
vol. 176, no. 4 the american naturalist october 2010

Critical Interplay between Parasite Differentiation,
Host Immunity, and Antigenic Variation

in Trypanosome Infections

E. Gjini,1,2,* D. T. Haydon,2,3,4 J. D. Barry,4,5 and C. A. Cobbold1,2

1. Department of Mathematics, University of Glasgow, University Gardens, Glasgow G12 8QW, United Kingdom; 2. The Boyd Orr
Centre for Population and Ecosystem Health, University of Glasgow, United Kingdom; 3. Faculty of Biomedical and Life Sciences,
Ecology and Evolutionary Biology, University of Glasgow, Glasgow G12 8QQ, United Kingdom; 4. Wellcome Trust Centre for
Molecular Parasitology, University of Glasgow, United Kingdom; 5. Glasgow Biomedical Research Centre, 120 University Place,
Glasgow G12 8TA, United Kingdom

Submitted May 19, 2010; Accepted June 23, 2010; Electronically published August 17, 2010

abstract: Increasing availability of pathogen genomic data offers
new opportunities to understand the fundamental mechanisms of
immune evasion and pathogen population dynamics during chronic
infection. Motivated by the growing knowledge on the antigenic
variation system of the sleeping sickness parasite, the African try-
panosome, we introduce a mechanistic framework for modeling
within-host infection dynamics. Our analysis focuses first on a single
parasitemia peak and then on the dynamics of multiple peaks that
rely on stochastic switching between groups of parasite variants. A
major feature of trypanosome infections is the interaction between
variant-specific host immunity and density-dependent parasite dif-
ferentiation to transmission life stages. In this study, we investigate
how the interplay between these two types of control depends on
the modular structure of the parasite antigenic archive. Our model
shows that the degree of synchronization in stochastic variant emer-
gence determines the relative dominance of general over specific
control within a single peak. A requirement for multiple-peak dy-
namics is a critical switch rate between blocks of antigenic variants,
which implies constraints on variant surface glycoprotein (VSG) ar-
chive genetic diversification. Our study illustrates the importance of
quantifying the links between parasite genetics and within-host dy-
namics and provides insights into the evolution of trypanosomes.

Keywords: African trypanosome, within-host dynamics, antigenic var-
iation, VSG archive structure, specific and general control, carrying
capacity.

Introduction

Pathogens interact with their hosts in complex ways, using
subtle strategies for immune evasion and for establishing
chronic infection (Frank 2002; Schmid-Hempel 2008).
One of the most sophisticated parasite survival strategies

* Corresponding author; e-mail: egjini@maths.gla.ac.uk.

Am. Nat. 2010. Vol. 176, pp. 000–000. � 2010 by The University of Chicago.
0003-0147/2010/17604-52173$15.00. All rights reserved.
DOI: 10.1086/656276

is antigenic variation, where individuals within the pro-
liferating parasite population switch to expression of an
alternative form of a major antigen. This allows the par-
asite to avoid impending antibody responses and char-
acteristically yields an oscillating parasite load over long
periods. The most intensively studied parasite antigenic
variation system is that of the African trypanosome (Barry
and McCulloch 2001). Trypanosoma brucei is a protozoan,
transmitted by the tsetse fly, that can infect a wide range
of host species, including humans, livestock, and wild
mammals, generally causing chronic diseases such as hu-
man sleeping sickness. Recent advances in our understand-
ing of the trypanosome genome and its genetic archive
encoding antigenically variable coat proteins motivates the
need for a common framework, where parasite genetic
processes and within-host dynamics can be integrated.

Trypanosomes have a coat composed of variant surface
glycoprotein (VSG) that undergoes antigenic variation,
through the sequential replacement of different VSG genes
in expression sites (Berriman et al. 2005). Different VSG
genes are selected through a switching process from an
archive of ∼2,000 silent VSG genes encoding different
forms of this protein. This seemingly simple genetic basis
for variation is compounded at the within-host population
level, however, by a number of parasite processes, includ-
ing growth, death, and differentiation, and host processes,
most notably acquired immune responses against the an-
tigens that are subject to antigenic variation. Typical of
antigenic variation, trypanosome infections show hierar-
chical variant expression in which some variants appear
early in infections and others appear progressively later
(Gray 1965; Capbern et al. 1977; Kosinski 1980; Barry
1986; Morrison et al. 2005). This hierarchical expression
is mediated by the magnitudes of switch rates between
different antigenic variants, which in turn result from ge-
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netic properties of the VSG archive, such as the locus types
in the genome (Barry 1997; Turner 1999; Morrison et al.
2005; Marcello and Barry 2007a). Furthermore, most ar-
chive VSG genes are pseudogenes that can be expressed
only after recombining with other members of the archive
to produce an intact, mosaic gene, a set of events that
occur with low probability. Within each locus type, there
appear to be finer degrees of ordering, and the prevailing
view is that switch rates range widely, in particular over
discontinuous orders of magnitude (Frank 1999; Lythgoe
et al. 2007).

A considerable amount is known about parasite and
host factors compounding antigenic variation in trypano-
somes. In the mammalian host, the dividing slender form
differentiates to the nondividing stumpy stage, which is
the only life stage that can infect the tsetse (Dean et al.
2009). This process is density dependent, and its major
characteristics have been quantified (Reuner et al. 1997).
Besides serving as a proxy for transmission, the stumpy
stage, by virtue of its quiescence and fixed life span, con-
tributes to self-regulation of growth of the within-host
parasite population. The population reaches a maximum
carrying capacity, which has been measured in immuno-
suppressed hosts and which has been shown to equal the
maximum height of growth peaks in normal infections
(Balber 1972; Luckins 1972; Hajduk and Vickerman 1981).
There is also symmetry in growth across different variants.
Thus, there is maximally only 10% variance in the growth
rates of trypanosome clones isolated from the same in-
fection, and any differences do not correlate with the VSG
expressed (Seed 1978). In addition, the kinetics of induc-
tion of immunity (Gray 1965) and variant clearance (Haj-
duk and Vickerman 1981) are common between variants.
The general picture, at least for variants that appear early
in infection, is that variant-specific responses arise rapidly
and persist for prolonged periods (Gray 1965; Morrison
et al. 2005).

The structure and organization of the VSG archive have
been elucidated in increasing detail over the past years. It
has emerged that VSG genes are organized into subfamilies
of closely related genes, displaying high levels of genetic
identity. In the chronic phase of infection, when mosaic
variants appear, there is evidence that genetic identity be-
tween subfamilies plays an important role in determining
between-variant switch rates (Thon et al. 1990; Marcello
and Barry 2007a). These findings suggest a pattern of
higher switch rates for genes within subfamilies and lower
switch rates for genes between subfamilies (Thon et al.
1990; Marcello and Barry 2007a).

