The classification of 8-dimensional E-manifolds

Csaba Nagy

9 July 2020

Supervisor: Diarmuid Crowley

M is an *E*-manifold if $H_{2k+1}(M; \mathbb{Z}) \cong 0$ for all *k*.

We will consider smooth, closed, simply-connected, oriented E-manifolds.

Examples

- Homotopy spheres (in even dimensions)
- Complex and quaternionic projective spaces
- Bott-manifolds
- Complex projective complete intersections (in even complex dimensions)

Our goal is to give a method to classify 8-dimensional E-manifolds up to diffeomorphism.

Known results

- The only 2-dimensional E-manifold is S^2 .
- In dimension 4 the homeomorphism classification was obtained by Freedman, the diffeomorphism classification is unknown.
- In dimension 6 classification up to diffeomorphism was given by Wall and Jupp.

The classification of E-manifolds will consist of 4 steps:

- 1. Define an action of $\Theta(r, w)$ on E(r, w)
- 2. Compute the group $\Theta(r, w)$
- 3. Classify the orbits of the action
- 4. Compute the stabilizers of the orbits

This talk will have 5 parts:

- 1. Define an action of $\Theta(r, w)$ on E(r, w)
- 2. Compute the group $\Theta(r, w)$
- 3. Classify the orbits of the action
- 4. The Q-form conjecture
- 5. Compute the stabilizers of the orbits

1. Definitions

Definition

A polarized E-manifold is a pair (M, φ) , where M is an E-manifold and $\varphi : H_2(M) \to \mathbb{Z}^r$ is an isomorphism for some r.

Definition

For an $r \ge 0$ and $w : \mathbb{Z}^r \to \mathbb{Z}_2$ let

$$E(r,w) = \left\{ (M,\varphi) \middle| \begin{array}{l} M \text{ is an E-manifold} \\ \varphi: H_2(M) \cong \mathbb{Z}^r \\ w_2(M) = w \end{array} \right\} \middle/ \sim$$

where the equivalence relation \sim is orientation-preserving diffeomorphism, compatible with $\varphi.$

Example

E(0,0) consists of 3-connected 8-manifolds.

Remark

If $w, w' : \mathbb{Z}^r \to \mathbb{Z}_2$ are both non-zero, then there is an isomorphism $I : \mathbb{Z}^r \to \mathbb{Z}^r$ such that $w = w' \circ I$. Then $(M, \varphi) \mapsto (M, I \circ \varphi)$ is a bijection $E(r, w) \to E(r, w')$.

Definition

 $\operatorname{Aut}(w) = \{f : \mathbb{Z}^r \to \mathbb{Z}^r \mid f \text{ is an isomorphism}, w \circ f = w\}.$

Proposition

Aut(w) acts on E(r, w) by $(M, \varphi)^f = (M, f \circ \varphi)$. The set of diffeomorphism classes of spin E-manifolds with $b_2 = r$ is $E(r, 0) / \operatorname{Aut}(\mathbb{Z}^r)$. The set of diffeomorphism classes of non-spin E-manifolds with

 $b_2 = r$ is $E(r, w) / \operatorname{Aut}(w)$ for any non-zero w.

For an $r \ge 0$ and $w : \mathbb{Z}^r \to \mathbb{Z}_2$ let

$$T = T(r, w) \approx D_1 \natural D_2 \natural \dots \natural D_r$$

where

- each D_i is a D^6 -bundle over S^2
- D_i is trivial if and inly if $w(e_i) = 0$, where e_1, e_2, \ldots, e_r is the standard basis of \mathbb{Z}^r

T is well-defined up to diffeomorphism, because there is a unique nontrivial D^6 -bundle over S^2 ($\pi_2(BSO_6) \cong \mathbb{Z}_2$)

1. Definitions

Definition

If $(M, \varphi) \in E(r, w)$, then φ determines an embedding $T \to M$:

