Summary of Lecture 14- 14/11/05 -Conservative vector fields

Question:

Are all vector fields the grad of some scalar field?

Answer:

No, only vector fields that are defined everywhere and satisfy curl $\mathbf{F} = \mathbf{0}$ can be expressed as

$$\mathbf{F} = \operatorname{grad} \phi$$

for some scalar field ϕ . The vector field is then called conservative.

Practicalities

Given a conservative vector field $\mathbf{F} = (F_1, F_2, F_3)$ we find the scalar field ϕ such that $\mathbf{F} = \operatorname{grad} \phi$ by solving:

$$\frac{\partial \phi}{\partial x} = F_1, \quad \frac{\partial \phi}{\partial y} = F_2, \quad \frac{\partial \phi}{\partial z} = F_3.$$

Steps:

- 1. Integrate the first equation w.r.t. x to give an expression for ϕ . The constant of integration, A(y, z), will involve y and z.
- 2. Substitute ϕ into the next equation. You will be left with an equation involving $\partial A/\partial y$. Integrate this w.r.t. y to give A. The integration generates a constant of integration, B(z), which depends only on z.
- 3. Substitute the expression for A(y,z) into ϕ , so it remains to find B(z). Substitute ϕ into the last equation, $\frac{\partial \phi}{\partial z} = F_3$, and use this to find B(z).