In this study, we propose a mathematical model with
which we can understand mechanistically what drives try-
panosome antigenic variation over the course of an in-
fection and how chronicity is maintained. We focus on

the interplay between the structure of the antigenic archive,
mirrored in the switch rates, and within-host processes,
such as parasite differentiation and the specific immune
response. A better understanding of this interplay could
be instrumental in the design of control strategies and
further experimental research. We study different aspects
of chronic infection dynamics and a wide range of possible
infection scenarios, such as oscillating parasite loads and
the antigenic composition of each peak. Finally, we con-
sider simple model extensions that include immunosup-
pression and cross-reactive immunity.

Model

Variant Dynamics

Our model is formulated to capture the primary features
of within-host trypanosome dynamics, and it advances the
model proposed by Lythgoe et al. (2007). We distinguish
two within-host forms of the parasite: slender and stumpy.
We denote the parasite number in the ith variant sub-
population as , with and for slender andi p 1, … , N v mii

stumpy cells, respectively, and for the variant-specificai

antibody response. The size of the parasite antigen gene
archive is shown as N.

The dynamics for each variant and antibody response
(see fig. 1A) are given by

dv V � Mi p rv 1 � � da v , (1)ii i( )dt K

dm V � Mi p rv � da m � d m , (2)i i M iidt K

x

da v (t � t) � m (t � t)i ii ( )p c 1 � a , (3)i[ ]dt C

where and represent the total num-V p � v M p � miii i

ber of slender and stumpy parasites. Each slender cell di-
vides with an intrinsic per capita division rate, r, which is
a constant throughout the infection and does not decay
exponentially, as in the Lythgoe model (Lythgoe et al.
2007). An exponentially decaying r as a function of time
blocks parasite replication independently of the immune
response after some time, and this assumption is not re-
alistic. A key feature of parasite dynamics is the density-
dependent differentiation of each slender cell to the
stumpy form, where K is the total within-host carrying
capacity. Our choice of the differentiation rate rv (V �i

differs from the exponential function used by Lyth-M)/K
goe et al. (2007). While other more complicated functions
of density dependence are possible, given the lack of firm
biological basis for one form over another, the simpler
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Figure 1: Model ingredients. A, Diagram illustrating the deterministic
infection dynamics for an arbitrary variant. B, Schematic representation
of the switch matrix S. Antigenic variants are organized in blocks of h

variants each, where switching happens fast. Between-block switch rates
are of lower-order magnitudes. The nonhierarchical mode assumes only
the distance between blocks determines their switch rate (power law
distribution). The hierarchical mode assumes each block has an intrinsic
activation rate governing their order of appearance. In the simulations
we use mainly the nonhierarchical switch matrix, but the results apply
to both types. Ultimately, the real trypanosome archive may contain a
combination of hierarchical and nonhierarchical variant organization.

logistic form we adopt has the advantage of mimicking
infection dynamics in the absence of immune control, both
in terms of an oscillatory approach to a clear carrying
capacity with the right slender-to-stumpy ratio and the
advantage of being more amenable to analytic treatment.
Each stumpy cell has a natural mortality , (McLintockdM

et al. 1993; Tyler et al. 2001). This parameter was absent
in the model of Lythgoe et al. (2007), but we find its
inclusion is very important for the parasite population
dynamics. There is not a similar death rate of the slender
cells in the model because eventually the phenomenon can
be implicitly captured by a corresponding reduction in the
parameters r and K.

For the kinetics of the immune response we follow the
same approach as Lythgoe et al. (2007). The ith variant is
removed by a specific antibody response at a rate dai

for slender cells and for stumpy cells. Given the evidenced

that slender cells are killed more rapidly by the immune
response, we assume (McLintock et al. 1993).d 1 d

Variant-specific antibody responses grow as a result of an-
tigen stimulation, up to a maximum of 1, starting from
0. The maximum rate at which the immune response can
increase against any variant i is given by c, meaning that

all variants are equally immunogenic, as supported by ob-
servations in vivo (Gray 1965). The time that it takes for
a variant to stimulate the specific immune response in the
host (Tyler et al. 2001), gives the delay in equation (3).t

The sensitivity of the specific immune response to low
antigen stimulation is denoted by x, which slows down
the saturation of when the ith parasite variant subpo-ai

pulaton is below the threshold C and accelerates it when
the variant population exceeds C. This baseline formula-
tion assumes that high and prolonged parasitemias or an-
tigenic diversity do not significantly impair the anti-VSG
immune response, as observed in infections (Gray 1965;
Capbern et al. 1977; Robinson et al. 1999; Morrison et al.
2005). Last, under the generality that specific memory B
cells develop in parallel with the primary immune response
in trypanosome infections, we factor that specific immune
responses persist, as observed empirically (Robinson et al.
1999; Morrison et al. 2005). This irreversibility of the im-
mune response prohibits second or further outbreaks by
the same antigen variant in the same infection, making
chronicity an exclusive consequence of parasite antigenic
variation. Model parameters are summarized in table 1.

Variant Emergence

When a new parasite variant arises during infection, its
number is very small, and it may be prone to extinction.
For this reason, the emergence of new variants is more
appropriately modeled as a stochastic process. Differently
from Lythgoe et al. (2007), we include a stochastic com-
ponent in the model in terms of random first-arrival times
for each variant . Under this new framework, the slenderti

variant dynamics (eq. [1]) becomes

dv V � Mi p rv 1 � � da v H(t � t ) � D(t � t ), (4)i i ii i[ ( ) ]dt K

where and are the Heaviside and DiracH(t � t ) D(t � t )i i

delta functions, respectively. Term is 0 forH(t � t ) t ! ti i

and 1 for , whereas is 0 everywhere exceptt ≥ t D(t � t )i i

at , where it takes the value of 1. The stochastict p ti

arrival times are determined through a Markov process,ti

similar to the approach of Kepler and Perelson (1995).
First, we denote by the rate of antigenic switching fromsij

variant i to variant j. The probability of an antigenic switch
per parasite division is fixed and is equal to (Turner andj

Barry 1989). This implies that the switch rates S p
satisfy(s )ij N#N

rj
s p . (5)� ij ln (2)j
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Table 1: Model parameters and interpretation

Parameter Interpretation (units) Dimensional value Reference/comment

r Intrinsic growth rate of slender cells (h�1) 1 # 10�1 Turner et al. 1995
d Maximal killing efficiency of slender cells by the

immune response (h�1)
5 # 10�1 McLintock et al. 1993

d Maximal killing efficiency of stumpy cells by the
immune response (h�1)

1 # 10�1 McLintock et al. 1993

c Rate of growth of specific immune response
(h�1)

1 # 102 Lythgoe et al. 2007

K Within-host carrying capacity for the total para-
site population

1 # 108�1 # 1012 Reuner et al. 1997; varied

C Threshold variant population level leading to
maximal growth of specific immune response

1 # 108�1 # 1012 Lythgoe et al. 2007; varied

x Sensitivity of immune responses to small para-
site concentration

1–3 Lythgoe et al. 2007; varied

t Delay in the stimulation of specific immunity
(hours)

100 Tyler et al. 2001; varied

dM Stumpy cell mortality rate (h�1) 2.5 # 10�2 Tyler et al. 2001; Savill and Seed 2004
j Switch probability per division 1 # 10�2 Turner and Barry 1989
sji Switch rate from j to i (h�1) Varied a� s p jr/ ln 2ijj

N Total number of variants O(103) Berriman et al. 2005
h Number of variants in one block 1–100 Varied
B Number of blocks in S B p N/h Varied

a See “Switch Matrix Procedure.”