- The basis elements $e_1, e_2, \ldots, e_r \in \mathbb{Z}^r \cong H_2(M) \cong \pi_2(M)$ are represented by disjoint embedded spheres $S^2 \hookrightarrow M$
- The normal bundle of an S^2 is an element of $\pi_2(BSO_6) \cong \mathbb{Z}_2$, classified by the Stiefel-Whitney class w_2
- Since w₂(M) = w, the tubular neighbourhood of the ith sphere is diffeomorphic to D_i (trivial iff w(e_i) = 0)
- The diffeomorphism between D_i and the neighbourhood of the ith sphere is unique up to isotopy, because π₂(SO₆) ≅ 0

Therefore the boundary connected sum of the tubular neighbourhoods of the spheres is an embedded copy of T in M, and the embedding is well-defined up to isotopy.

There is a binary operation $\#_2$ on E(r, w):

$$(M_1,\varphi_1)\#_2(M_2,\varphi_2)=(M,\varphi)$$

where

$$M = (M_1 \setminus T) \cup_{\partial T} (M_2 \setminus T)$$

and $\varphi: H_2(M) \to \mathbb{Z}^r$ is the composition of the isomorphisms

$$H_2(M) \leftarrow H_2(\partial T) \rightarrow H_2(T) \cong \mathbb{Z}^r$$

Proposition

 $(E(r, w), \#_2)$ is a commutative monoid. The zero element is $T \cup_{\partial T} T$.

$$\Theta(r,w) = \{(M,\varphi) \in E(r,w) \mid H_4(M) \cong 0\} / \sim$$

Proposition

 $\Theta(r, w)$ is the group of invertible elements of E(r, w).

Proof.

- $H_4(M_1 \#_2 M_2) \cong H_4(M_1) \oplus H_4(M_2)$ for any $M_1, M_2 \in E(r, w)$. So if $M \in E(r, w)$ is invertible, then $H_4(M) \cong 0$.
- Elements of $\Theta(r, w)$ are invertible, because $\Theta(r, w) \cong \pi_0 \operatorname{SDiff}(\partial T)$.

$$\operatorname{SDiff}(\partial T) = \{g \in \operatorname{Diff}(\partial T) \mid H_*(g) = \operatorname{id}\}$$

Proposition

If $(M, \varphi) \in \Theta(r, w)$, then $M \approx T \cup_g T$ for some $g \in \text{SDiff}(\partial T)$.

Corollary

$$\Theta(r, w) \cong \pi_0 \operatorname{SDiff}(\partial T).$$

Example

$$\Theta(0,0) \cong \pi_0 \operatorname{Diff}_+(S^7) \cong \Theta_8 \cong \mathbb{Z}_2.$$

 $\Theta(r, w)$ acts on E(r, w) by $\#_2$.

Via the isomorphism $\Theta(r, w) \cong \pi_0 \operatorname{SDiff}(\partial T)$ we also get an action of $\pi_0 \operatorname{SDiff}(\partial T)$ on E(r, w).

Proposition

The action of $g \in \text{SDiff}(\partial T)$ on $(M, \varphi) \in E(r, w)$ is given by

$$(M,\varphi)^g = ((M \setminus T) \cup_g T,\varphi)$$

Theorem

- $\Theta(r,0) \cong \mathbb{Z}^a \oplus \mathbb{Z}_2^b$, where $a = 6\binom{r+2}{5}$, $b = 2\binom{r+3}{4} \binom{r-1}{2} + 2$.
- $\operatorname{rk}\Theta(r,w) = a.$

•
$$\Theta(1,1) \cong \mathbb{Z}_4$$
.

Idea of proof: Identify $\Theta(r, w)$ with other groups that can be computed by well-known methods

- $P_3(T)$ is the third Postnikov-stage of $T \simeq \vee^r S^2$.
- ξ is a bundle over $P_3(T)$ such that $w_2(\xi) = w$.
- $\Omega_8^{String}(P_3(T),\xi)$ is a twisted String bordism group: an element is represented by a map $f: N \to P_3(T)$ together with a String structure on $\nu_N \oplus f^*(\xi)$.
- $\hat{\Omega}_8^{String}(P_3(T),\xi)$ is the subgroup of $\Omega_8^{String}(P_3(T),\xi)$ consisting of maps $f: N \to P_3(T)$ such that $\sigma(N) = 0$.

