Cobordism groups of branched coverings

Csaba Nagy

Department of Analysis, Eötvös Loránd University, Budapest, Hungary

Marseille, February 2015

Definition

Let M' and M be closed oriented smooth n-manifolds. Let z^{j} denote the complex j^{th} power function.

The smooth map $f: M' \to M$ is a k-fold branched covering, if it has degree k and all of its singularities are of type $z^j \times id$ for some j. That is, we can choose smooth charts around any $x \in M'$ and $f(x) \in M$ such that between these charts f has the form id_{R^n} or $z^j \times \operatorname{id}_{R^{n-2}}$.

Example

The cyclic group C_k acts on the sphere S^2 : the homeomorphism corresponding to a generator of the group is rotation by $\frac{2\pi}{k}$ around an axis of the sphere. The factor space is homeomorphic to S^2 . If an appropriate differentiable structure is chosen on it, then the factor map $f: S^2 \to S^2$ is a k-fold branched covering with two singularities of type z^k .

Theorem

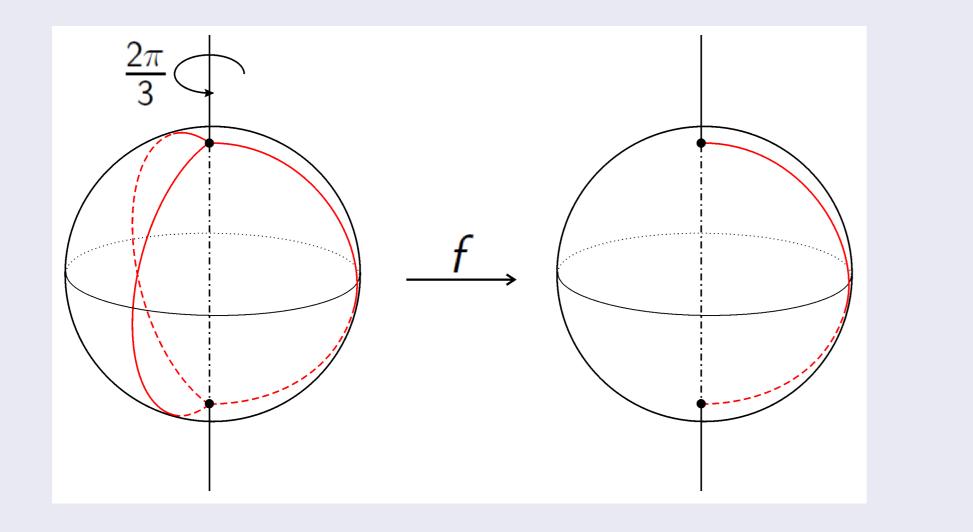
For each k there is a universal k-fold branched covering $p_k : E(k) \to B(k)$.

Idea of proof

First proof: Brown's representability theorem.

Second proof: Explicit construction. For each $m \ge 0$ we consider k-fold branched coverings $f: M' \to M$ with the property that any point of M has at most *m* singular preimiges. There is a universal branched covering of this type, $p_k^m : E^m(k) \to B^m(k)$. We can construct these recursively:

 $p_k^0: E^0(k) \to B^0(k)$ is the universal k-fold covering. $E^m(k)$ and $B^m(k)$ are obtained from $E^{m-1}(k)$ and $B^{m-1}(k)$ by gluing blocks to them; one new block is needed for each possible type of a point in M with exactly m singular preimiges. $E(k) = \bigcup_{m} E^{m}(k)$ and $B(k) = \bigcup_{m} B^{m}(k)$.



Example

Any non-constant holomorphic map between Riemann surfaces is a branched covering.

Definition

Branched coverings $f_1: M'_1 \to M_1$, $f_2: M'_2 \to M_2$ are *cobordant* if there is

- a cobordism N' between M'_1 and M'_2 ,
- a cobordism N between M_1 and M_2 , and
- a branched covering $g: N' \to N$

such that the restriction of g to the boundary is $f_1 | | f_2$. If $M_1 = M_2 = M$ and $N = M \times [0, 1]$, then f_1 and f_2 are concordant.

Theorem

 $\operatorname{Cob}(n,k) = \Omega_n(B(k))$ and $\operatorname{Con}(S^n,k) = \pi_n(B(k))$. $(\Omega_n(X))$ denotes the *n*-dimensional oriented bordism group of a space X, and $\pi_n(X)$ is its n^{th} homotopy group.)

Theorem

$$\operatorname{rk}\operatorname{Cob}^{m}(n,k) = \sum_{p=0}^{\lfloor \frac{n}{4} \rfloor} \pi(p)R(n-4p,k,m)$$

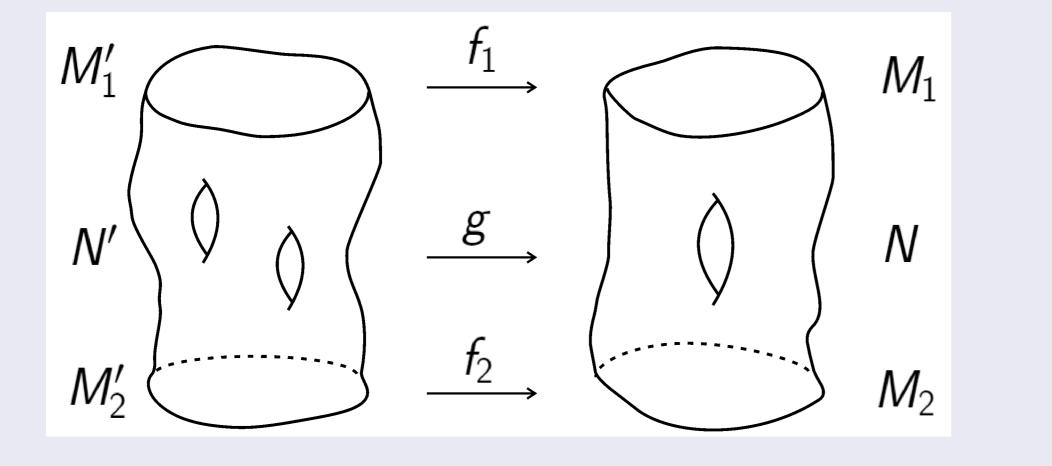
where R(0, k, m) = 1, R(j, k, m) = 0 for j odd, and for j even, j > 0:

$$R(j, k, m) = \operatorname{rk} H_j(B^m(k)) = \sum_{\alpha} \sum_{p_1 + \ldots + p_r = \frac{j}{2} - m_{\alpha}} \prod_{i=1}^r \pi_{\leq m_i}(p_i)$$

where the summation goes over all $\alpha = (k_1, \ldots, k_r, m_1, \ldots, m_r)$ with • $2 \le k_1 < \ldots < k_r$

- $m_{\alpha} = m_1 + \ldots + m_r \leq \min(m, \frac{J}{2})$
- $k_1m_1+\ldots+k_rm_r\leq k$

(α is a possible type for points in M. A point has type α if it has m_i preimages with singularity of the type $z^{k_i} \times id$.)



Definition

Cob(n, k) is the set of cobordism classes of *n*-dimensional *k*-fold branched coverings. This is an Abelian group (the operation is disjoint union). $Con(S^n, k)$ is the set of concordance classes of k-fold branched coverings over S^n , this is also an Abelian group (with an appropriate operation).

Definition

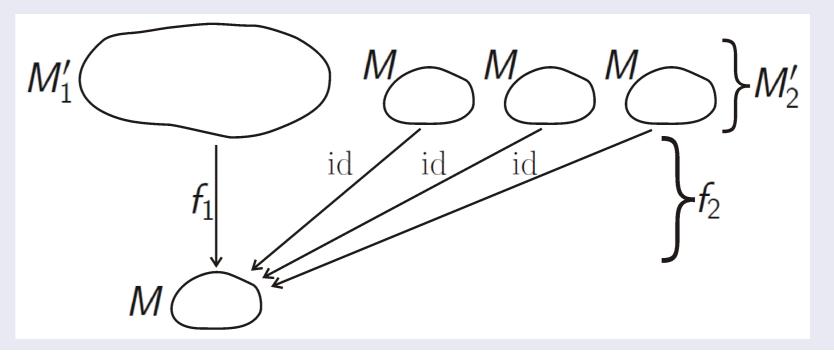
If $p: E \to B$ is a branched covering, and $u: M \to B$ is a "generic" map, then *u* induces a branched covering $f : M' \to M$ by a pullback diagram:

- $M' = \{(x, y) \in M \times E \mid u(x) = p(y)\}$
- $f: M' \to M, f(x, y) = x$

 $\pi(x)$ denotes the number of partitions of x, while $\pi_{< y}(x)$ denotes the number of partitions that contain at most y summands.

Definition

Branched coverings $f_1: M'_1 \to M$ and $f_2: M'_2 \to M$ are stably equivalent, if $M'_2 = M_1 | | d \cdot M \text{ and } f_2 = f_1 | | d \cdot id_M \text{ for some } d.$ The equivalence classes are called *stable branched coverings*.

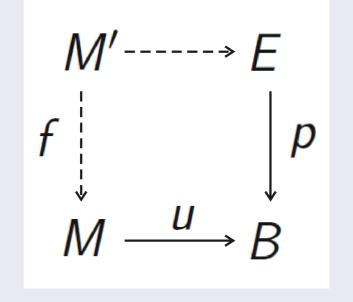


Definition

Cobordism and concordance of stable branched coverings can be defined using representatives. The cobordism and concordance classes form groups, these are denoted by $Cob(n, \infty)$ and $Con(S^n, \infty)$.

Theorem

 $B(\infty) = \operatorname{dir} \lim_{k} B(k)$ is the classifying space of stable branched coverings. $\operatorname{Cob}(n,\infty) = \Omega_n(B(\infty)) \text{ and } \operatorname{Con}(S^n,\infty) = \pi_n(B(\infty)).$



Definition

 $p: E \rightarrow B$ is a universal branched covering (and B is a classifying space of branched coverings), if

- for any $f: M' \to M$ branched covering there is a *u* inducing *f*, and
- this u is unique up to homotopy.

Definition

 $B_t(\infty)$ is the classifying space of stable branched coverings that have singularities of type $z^j \times id$ only if $j \leq t$.

Theorem

 $B_t(\infty)$ is rational homotopy equivalent to $\Omega^{\infty}S^{\infty}B_t^1(\infty)$. $(\Omega X \text{ is the loop space of } X, SX \text{ is its suspension, } \Omega^{\infty}S^{\infty}X = \operatorname{dir} \lim_{n} \Omega^{n}S^{n}X.)$

Theorem

$$\operatorname{rk} \pi_n(B_t(\infty)) = \operatorname{rk} H_n(B_t^1(\infty)) = \begin{cases} 0 & \text{if } n \text{ is odd} \\ t-1 & \text{if } n \text{ is even} \end{cases}$$