Then, to compute first-arrival times, we consider ,P(t)i

the probability that variant i has not yet emerged by time
t. The dynamics of are governed byP(t)i

dPi p �P s v , (6)�i ji jdt j(i

collecting the switching contributions from all other var-
iants into variant i. Note that for all variants iP(0) p 1i

except the inoculating variant. To calculate , a randomti

number is drawn from the uniform distribution .[0, 1]
When reaches this value, jumps to 1, and from thisP vi i

point onward , mi, and ai, so far inactive, begin the de-vi

terministic dynamics given by equations (1)–(3). Thus,
the switching process matters only as a mechanism for
generating previously absent antigenic variants, and its
contribution to parasite growth is negligible.

Motivated by the subfamily structure of the trypano-
some antigen gene archive (Morrison et al. 2005; Marcello
and Barry 2007a), we assume the switch matrix S is char-
acterized by a block structure (see S in fig. 1B), where
within-block switching (diagonal blocks) happens at a faster
rate than between-block switching (off-diagonal blocks).
In the limit of very small between-block switch rates, var-
iants of different blocks grow independently. Finally, the full
model is given by equations (2)–(6), with parameters listed
in table 1. The system is solved numerically in Matlab, using
solver dde23. The initial conditions are ,v p V01

, , and , for andv (0) p 0 m (0) p 0 a (t) p 0 t � [�t, 0]i ii(1

for all i. We use the Events option of dde23 to pause and
resume integration at the first-arrival times of new
variants.

Model Behavior

A typical infection profile obtained from the model cap-
tures the main features of real trypanosome infections: (1)
Within-host dynamics are characterized by oscillating total
parasite load (fig. 2), where each peak is composed of
different antigenic variants (Barry and McCulloch 2001).
Although infection may be initiated by a single variant,
stochastic antigenic variation quickly gives rise to new var-
iants, thus prolonging the infection. (2) Consistent with
empirical observations (Miller and Turner 1981; Robinson
et al. 1999), an infection peak can be composed of one or
more variants, depending on the switch matrix. (3) Nu-
merical simulations confirm that variant first-arrival times
highly correlate with variant mean activation rates from
the switch matrix. The higher the variant activation rate,
the earlier a particular variant appears during infection,
as reported also by Marcello and Barry (2007a). Early
variants are also associated with a smaller variability in
first-arrival times across stochastic simulations, consistent
with empirical findings (Morrison et al. 2005; Marcello
and Barry 2007a). Since the switch rates within a block
are larger than between blocks, all the variants in a block
emerge at similar times. (4) When the switch matrix fol-
lows the nonhierarchical mode (fig. 1B), consecutive par-
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Figure 2: Example of full model dynamics with , , , , , and other parameters as in table 1. The black line8 7N p 120 h p 12 x p 2 K p 10 C p 10
shows the total parasite load , and the colored lines indicate individual variants . The switch matrix used follows the nonhierarchicalV � M v � mii

mode in figure 1B.

asite peaks have generally equal spacing, and the order of
variant appearance is determined by the position of the
inoculating variant in the matrix and the sequence of its
neighboring blocks; if the switch matrix is hierarchical,
consecutive parasite peaks occur at increasingly greater
temporal distances, and the order of variant appearance
is independent of the inoculating variant.

The behavior of the model is complex, resulting from
the interplay of many parameters. The results we present
here are robust even when dropping the perfect symmetry
across variants in the model, that is, allowing variability
within the same order of magnitude, in growth rates, rates
of differentiation, immunogenicity, and delay in immune
stimulation. These changes do not change the model’s
qualitative or, to a large extent, quantitative behavior. To
understand the mechanisms behind trypanosome within-
host dynamics, it is helpful to begin by first examining
what governs a single infection peak and then what drives
the full infection profile within a host.

Single-Block Dynamics

Block size . The dynamics of a single variant can beh p 1
broken down into three phases: I, growth; II, nongrowth;
and III, the decline phase, as illustrated in figure 3. These
three phases also appear in the full infection profile. In
phase I, the variant grows at an exponential rate, mediated
by fast proliferation of slender cells . As the total parasitevi

population increases, cells begin to transform to the
stumpy form in a density-dependent manner; thus, themi

effective growth rate of the parasite population is reduced.
However, specific antibody responses continue to increase
as . Once , we enter phase II, wherev � m 1 0 V � M ≈ Kii

until for any i, signaling the end ofV � M ≈ K a p r/di

phase II. Asymptotic analysis of the model reveals that a
necessary requirement for the stability of the infection
clearance equilibrium is . If beforea 1 r/d a p r/d V �i i

, then phase II is not initiated. In fact, as soon asM ≈ K
surpasses this threshold, phase III of the dynamics be-ai

gins, leading to the decline of each variant.
Notice that in general phases I and III always happen

because there is no prior immunity against any variant,
permitting growth, and the build-up of the immune re-
sponse due to antigen stimulation will lead to eventual
decline. Phase II is more complex, and it is key in deter-
mining the dynamics. Depending on whether phase II is
long or short, a variant may take a longer or shorter time
to be cleared. The duration of phase II is inextricably
linked to the strength of specific immunity. The weaker
specific immunity is during phase I (e.g., large , x, C),t

the more the parasite can grow and the longer it takes for
to reach , hence, the longer phase II. In contrast, thea r/di

stronger specific immunity, the less the parasite can grow
and the faster it is cleared, shortening phase II or removing
it altogether.