There is twisted Atiyah-Hirzebruch spectral sequence ("James spectral sequence") converging to $\Omega_8^{String}(P_3(T),\xi)$

2. The group $\Theta(r, w)$

Proposition

$$\Theta(r,w) \cong \hat{\Omega}_8^{String}(P_3(T),\xi).$$

Proof.

A homomorphism $\Theta(r, w) \rightarrow \hat{\Omega}_8^{String}(P_3(T), \xi)$ is defined as follows: Let $(M, \varphi) \in \Theta(r, w)$

- The embedding T o M determines a map $P_3(T) o P_3(M)$
- It has a homotopy inverse $P_3(M) o P_3(T)$
- For the composition $f : M \to P_3(M) \to P_3(T)$ the bundle $\nu_M \oplus f^*(\xi)$ has a unique String structure

•
$$\sigma(M) = 0$$

This is an isomorphism.

Theorem

The orbits of the action of $\Theta(r, w)$ on E(r, w) are classified by the cohomology ring and the Pontryagin-class p_1 . More precisely, the following are equivalent:

- $M \approx M' \#_2 \Sigma$ for some $\Sigma \in \Theta(r, w)$.
- There is a ring isomorphism $H^*(M) \to H^*(M')$ that is compatible with the maps $\varphi^* : \mathbb{Z}^r \cong H^2(M)$ and $(\varphi')^*$ and preserves p_1 .

Special cases were proven by:

- Wall ('62): *r* = 0
- Schmitt ('02): any r and w = 0

Proof.

Handlebody decomposition of $M \in E(r, w)$:

$$D^8 = W_0 \subseteq W_2 \subseteq W_4 \subseteq W_6 \subset W_8 = M$$

where $W_i = W_{i-2} \cup i$ -handles

- $W_2 \approx T$
- $M \setminus W_4 \approx T$
- $M = W_4 \cup T$
- $M \approx (M')^g$ for some $g \in \mathrm{SDiff}(\partial T) \Leftrightarrow W_4 \approx W'_4$
- W_4 is determined by $H^*(M)$ and $p_1(M)$

Let ξ be a stable vector bundle over some space B. For a manifold M the map $f : M \to B$ is a *normal k-smoothing*, if

• $\pi_i(f)$ is an isomorphism for $i \le k$ and $\pi_{k+1}(f)$ is surjective (that is, f is a (k+1)-equivalence)

•
$$\nu_M \cong f^*(\xi)$$

Proposition

Every manifold M has a canonical k-smoothing

 $M \to B^k(M)$

4. The Q-form conjecture

Definition

The k^{th} stage of the Moore-Postnikov factorization of a map $f: X \to Y$ is a space $MP_k(f)$ together with maps $f_1: X \to MP_k(f)$ and $f_2: MP_k(f) \to Y$ such that

- $f = f_2 \circ f_1$
- $\pi_i(f_1)$ is an isomorphism for i < k and $\pi_k(f_1)$ is surjective
- $\pi_i(f_2)$ is an isomorphism for i > k and $\pi_k(f_2)$ is injective

Examples

- If $Y \simeq *$, then $MP_{k+1}(f) = P_k(X)$ is a Postnikov-stage of X.
- If $X \simeq *$, then $MP_k(f)$ is the k-connected cover of Y.

4. The Q-form conjecture

Definition

The normal k-type of M is

$$B^k(M) = MP_{k+1}(\nu_M)$$

where $\nu_M : M \to BO$ is the classifying map of the stable normal bundle of M.

Proposition

- $M \to B^k(M)$ is a normal k-smoothing.
- B^k is a functor.

