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Properties of the expected log-likelihood

The key to proving and understanding the large sample (asymptotic) properties of maximum likelihood
estimators lies in obtaining some results for the expectation of the log-likelihood. In this section, some simple
properties of the expected log-likelihood are derived.

Let x1, x2, . . . , xn be independent observations from a p.d.f. f(x, θ) where θ is an unknown parameter with
true value θT . Treating θ as unknown, the likelihood and log-likelihood for θ are:

L(θ) ∝
n∏
i=1

f(xi, θ)

`(θ) = loge

(
n∏
i=1

f(xi, θ)
)

=
n∑
i=1

loge[f(xi, θ)] =
n∑
i=1

`i(θ)

where `i is the log-likelihood given only the single observation xi. Treating ` as a function of random variables
X1, X2, . . . , Xn means that ` is itself a random variable (and the `i are independent random variables). Hence
we can consider expectations of ` and its derivatives.

Result 1:

ET

(
∂`

∂θ

∣∣∣∣
θT

)
= 0

Where the subscript (T ) on the expectation is to emphasize that the expectation is w.r.t. f(x, θT ). The
proof goes as follows (where it is to be taken that all differentials are evaluated at θT , and there is sufficient
regularity that the order of differentiation and integration can be exchanged)

ET
(
∂`i
∂θ

)
= ET

(
∂

∂θ
log[f(x, θ)]

)
=

∫ 1
f(x, θT )

∂f

∂θ
f(x, θT )dx

=
∫
∂f

∂θ
dx = ∂

∂θ

∫
fdx

= ∂1
∂θ

= 0.

That the same holds for ` follows immediately.

Result 1 has the following obvious consequence in Result 2, since
(
ET
(
∂`
∂θ

∣∣
θT

))2
= 0 :

Result 2:

Var
(
∂`

∂θ

∣∣∣∣
θT

)
= ET

( ∂`

∂θ

∣∣∣∣
θT

)2


(Remember, Var(X) = E(X2)− (E(X))2)

Fishers Information Iθ is defined by:

Iθ ≡ ET

( ∂`

∂θ

∣∣∣∣
θT

)2

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It can be shown that:

Result 3:

Iθ ≡ ET

( ∂`

∂θ

∣∣∣∣
θT

)2
 = −ET

[
∂2`

∂θ2

∣∣∣∣
θT

]

Iθ is referred to as the information (i.e. Fishers information) about θ contained in the data. This
terminology refers to the fact that if the data tie down θ very closely (and accurately) then the log-likelihood
will be sharply peaked in the vicinity θT (i.e. high Iθ), whereas data containing little information about θ
will lead to an almost flat likelihood and low Iθ.

The proof of result 3 is as follows. For a single observation, result 1 says that∫
∂ log(f)
∂θ

fdx = 0

Differentiating again w.r.t. θ yields ∫
∂2 log(f)
∂θ2 f + ∂ log(f)

∂θ

∂f

∂θ
dx

but
∂ log(f)
∂θ

= 1
f

∂f

∂θ

and hence

∂ log(f)
∂θ

f = ∂f

∂θ

and so

∫
∂2 log(f)
∂θ2 fdx = −

∫ [
∂ log(f)
∂θ

]2
fdx

which is

ET

[
∂2`i
∂θ2

∣∣∣∣
θT

]
= −ET

( ∂`i
∂θ

∣∣∣∣
θT

)2


The result follows from this (given the independence of the `i).

Now notice that result 1 says that the expected log-likelihood has a turning point at θT , while since Iθ is
non-negative, result 3 indicates that this turning point is a maximum. So the expected log-likelihood has a
maximum at the true parameter value.

Note also that although the results presented here were derived assuming that the data were independent
observations from the same distribution, this is in fact much more restrictive than is necessary, and the
results hold more generally. Similarly the results generalize immediately to vector parameters.
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In this case result 3 is:

Result 3 (vector parameter)

Iθ ≡ ET


(
∂`
∂θ1

)2
∂`
∂θ1

∂`
∂θ2

.

∂`
∂θ2

∂`
∂θ1

(
∂`
∂θ2

)2
.

. . .

 = −ET


∂2`
∂θ2

1

∂2`
∂θ1∂θ2

.
∂2`

∂θ2∂θ1
∂2`
∂θ2

1
.

. . .


Results 1 and 3 do not establish that this maximum is the global maximum of the expected log-likelihood
but a more involved proof shows that this is the case. This will not be proved here.

Large sample distribution of θ̂

To obtain the large sample distribution of the MLE θ̂ we make a Taylor expansion of the derivative of the
log-likelihood around the true parameter θT and evaluate this at θ̂.

∂`

∂θ

∣∣∣∣
θ̂

' ∂`

∂θ

∣∣∣∣
θT

+
(
θ̂ − θT

) ∂2`

∂θ2

∣∣∣∣
θT

and from the definition of the MLE the left hand side must be zero, so we have that

(
θ̂ − θT

)
'

∂`/∂θ|θT

− ∂2`/∂θ2|θT

with equality, in the large sample limit (by consistency of θ̂).

Now the top of this fraction has expected value zero and variance Iθ (from earlier), but it is also made up
of a sum of independent and identically distributed random variables, ∂`i/∂θ, so that by the central limit
theorem as n → ∞ its distribution will tend to N(0, Iθ). By the law of large numbers we also have that
as n → ∞, −∂2`/∂θ2

∣∣
θ0
→ Iθ (in probability). So in the large sample limit (θ̂ − θT ) is distributed as an

N(0, Iθ) random variable divided by Iθ. i.e. in the limit as n→∞(
θ̂ − θT

)
∼ N(0, I−1

θ ).

The result generalizes to vector parameters:

θ̂ ∼ N(θT , Iθ−1)

in the large sample limit. Again the result holds generally and not just for the somewhat restricted form of
the likelihood which we have assumed here.

Usually, of course, Iθ will not be known any more than θ is and will have to be estimated by plugging θ̂ into
the expression for Iθ. In fact, often the sample information matrix K(x), which is just the negative of the
hessian (−H) of the log-likelihood evaluated at the MLE, is an adequate approximation to the information
matrix Iθ itself.

This provides:

θ̂MLE ∼ N(θT ,K(x)−1)

.
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