Block size . The variants in an infection peak usuallyh 1 1
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Figure 3: Schematic of individual variant infection dynamics illustrating
the specific immune response (bottom) and variant growth (top) with
three phases: I p growth, II p nongrowth, and III p decline. The total
duration of these three phases defines a block wave.

correspond to variants of the same block in the switch
matrix S, and we notice that their first-arrival times are
clustered (see fig. 2). Thus, to study a single infection peak,
we can study a single block of variants, by assuming the
variants of a block emerge around the same time: ,t ≈ ti j

for each variant i and j within a block. We assume there
is an initial parasite load , which is divided equallyV0

among the variants, and there is no prior host exposureh

to any of the antigens.
In the same way that each variant dynamics is composed

of three phases, the dynamics of a block is composed of
the growth, nongrowth, and decline phase. But now the
number of variants growing together matters. Ultimately,
specific immune stimulation depends on the availability
of antigen, hence on the magnitude of . This goesv � mii

down as the number of variants sharing the carryingh

capacity K within the host increases. Model simulations
show that as increases, the duration of phase II of theh

dynamics tends to infinity, because the numbers of any
individual variant are low, ∼K/h, resulting in weak immune
stimulation, and so struggles to reach (see fig. 4). Ita r/di

is then natural to ask, what is the critical dividing theseh

distinct dynamical regimes, of rapid block clearance and
long block persistence?

The Block Size Threshold hcrit

To distinguish between fast and slow infection clearance,
we analyze the duration of phase II, , via simpleTnongrowth

quasi-steady state arguments (see “Critical Block Size
Threshold”). We define as fast clearance andT ! 2tnongrowth

as slow clearance. We find thatT 1 2t T 1nongrowth nongrowth

when the number of variants in one block exceeds2t

�1/x

K � ln (1 � r/d)
h p . (7)crit [ ]C ct

This means that when the block size is relatively small,
that is, , specific immunity rapidly clears all variantsh ! hcrit

of that block, and hence, phase II is short; whereas for
, differentiation regulates the parasite load, and soh ≥ hcrit

phase II is very long. When phase II is long, individual
variants of a block are limited to low levels, insufficient
to optimally stimulate specific immune responses. This
allows them to persist at low densities, until sufficient host
immunity is mounted. Similar thresholds have been found
previously in antigenic variation models (Nowak et al.
1990; Sasaki 1994). In contrast to those results, our result
refers to a quasi–steady state and applies only to variants
whose first-arrival times are the same. For variants arising
in the host at different times, the same threshold does not
hold. Sufficient decoupling may allow them to grow in-
dependently and stimulate specific immunity.

The threshold depends linearly on , the ratioh K/Ccrit

between the within-host carrying capacity and the immune
response threshold, expressing the competition between
density-dependent differentiation and host immunity (fig.
4). When increases, increases, meaning that theK/C hcrit

immune stimulation to individual variants is stronger;
hence, there is sufficient specific control that can clear
larger blocks of variants. When increases, is re-C/K hcrit

duced, implying dominance of general control; hence, even
smaller blocks can easily persist without clearance.

The significance of this threshold for within-host dy-
namics points toward the interaction between specific and
general control. This interplay is critical in many pathogen
infections besides trypanosomes. In trypanosomes, in par-
ticular, properties of their antigenic archive, such as the
size of an antigenic block, appear crucial and may tip the
balance toward one mechanism of parasite control or the
other. We notice how the ultimate duration of phases

, defining a block wave, depends on the blockI � II � III
size . This affects also the total parasite load,h (V �∫

, contained in a block wave (fig. 4), which may haveM)dt
implications for transmission.

In general, the phenomenon holds whenever thehcrit

differentiation rate increases in a nonsaturatingf(V � M)
manner with , even when the specific immune re-V � M



Modeling Trypanosome Antigenic Variation 000

Figure 4: Contour plot of total parasite load as a function of block size and . The analytical approximation to (dashed
1,000

V(t) � M(t)dt h K/C h∫0 crit

line) is in good agreement with the model’s numerical simulation results. Parameter combinations where (dark gray regions) lead to rapidh ! hcrit

variant clearance and generally lower peak parasite load. Parameter combinations where (light gray regions) lead to extended persistence ofh 1 hcrit

variants and peak parasite load close to carrying capacity. The insets show rapid clearance ( , ) and long persistence ( ,h p 20 C p 2K/3 h p 80
). Parameters as in table 1, and , .8C p 2K K p 10 x p 3

sponse is saturating with respect to (e.g., Hollingv � mii

type II). In contrast, if saturates with increasingf(V � M)
total parasite load, does not always hold, in particularhcrit

when host immunity is nonsaturating with respect to
. Next we explore the sensitivity of other infectionv � mii

characteristics such as the peak parasite number, variant
subpeaks, and slender/stumpy ratio to .h

Why Does the Block Size ( ) Matter?h

Our model captures a continuum of dynamic scenarios
from the limit of K, very large relative to C, to the limit
of C, very large relative to K. In the former case, specific
host immunity dominates, and all variants of the block
are quickly controlled by the action of specific antibodies
and phase II is short. In the latter case, differentiation
dominates, determining the peak at carrying capacity and
extending phase II. Let us consider the first limit: K tends
to infinity. So, parasite numbers are controlled only by
specific immunity, and the dynamics of each variant are
decoupled from each other. Assuming for a moment the
delay and , we study the case where the sen-t p 0 x p 1
sitivity of the immune response to parasite numbers is at
its strongest. As a consequence, the total peak in-Vmax

creases with the number of variants present in the block,

while the size of individual variant peaks and block(v )maxi

wave duration remain unaffected. In this case, only slender
cells are present, because density dependence mediating
stumpy cell production is absent.

Now consider the second limit: C tends to infinity. We
now have only general control through density-dependent
differentiation. This implies that the variants in the block
are completely coupled in their dynamics. In this case,

is determined by the within-host carrying ca-(V � M)max

pacity K, independent of block size. Conversely, individual
variant peaks, decrease linearly with , because(v � m ) hi maxi

variants now share the carrying capacity. The ratio of
slender-to-stumpy numbers initially favors the slender
forms during phase I, and the ratio gradually tends toward

during phase II. Because , differentiation-onlyd /r d ! rM M

control favors prevalence of the stumpy transmission
forms of the parasite.

Finally, the case of moderate C and K lies in between
the two scenarios. By varying , the dynamics smoothlyh

approaches one extreme or the other and the infection
characteristics show a different dependence on block size
(fig. 5). At the start of the infection , the dy-a (0) p 0i

namics of stumpy cells initially depends entirely on that
of slender cells, with . When is suf-2dm /dt p rhv /K rh/Ki i

ficiently small, that is, , then the number ofrh/K K c/C
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Figure 5: Infection characteristics as a function of . A, Peak parasiteh

load increases with when host immunity dominates in parasite control.h

B, Block wave duration increases with when differentiation is dominanth

for large block sizes. C, Slender-to-stumpy ratio decreases with towardh

the value mediated by differentiation dominance. The dashed andr/dM

dash-dotted lines illustrate that the effects of differentiation are accel-
erated by larger immune delay and small , whereas immunity dom-t K/C
inance is favored by small x and small . Parameter values: ,8t K p 10