Example

 $B^{3}(T) = P_{3}(T) \times BString \text{ and } \Omega_{8}(B^{3}(T)) = \Omega_{8}^{String}(P_{3}(T),\xi).$

Fix some even positive integer q and a space B with a stable bundle ξ over it. If M is a 2q-dimensional manifold and $f: M \to B$ is a (q-1)-smoothing, then the Q-form of f is the triple

$$Q(f) = (H_q(M), \lambda_M, f_*)$$

where

- $\lambda_M : H_q(M) \times H_q(M) \to \mathbb{Z}$ is the intersection pairing
- $f_*: H_q(M) \to H_q(B)$ is induced by f

Theorem (Q-form conjecture, torsion-free case)

Let M and M' be simply-connected 2q-manifolds, and W be a cobordism between them. Let $F: W \to B$, $f = F|_M$, $f' = F|_{M'}$, and suppose that F, f and f' are all (q - 1)-smoothings. If

- $Q(f) \cong Q(f')$
- $H_q(B)$ is torsion-free

then W is cobordant to $M \times [0,1]$, therefore $M \approx M'$.

Remark

By Kreck's modified surgery theory, the existence of a bordism F between the (q - 1)-smoothings f and f' is equivalent to the condition that M and M' are stably diffeomorphic (that is, $M \# k(S^q \times S^q) \approx M' \# l(S^q \times S^q)$ for some k, l). Recall that the inertia group an *n*-manifold *M* is the subgroup $\{\Sigma \in \Theta_n \mid M \# \Sigma \approx M\} \le \Theta_n$.

Definition

The *(extended) inertia group* of an E-manifold $M \in E(r, w)$ is the subgroup

$$I(M) = \{\Sigma \in \Theta(r, w) \mid M \#_2 \Sigma \approx M\} \le \Theta(r, w)$$

We will use the Q-form conjecture to determine the inertia group of E-manifolds.

5. Inertia groups

Suppose that $M \in E(r, w)$ and $\Sigma \in \Theta(r, w)$. Let $B = B^3(M)$ and let $f : M \to B$ be the canonical map. Let $M' = M \#_2 \Sigma$.

Lemma

a)
$$B^3(M') = B$$

b)
$$Q(f) \cong Q(f')$$
, where $f': M' \to B$ is the canonical map.

Proof.

a) Recall that $M = W_4 \cup T$ and $M' = W_4 \cup_g T$, where $g \in \text{SDiff}(\partial T)$ is the diffeomorphism corresponding to Σ . The embeddings $M \leftarrow W_4 \rightarrow M'$ induce homotopy equivalences $B^3(M) \leftarrow B^3(W_4) \rightarrow B^3(M')$. b) Q(f) is determined by W_4 and the map $W_4 \rightarrow B^3(W_4)$.

Proposition

f and f' are bordant over $B \iff \Sigma \in I(M)$

Since $M' = M \#_2 \Sigma$, in the bordism group $\Omega_8(B)$

 $[M', f'] = [M, f] + j_*([\Sigma])$

where $[\Sigma] \in \hat{\Omega}_8^{String}(P_3(T), \xi) = \Theta(r, w)$ and $j_* : \Omega_8^{String}(P_3(T), \xi) = \Omega_8(B^3(T)) \to \Omega_8(B) = \Omega_8(B^3(M))$ is the homomorphism induced by $j : B^3(T) \to B^3(M)$

Theorem

$$I(M) = \operatorname{Ker}\left(j_*: \hat{\Omega}_8^{String}(P_3(T), \xi) \to \Omega_8(B^3(M))\right)$$

Theorem

• If $M \in E(0,0)$, then

$$I(M) = egin{cases} 0 & \mbox{if } p_1 \ \mbox{is divisible by 8} \ \Theta(0,0) \cong \mathbb{Z}_2 & \mbox{otherwise} \end{cases}$$

• If $M \in E(1,1)$, $\pi_3(M) \cong 0$ and $w_4(M) \neq 0$, then

$$I(M) = \Theta(1,1) \cong \mathbb{Z}_4$$

• If $M \in E(r, w)$, $\cup_2 : H^2(M) \times H^2(M) \rightarrow H^4(M)$ is trivial and $p_1 = 0$, then I(M) = 0

• The subgroup $I(M) \leq \Theta(r, w)$ only depends on \cup_2 and p_1 .