−1 = 1.

In Case A, we have (−1/p) = −1, and so by (4.1)

−
(−1

p

)
∆(E)(p

2−1)/12 = 1 = B(E)p−1.

In case B, (−1/p) = 1, and by (4.1),

−
(−1

p

)
∆(E)(p

2−1)/12 = 1 = B(E)p−1.

Hence we have proved the following.

Theorem 4.1. For a supersingular elliptic curve E defined over Fp and satisfying j(E) 6≡
0, 1728 mod (p),

B(E)p−1 = −
(−1

p

)
∆(E)(p

2−1)/12.

5. The case of supersingular curves over the field of order p2

Having dealt with supersingular curves over the prime field, we now turn to those defined
over Fp2 . For p > 11, choose a supersingular elliptic curve E0 defined over Fp with j(E) 6≡
0, 1728 mod (p)– this is always possible courtesy of Theorem 3.1.

Let E be a supersingular elliptic curve defined over Fp2 and with j(E) 6≡ 0, 1728 mod (p). By
[16],

|E(Fp2)| = 1± 2p + p2 = (1± p)2.

By the Weil Conjectures, any curve defined over Fp has |E(Fp2)| = (1+p)2. By Theorem 2.1, if
|E(Fp2)| = (1+p)2, there is an isogeny E0 −→ E defined over Fp2 . There is a unique factorization
of the form ϕ = sϕ ◦ Frk, where

Frk : E0 −→ E(pk)
0 = E0

is the k-fold iterated Frobenius map, and sϕ : E0 −→ E is separable. Hence we might as well
assume that ϕ itself is separable.

Now applying Corollary 2.3 we may deduce that

B(E)p−1 = B(E0)p−1 = 1.

Notice that if p ≡ 1 mod (4) then case B of Section 4 applies to E , while if p ≡ 3 mod (4) then
case A applies. Thus we find that

B(E)p−1 = 1 = −
(−1

p

)
∆(p2−1)/12.

If |E(Fp2)| = (1− p)2, we may twist by any non-square u in Fp2 to obtain a curve

Eu : y2 = 4x3 − au2x− bu3

which can easily be seen to have |Eu(Fp2)| = (1+p)2. If v ∈ Fp4 with v2 = u, (x, y) 7−→ (v2x, v3)
defines an isomorphism ϕv : E ∼= Eu over Fp4 , and we have ϕ∗vωEu = ωE . By the above result for
Eu together with Corollary 2.3, and the fact that ∆(Eu) = u6∆(Eu), we now see that

B(E)p−1 = −B(Eu)p−1 =
(−1

p

)
∆(Eu)(p

2−1)/12 = −
(−1

p

)
∆(E)(p

2−1)/12.

Similar arguments allow our identity to be proved directly for supersingular curves with
j(E) ≡ 0, 1728 mod (p). Hence for primes p 6≡ 1 mod (12) we can avoid the use of Theorem 3.1,
however when p ≡ 1 mod (12), we do require this result.
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6. Relations with other work

In [4], Kaneko and Zagier discuss the supersingular polynomial

ssp(X) =
∏

E
(X − j(E)),

where the product is taken over all isomorphism classes of supersingular curves over Fp. Thus
in the ring M(Fp)∗ we have

A =
QδRε ssp(j)∆mp

jδ(j − 1728)ε
,

where we write p = 12mp + 4δ + 6ε + 1 with δ, ε ∈ {0, 1}. Using Proposition 1.3 we obtain a
formula for B in terms of the derivation ∂.

If α 6≡ 0, 1728 mod p is a root of ssp(X), then there is a supersingular elliptic curve

E : y2 = 4x3 − 27α
(α− 1728)

x− 27α

(α− 1728)
with j(E) = α. Then for some λ ∈ Fp,

B(E) = λ
αε+1 ss′p(α)∆mp

(α− 1728)δ+ε
.

Combining this with Theorem 1.4 gives

(6.1) ss′p(α)p−1 = (−1)ε−1α2(δ−1)(p−1)/3(α− 1728)(ε−1)(p−1)/2

which is the conjectured result [4], equation (40). Thus we have also proved the equivalent
conjectural equation (39) of de Shalit.
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