(A); , (B); , (C). All other pa-9 8 8C p 10 t p 0 K p 10 x p 1.7 K p 10
rameters are as in table 1. Duration is calculated as the time it takes for

to fall below its initial value .3V � M V p 100

stumpy cells is small because parasite differentiation hap-
pens more slowly than immune action. This implies that
slender–immune system interaction governs the parasite
population dynamics, giving predominance of slender
forms , and hence, . Because(v ) k (m ) V k Mmax i max max maxi

of the weak coupling between variants, , , andV Mmax max

all increase with the block size , even though(V � M) hmax

the absolute magnitude of parasite load and block wave
duration is low. When exceeds , differentiationrh/K c/C
happens faster and this results in higher stumpy cell pro-
duction. As increases, the stumpy cells catch up withh

the slenders during infection and even reach a higher peak.
Thus, the slender-to-stumpy ratio decreases,V /Mmax max

with tending toward the value determined by differen-h

tiation dominance (fig. 5C).
In general, the relative dominance of specific over gen-

eral parasite control can be counterbalanced by opposite
changes in parameters. Block wave duration, for example,
increases as a function of faster when x is large but moreh

slowly instead when the ratio is large (fig. 5B). WhenK/C
we also consider cases where and , numericalt 1 0 x ≥ 1
simulations reveal that differentiation dominance occurs
at even smaller block sizes than when andt p 0 x p 1
(fig. 5A). A large delay or large x favors the decouplingt

between current levels of parasite load and immune re-
sponse. This decoupling generally results in the individual
variant dynamics being controlled more strongly via den-
sity-dependent differentiation. In summary, in immunity-
dominant scenarios, the peak parasite load increases with

, whereas in differentiation-dominant scenarios, blockh

wave duration increases with . These two quantities, to-h

gether with stumpy-to-slender dominance, clearly have an
important bearing on parasite transmission, resulting thus
in a high selective pressure on the block size .h

Multiple-Block Dynamics N p Bh

So far, we have focused only on a subset of the antigenic
archive, namely, variants that emerge at the same time
within the host, neglecting their switching. In the follow-
ing, we analyze stochastic switching between blocks leading
to the dynamics of the full model (fig. 2), where new
variants arise at different times. In order to obtain infection
dynamics exhibiting multiple peaks, the archive must be
composed of many blocks (i.e., ), each block in iso-B 1 1
lation must be relatively small (i.e., ), and the over-h ! hcrit

lap between consecutive block waves in an infection must
also be small; that is, between-block switching must be
small ( ).� K 1
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The Critical Variant Activation Rate

A unique feature of the stochastic model and observed in
experiments is that some variants never arise during in-
fection. To understand this phenomenon, we go back to
the entries of the switch matrix S. We define the mean
activation rate of a new variant i in the system approxi-
mately as

1
s̄ p s , (8)�i ji

h j�current block

under the assumption that the major contribution in
switching comes from the block of variants currently grow-
ing in the host. Through , the variants of any new blocks̄i

can be ranked, from high activation rate ( large) to lows̄i

activation rate variants ( small). Besides the higher-levels̄i

organization of variants in units of blocks, there is thus
another layer of hierarchy in terms of mean activation
rates, which fine-tunes sequential variant appearance
within a block. Notice from the construction of the switch
matrix that these mean activation rates all belong to the
same order of magnitude , where q is the within-block�q
average switch rate and .� K 1

Recall that is the probability that variant i has notP(t)i

yet emerged in the host by time t. Substituting equation
(8) into the original equation for , we get the simplerPi

equation

dPi ¯p �PsV, (9)i idt

where is the slender-cell population from the currentV(t)
block of variants. Solving equation (9) gives

t

¯P(t) p exp �s V(s)ds . (10)i i�( )
0

In order to better understand stochastic variant gen-
eration, we simplify the analysis (for details, see “The Crit-
ical Activation Rate ” in the appendix) by assuming thescrit

same stochastic generation threshold for each variant, fol-
lowing the deterministic approximation approach used by
Kepler and Perelson (1995). If a variant is never generated,
this means that the probability never reaches the re-P(t)i

quired generation threshold. The explanation lies in the
interaction between variant mean activation rate and thes̄i

total slender cell number within a block . Noticet V(s)ds∫0

that when a block contains a few variants, the integral
is bounded, as all phases of the dynamics are short.t V(s)ds∫0

This leads to a critical lower bound for (see “The Criticals̄i

Activation Rate ” in the appendix):scrit

1
s p , (11)crit 2Kt

such that for variant i of the new block will nevers̄ ! si crit

be generated, and for variant i may be generateds̄ 1 si crit

(fig. 6).
Unsurprisingly, is determined by K, the within-hostscrit

carrying capacity, and , the delay in immune responset

activation. When K and are large, each block of variantst

grows to a higher level and persists longer within the host
before being suppressed by the host’s immune system, as
discussed in “Single-Block Dynamics.” The threshold,scrit

being low, in this case favors the parasite by allowing rare
variants to play their part in the dynamics, thus prolonging
infection. In general, any changes in parameter values that
increase the total replicative potential, , of the cur-t V(s)ds∫0

rent antigenic block lower and facilitate stochasticscrit

emergence for future blocks.
Interestingly, the carrying capacity K appears so far to

have two very important roles in the full dynamics of the
model: it controls the duration of phase II in each block
wave, and at the same time it affects switching between
consecutive blocks. Also, the immune response delay ap-
pears be involved in both critical thresholds, andhcrit

, consistent with previous studies showing that delaysscrit

in immune activation considerably affect the window of
opportunity for the pathogen to exploit its host before
being suppressed by the immune system (Fenton et al.
2006).

Effects of the Switch Matrix

There are three main properties of the antigenic archive
reflected in the switch matrix of our model: the size of a
single block , the number of blocks B, and between-blockh

switch rates determined by . We find that when single�
blocks get larger, infection duration increases, but if ish

too large, infection persists indefinitely, independently of
the number of blocks and their between-block
connectivity.

If the number of blocks B increases, infection duration
and the number of peaks increase almost linearly, without
affecting the nature of the dynamics of each peak. We
observe that archive modularity, that is, larger B, enhances
the overall oscillatory behavior and the sharpness of in-
dividual peaks in infection, even when the total number
of variants N is kept constant. We expect that a sharp
parasite peak in a real infection may well indicate a small
antigenic block and strong variant-specific immune con-
trol. If the shape of a peak appears rounder, this may
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Figure 6: Role of in infection dynamics. When between-block switch rates are reduced, subsequent peaks occur farther and farther apart and�

a smaller proportion of the archive can be generated during infection, as more variants have mean activation rates below s p 1/(2Kt) pcrit

. The proportion of the archive refers to the number of variants expressed during infection over the total number of variants N. Parameter�85 # 10
values: , , , , and . All other parameters are as in table 1. The switch matrix follows the hierarchical mode8K p C p 10 x p 3 t p 10 N p 30 h p 5
in figure 1B. A color version of this figure is available in the online edition of the American Naturalist.

suggest a larger number of variants contained therein and
a weak immune control. An important feature of infection
dynamics, then, the variability of peak densities, provides
a further clue about dynamical mechanisms that may be
responsible for parasite population cycles within the host.
This property we find in infection dynamics is reminiscent
of the critical interaction between top-down and bottom-
up control, appearing widely in many other ecological con-
texts (see Turchin et al. 2000 for an example from lemming
population cycles).

Finally, when between-block switch rates are lower, �
goes down, and the separation between block waves in-
creases, giving longer infection duration overall. But there
is a trade-off: if between-block switch rates are too low,
variants of subsequent blocks may not be generated at all
(fig. 6). This is related to the phenomenon discussedscrit

in the previous section. So if switching between blocks is
low, the benefit from longer duration must offset the risk
of stochastic parasite extinction.

Extensions of the Standard Model

The current model may be extended to capture a more
realistic host immune response. Arguably, our formulation
so far neglects decay in antibody responses, but this as-

sumption is not an oversimplification for trypanosome
infections, where immune memory plays a central role.
Undoubtedly, when more data become available, a mech-
anistic description of antibody and memory B cell dynam-
ics would be preferable to the phenomenological approach
adopted here. However, we explore three other immune
scenarios that might prove important: (1) the existence of
prior immunity against some variants, (2) cross-reactivity
between different variants, and (3) immunosuppression as
a result of active infection in the host. Clearly, these ex-
tensions affect the dynamics mostly when host immunity
dominates in controlling an infection.

Prior Immunity

The existence of prior immunity results in partially im-
mune hosts either via prior exposure to infection or via
vaccination, having provided some initial level of strain-
specific immunity. We find that the size of a single block
becomes especially important when there is prior im-
munity against some variants: the larger the block, the
higher the chance for the parasite to establish an infection
by switching sufficiently fast to a variant unseen before.
Notice that phase I of the dynamics of any variant occurs
only if the level of preexisting immunity against this var-
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Figure 7: A, Infection duration as a function of between-block cross-reactivity . Intermediate values of cross-reactivity are good from the pathogen’sg

perspective as they allow longer persistence and enhance transmission. B, As gets too large, not only is infection duration reduced but also stochasticg

emergence of new variants is made impossible, and only a small repertoire of variants is ever seen. Parameters as in table 1, with , ,N p 15 h p 5
, , and S nonhierarchical as in figure 1B. Duration is calculated here as the time it takes for to fall below its initial value8K p C p 10 x p 2 V � M

. A color version of this figure is available in the online edition of the American Naturalist.3V p 100

iant is low, more precisely if and ifa (0) ! r/d v (0) !i i

. If the size of the first block is too small,K(1 � da (0)/r)i

then there are only a few new variants available for ex-
pression, and the parasite risks immediate extinction in
the partially immune host. This suggests another selective
pressure on the size of single blocks in the antigenic archive
of trypanosomes, namely, the requirement to seed an in-
fection in partially immune host individuals.

Cross-Reactivity

There is evidence that trypanosome mosaic VSG variants
emerging in the chronic stages of infection, with at least
75% sequence identity, exhibit high levels of cross-
reactivity (Marcello and Barry 2007b). Variants within an
antigenic block generally have a high sequence identity,
whereas variants across blocks have a low sequence iden-
tity. In this context, by adding cross-reactivity into the
model, we introduce positive coupling between specific
immune responses, allowing existing immune responses
against particular variants to partially clear other variants.
The model is modified by replacing and in equa-da dai i

tions (1) and (2) with and , where
N N

d � a g d� a gj ji j jijp1 jp1

reflects the probability that antibodies raised againstgji

variant j can clear variant i. In other systems, including
malaria, cross-reactivity has been proposed, at least on a
theoretical level, to play a significant role on the order of
variant expression (Recker et al. 2004). In trypanosome
antigenic variation however, we find this is not the case.

We find that uniform cross-reactivity within a block acts
as a general background immunity increasing the net clear-
ance rate of each variant of that block. When the block
size is large, this results in a lower peak parasite load, the
opposite of what was seen in the immunity-dominant sce-
narios of “Why Does the Block Size ( ) Matter?” However,h

when differentiation dominates in parasite control, cross-
reactivity has no effect on the dynamics, as the growth
inhibition of the parasite due to differentiation is generally
much stronger and more significant than the growth in-
hibition due to cross-reactivity. Thus, variant peaks still
decrease with and the block wave duration increases withh

, but with cross-reactivity, their sensitivity to is higher.h h

Cross-reactivity between subsequent archive blocks adds
into the model another factor of relatedness between par-
asite variants besides the switch matrix. Unlike the switch
matrix that determines how fast the parasite moves in
antigenic space, cross-reactivity marks how advantageous
that movement really is.

Paradoxically, for intermediate values of uniform cross-
reactivity between blocks, the parasite is able to prolong
infection (see fig. 7), because persistent immunity raised
against the early variants is sufficient to suppress later
variants causing their specific antibody responses not to
saturate quickly to maximum. This leads to lower levels
of future parasite peaks within the host, as more variants
emerge but are spread over a longer time scale, an effect
previously shown also for Plasmodium (Recker and Gupta
2006).
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For higher between-block cross-reactivity, however, un-
surprisingly, clearance of future variants happens more
rapidly, decreasing both the parasite load and infection
duration. Furthermore, depending on the immune re-
sponse sensitivity x, the level of cross-reactivity between
consecutive antigenic blocks may play a role in determin-
ing the relative critical threshold for the new block size as
a function of the size of the previous block. We find that
in the presence of between-block cross-reactivity, there are
cases when later antigenic blocks can persist more easily
( smaller) if earlier antigenic blocks are large. This anal-hcrit

ysis suggests that immune cross-reactivity across trypano-
some variants may be important in within-host infection
progression, affecting not only the infection peak but also
its overall duration, with potential implications for host
health and infection transmission.

Immunosuppression

It has been shown that the host’s capacity to control an
infection may be limited: in inbred mice, the supply of
naive B cells can decrease dramatically during a trypano-
some infection, with the consequent decrease in the rate
of production of specific antibodies (Radwanska et al.
2008). While the exact nature of immunosuppression may
be determined by a series of different factors, we consid-
ered only the number of antigenic variants as a factor,
which represents the most conservative case.

When immunosuppression results only from variantsh

within a block, equation (3) is replaced with

x

da c v (t � t) � m (t � t)i ii ( )p 1 � a , (12)i[ ]dt A(h) C

where . We find that in the pres-ah ahA(h) p fe /(f � e � 1)
ence of immunosuppression, increases in the block size

produce even higher increases in the peak total para-h

site load than previously shown. However, as differen-
tiation becomes stronger with increasing , effects fromh

within-block immunosuppression become weaker, and
the density-dependent effects from differentiation, which
lower variant peaks, become dominant. So in general, for
moderate immunosuppression, the qualitative behavior
of the system is very similar to the inexhaustible immune
response case analyzed throughout “Single-Block
Dynamics.”

However, when immunosuppression acts as a function
of the cumulative number of variants generated over the
whole infection, the effects can be more dramatic. Equa-
tion (3) is now

x

da c v (t � t) � m (t � t)i ii ( )p 1 � a , (13)i[ ]dt A(N ) Ct

where refers to the total number of variants generatedNt

up to time t. Simulations show that depending on the
maximum level of immunosuppression , the growth ratef

of specific immune responses against later variants can be
gradually reduced to very low levels that allow them to
persist and possibly overwhelm the host.

Discussion

Although a large number of studies have addressed try-
panosome within-host infections, focusing on isolated as-
pects of the dynamics like variant order (Seed 1978; Ko-
sinski 1980; Agur et al. 1989; Turner and Barry 1989), the
interaction of specific and cross-reactive host immunity,
(Antia et al. 1996), the connectivity pathways between var-
iants (Frank 1999; Lythgoe et al. 2007), and parasite den-
sity–dependent differentiation into the stumpy parasite
form (Tyler et al. 2001; Savill and Seed 2004), none of the
models therein have analyzed all those aspects together in
one context. The current model binds all these elements
in a common framework, offering deeper insight into try-
panosome dynamics and closer integration of these dy-
namics with switching mechanics revealed by the increas-
ing availability of parasite genetic data.

The model illustrates how the structure of the parasite
antigenic archive dictates critical thresholds at the within-
host level, which have important implications for infec-
tion. The balance between specific immunity and parasite
differentiation, while determining many features of
chronic infection, such as peak parasite load, duration,
and slender/stumpy ratio, emerged to be very sensitive to
the size of one antigenic block, . Variance in the size ofh

different blocks in the switch matrix can make this balance
dynamic over the course of an infection, giving rise to
variability in infection profiles. Another finding of the
model is that demographic stochasticity, as shown also by
Sasaki and Haraguchi (2000), can matter in within-host
antigenic variation dynamics, in our case especially, since
the switch rates between variants range over several orders
of magnitude. The effects of stochastic variant emergence
are particularly important early, when the parasite infects
partially immune hosts, and generally in the chronic phase,
where the maintenance of infection depends on rapid
jumps between antigenic blocks. The minimum switch
rate, , required for stochastic generation of a new var-scrit

iant is an emergent property of the model and is not
dependent on the details of the switch matrix. In particular,
when a hierarchical switch matrix is assumed (see fig. 1B),
the critical switch rate requirement is even stronger.
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Two different chronic infection scenarios arise from the
model. A stationary chronic infection, where phase II lasts
indefinitely, requires a single block to be large enough to
allow differentiation to dominate parasite control within
the host. In this case, the same variants persist throughout
the infection, limited only by the carrying capacity. An
oscillatory infection with multiple peaks (characteristic of
typansome infection), requires small single blocks, so that
immune-mediated clearance of each block is possible, and
sufficiently high between-block switch rates to enable ex-
ploration of other antigen blocks. The latter scenario is
characterized by sequential emergence of new variants.
These two requirements correspond to the two critical
thresholds derived in this article, and . Essentially,h scrit crit

the parasite faces a trade-off for maximal use of its archive.
Jumping to consecutive blocks should occur neither too
fast, to avoid overwhelming the host, nor too slowly, to
avoid premature infection clearance.

For a fixed archive instead, these two chronic scenarios
(stationary and oscillatory) are attained for different levels
of host immune competence. We expect that in immune-
compromised hosts, stationary infection persistence is es-
tablished more easily, whereas in immune-competent
hosts, multiple-peak chronicity is established more easily.
This model prediction is confirmed by some existing em-
pirical studies (Hajduk and Vickerman 1981) but can be
tested further experimentally. The relative differences be-
tween these two scenarios link also to the general differ-
ences between acute and chronic infection (Alizon and
van Baalen 2008) and may have an important evolutionary
significance for the parasite.

How Genomic Data Can Inform the Model

The precise values of antigenic switch rates, lying at the
interface between parasite genetics and within-host dy-
namics, may be very difficult to extract empirically. In a
top-down approach, they would require a longitudinal
study of several parallel infections and multiple screenings
for variant identification at each peak. This way, an an-
tigenic network could be inferred statistically from co-
occurrences of variants. A few studies over the first 3–5
weeks of infection do show that individual variants are
predictable in time of appearance (Timmers et al. 1987;
Robinson et al. 1999; Marcello and Barry 2007a), but more
high-throughput approaches could be applied over longer
infection periods. Our model construct referring to the
block size would correspond then to the size of clustersh

in this network. In a bottom-up approach, relative switch
rates might be inferred from sequence analysis of VSG
gene flanks, as was achieved by Barbour et al. (2006), who
showed that gene flank characteristics dictate fine timing
of expression of variants in the bacterium Borrelia hermsii.

If the switch rates between trypanosome VSG variants
can be mechanistically derived from genetic processes in
the antigenic archive, and if the rates of these genetic pro-
cesses are measured, then parameters of the switch matrix
such as , N, and can be properly quantified, and more-h �
over, the global structure of the switch matrix, whether
hierarchical or nonhierarchical, can be elucidated. Clearly,
a combination of bottom-up and top-down approaches
provides an ideal framework, where the model can meet
experiments.

Future Work and Perspectives

Whether a stationary or an oscillatory chronic infection
confers a higher fitness to the parasite remains unclear.
An oscillatory parasite load may be of selective advantage
over a stationary one, because its cumulative negative ef-
fect over time on host survival might be smaller, thereby
extending the transmission time window for the parasite.
Alternatively, the two strategies may endow the parasite
with equal fitness, arising in trypanosome strains adopting
one archive strategy or the other. If these different strains
cannot be found in the field, this might indicate that cer-
tain archive configurations are easier to attain genetically.

Next comes the question of how the critical thresholds
at the level of a single host affect parasite fitness at the
population level. We can now begin to ask, at which an-
tigenic block size do the virulence effects from long par-
asite persistence start to outweigh the transmission ben-
efits? How does this depend on the balance between
parasite differentiation and host immunity? The model
suggests that the continuum of differentiation-immunity
scenarios may favor different antigenic block sizes, in order
to maximize parasite load within the host. However, be-
cause trypanosomes are vector-borne parasites, after a
given threshold, an increase in the number of variants
under one peak ( ) and in the total parasitemia, may onlyh

increase virulence of the infection. In this sense, we would
expect very virulent strains, for example, strains with too-
large blocks in their VSG repertoire to be strongly
counterselected.

Although we have not embedded our within-host model
into an epidemiological context, some critical links with
transmission and virulence already can be seen to emerge
through parameters such as the within-host carrying ca-
pacity K. Related to the rate of parasite differentiation, K
plays a critical role as a ceiling for parasite population
growth, affecting ultimately the replication and transmis-
sion potential of the parasite. Clearly, using the model to
address infection across different host species would in-
volve some perturbation of K. Presumably, the size of the
host may influence K, serving as an ecological upper
bound, and some experimental data supporting this idea
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already exist (Barry 1986). However, more research is
needed to properly connect K to trypanosome infection
and antigenic variation. Possible avenues for elucidating
K from experiments, just to mention a few, could be the
empirical exploration of trypanosome quorum-sensing
mechanisms, a better understanding of the kinetics of the
stumpy induction factor triggering differentiation (Vassella
et al. 1997), and the identification of host mechanisms
that might be involved therein.

From the fact that the critical between-block switch rate
depends on K, it seems plausible that parasite genetic pro-
cesses, responsible for the VSG archive subfamily structure,
must ultimately evolve toward some K-dependent opti-
mum, ensuring sufficient separation between blocks but
also a minimum degree of connectivity. Any host factor
that reduces the parasite replication potential must be
counterbalanced by increases in between-block switch
rates (e.g., genetic identity between variant subfamilies) to
ensure stochastic generation of new blocks. Again one can
ask, but how large are the parasite transmission benefits
from expressing a higher number of blocks within a host,
compared to virulence costs? How does this depend on
the particular type of host and its ecology? Further research
in this direction, linking selection pressure at the within-
host and epidemiological levels with the genetic processes
operating on the parasite antigenic archive, could have
important implications for our understanding of trypano-
some evolutionary dynamics.
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APPENDIX

Mathematical Details

Switch Matrix Procedure

Begin with input parameters , N, , and . The switchh � j

matrix S has N variants, distributed in blocks, each con-
sisting of variants. Blocks lie on the diagonal of theh

matrix. The off-diagonal blocks contain between-block
switch rates. The nonhierarchical switch matrix is con-
structed as follows: (1) For each block, both on and off
the diagonal, we generate random uniformh # h

numbers in . (2) Then we normalize them so that[0, 1]
each row sums up to 1. We compute the within-block
average switch rate for blocks on the diagonal: q p

(3) We then apply the magni-N/hrj(� � 1)/[ln (2)(� � 1)].
tude structure according to figure 1B. The indicates thatn�
the between-block switch rate is times the averagen�
within-block switch rate q. (4) Finally, S is normalized
globally so that each row sums up to .rj/ ln (2)

Critical Block Size Threshold

Assuming that specific immune responses initially change
on a slower timescale than slender and stumpy cells, the
effect of immunity-mediated clearance during the growth
phase (phase I) can be neglected. Let denote theTgrowth

time it takes for the parasite population to reach the non-
trivial quasi–steady state given by solving equations (1)
and (2) with . As a result of the symmetry betweena p 0i

variants, at . Based on the quasi–v � m p K/h t p Ti growthi

steady state assumption for the parasite population, and
as a consequence of the delay in the stimulation of im-t

mune responses, starts to change at timea t pi

, obeying the following equation:T � tgrowth

xda /dt ≈ c(1 � a )(K/hC) ,i i

which implies

x0 ! a (t) ≤ 1 � exp [�ct(K/hC) ],i

for . This is the maximal rate of change fort ≥ T � tgrowth

; thus, the time it would take for to reach the requireda ai i

threshold for the initiation of infection clearance canr/d
be approximated by

xa (T ) p 1 � exp [�cT (K/hC) ] p r/d,i r/d r/d

giving

�xT ≈ �(K/hC) ln (1 � r/d)/c.r/d

If , the duration of phase II is rel-T ≈ t � T ≤ 2tnongrowth r/d

atively short, followed by fast decline in phase III. If
, the parasite numbers persist for a long timet � T 1 2tr/d

in the nongrowth phase. Assuming all other parameters
are fixed, the value of for which yields the criticalh T p tr/d

number of variants dividing the two regimes of fasthcrit

clearance and long persistence. Simple algebra reveals that

�1/xh p K/C[� ln (1 � r/d)/ct] ,crit

such that for specific immunity rapidly clears allh ! hcrit

variants of that block, whereas for differentiationh ≥ hcrit

is the main controlling force.
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The Critical Activation Rate scrit

Adopting the deterministic threshold approximation of
Kepler and Perelson (1995), we assume the same gen-
eration threshold for all new variants. Stochastic ar-1/e
rival times are then replaced by discrete arrival timesti

. When crosses the given threshold, andT P(t) T p ti i i

variant i is generated. The probability that variant i has
not yet been generated by time t is rewritten as P(t) pi

(see eq. [8]). Assuming that andt¯exp (�s V(s)ds) h ! h∫0i crit

so , and thus as for the current block,V p hv V r 0 t r �
we proceed by bounding the integral from above.t V(s)ds∫0

Because for all t, we have . Itt �V(t) ≥ 0, V(s)ds ! V(s)ds∫ ∫0 0

is easy to see that . Now, denote byV ! V � M ! Kmax max

the time it takes for the slender population V to reachtK

K growing exponentially from an initial population .V0

Recall from the previous section that . WeT ≤ 2tnongrowth

can now construct a piecewise upper bound for dV/dt
using standard Heaviside functions , correspondingH(z)
to each phase of the dynamics illustrated in figure 3, as
follows:

dV V � M
p r 1 � V � daV ! H(t � t)rVK( )dt K

2V
� H(t � t � 2t) rV � r � daVK ( )K

2V
! H(t � t)rV � H(t � t � 2t)rK K K

dVu:p .
dt

We have used the fact that host immunity ensures a 1

throughout phase III, that is, for time , andr/d t ≥ t � 2tK

also the fact that in the decline phase, stochastic extinction
of the parasite population occurs if V falls below some
critical value, . This happens at timeV K 1 T pext ext

. Thus,1/r(K/V � 1)ext

� Text

V (s)ds p V (s)ds� u � u

0 0

1 1 K
p K � 2t � log .[ ( )]r r Vext

Notice the dependence of the last expression on K, r, t,
and Vext, among which the major contribution is played
by the term . In fact, for suitably small , the con-2tK Vext

tribution of both terms and inside the1/r 1/r log (K/V )ext

bracket is . This way, . Thus,� �o(t) V(s)ds ! V (s)ds ≈ 2Kt∫ ∫0 0 u

we define the critical activation rate as , suchs p 1/2Ktcrit

that if , we haves̄ ! si crit

�

¯P(t) 1 exp �s V(s)dsi i�( )
0

�

1 exp �s V(s)ds 1 exp (�1)crit�( )
0

p 1/e, Gt,

which means variant i will never be generated.
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