Homotopy equivalence and simple homotopy equivalence of manifolds

Csaba Nagy University of Glasgow

8 December 2022

joint with Johnny Nicholson and Mark Powell

Let X be a finite CW complex. An *elementary expansion* is an inclusion

 $X \to X \cup_g D^n$

where $\partial D^n = S^{n-1} = D^{n-1}_+ \cup D^{n-1}_-$ and the gluing map is $g: D^{n-1}_- \to X$. The deformation retraction $X \cup_g D^n \to X$ is called an *elementary collapse*.

Definition

Let X and Y be finite CW complexes. A map $f : X \to Y$ is a simple homotopy equivalence if it is homotopic to a composition

$$X = X_0 \rightarrow X_1 \rightarrow \ldots \rightarrow X_k = Y$$

of elementary expansions and collapses.

Let X and Y be finite CW complexes. X and Y are *simple homotopy equivalent* if there is a simple homotopy equivalence $f : X \to Y$.

Is simple homotopy equivalence strictly stronger than homotopy equivalence?

- In general yes.
- It depends on the fundamental group. For example, if X and Y are simply-connected, then every homotopy equivalence X → Y is simple.

Question

Are there (closed, connected, orientable) n-manifolds M and N that are homotopy equivalent but not simple homotopy equivalent?

If n = 1 or 2, then homotopy equivalent manifolds are homeomorphic.

If $n \ge 3$ is odd, then there are examples of lens spaces that are homotopy equivalent but not simple homotopy equivalent.

Question

Are there n-manifolds that are homotopy equivalent but not simple homotopy equivalent if $n \ge 4$ is even?

Let *M* and *N* be closed *n*-dimensional manifolds, and let *W* be a cobordism between *M* and *N*, ie. $\partial W = M \sqcup N$.

- (W; M, N) is an *h*-cobordism if the inclusions $M \to W$ and $N \to W$ are homotopy equivalences.
- (W; M, N) is an *s*-cobordism if the inclusions $M \to W$ and $N \to W$ are simple homotopy equivalences.

Theorem (s-cobordism theorem)

If $n \ge 5$ and (W; M, N) is an s-cobordism, then $W \approx M \times I$, therefore $M \approx N$.

The s-cobordism theorem also holds for n = 4 in the topological category (Freedman).

Theorem (Whitehead)

Let $f : X \to Y$ be a homotopy equivalence between finite CW complexes. Then there is an invariant, the Whitehead torsion

 $\tau(f) \in \mathsf{Wh}(\pi_1(Y))$

such that

f is simple
$$\iff \tau(f) = 0$$
.

Let G be a group. Its Whitehead group Wh(G) is defined as follows:

- $\mathbb{Z}G$ denotes the group ring
- $GL_n(\mathbb{Z}G) = \{$ invertible $n \times n$ matrices over $\mathbb{Z}G \}$
- $GL_n(\mathbb{Z}G) \to GL_{n+1}(\mathbb{Z}G), A \mapsto \begin{pmatrix} A & 0 \\ 0 & 1 \end{pmatrix}$
- $GL(\mathbb{Z}G) = \operatorname{dirlim}_n GL_n(\mathbb{Z}G).$
- $Wh(G) = GL(\mathbb{Z}G)/(E(\mathbb{Z}G), \pm G)$

where $E(\mathbb{Z}G)$ is the set of elementary matrices (ie. the identity matrix with one non-zero off-diagonal entry) and $\pm G \subset GL_1(\mathbb{Z}G)$.

Proposition

Wh : $Grp \rightarrow Ab$ is a (covariant) functor.

Definition (Special case)

Let $f : X \to Y$ be a homotopy equivalence between finite CW complexes with $\pi_1(X) = \pi_1(Y) = G$.

- Let C_{*}(X; ZG) and C_{*}(Y; ZG) denote the cellular chain complexes of X and Y with ZG coefficients. The cells of X and Y determine bases in C_{*}(X; ZG) and C_{*}(Y; ZG).
- f induces a chain homotopy equivalence $f_*: C_*(X; \mathbb{Z}G) \to C_*(Y; \mathbb{Z}G).$
- Assume that f_i : C_i(X; ZG) → C_i(Y; ZG) is an isomorphism for every i. Then it is given by an invertible matrix f_i ∈ GL(ZG).
- In this special case

$$\tau(f) = \sum_i (-1)^i [f_i] \in \mathsf{Wh}(G)$$

Example

 $Wh({e}) \cong 0.$

Every homotopy equivalence between simply-connected CW complexes is simple.

Example

- Wh $(\mathbb{Z}^n) \cong 0$.
- Wh $(F_n) \cong 0$.
- Wh(Z_m) ≃ Z^{⌊m/2⌋+1-δ(m)}, where δ(m) is the number of positive integers dividing m.

- Let $2k 1 \ge 3$, $m \ge 2$ and q_1, \ldots, q_k be positive integers such that $gcd(m, q_j) = 1$.
- $S^{2k-1} = \{(z_1, \ldots, z_k) \mid \sum_{j=1}^k |z_j|^2 = 1\} \subset \mathbb{C}^k.$
- The cyclic group \mathbb{Z}_m acts freely on S^{2k-1} , the generator acts by $(z_1, \ldots, z_k) \mapsto (\zeta^{q_1} z_1, \ldots, \zeta^{q_k} z_k)$, where $\zeta = e^{2\pi i/m}$.
- $L_{2k-1}(m; q_1, \ldots, q_k) = S^{2k-1}/\mathbb{Z}_m$.

$$\pi_1(L_{2k-1}(m;q_1,\ldots,q_k))\cong\mathbb{Z}_m.$$

Proposition

 $L_3(7;1,1)$ and $L_3(7;2,1)$ are homotopy equivalent but not simple homotopy equivalent.

Even-dimensional manifolds

Proposition

 $S^1 \times L_3(7;1,1)$ and $S^1 \times L_3(7;2,1)$ are simple homotopy equivalent.

Proposition

If M, M', N, N' are odd-dimensional manifolds such that $M \simeq M'$ and $N \simeq N'$, then $M \times N$ is simple homotopy equivalent to $M' \times N'$.

Proof.

Let $f: M \to M'$ and $g: N \to N'$ be homotopy equivalences. Take $f \times g: M \times N \to M' \times N'$. Then

$$\tau(f \times g) = \chi(N') \cdot i_*(\tau(f)) + \chi(M') \cdot j_*(\tau(g)) = 0$$

where $i : \pi_1(M') \to \pi_1(M' \times N')$ and $j : \pi_1(N') \to \pi_1(M' \times N')$ are the inclusions.

Goal: find n-manifolds M, N that are homotopy equivalent but not simple homotopy equivalent.

- Fix a specially chosen M.
- Construct a homotopy equivalence f : N → M which is not simple. This depends on Wh(π₁(M)).
- Show that no other homotopy equivalence g : N → M can be simple. This depends on hAut(M).

If $g: N \to M$ is a simple homotopy equivalence, then $f \circ g^{-1}: M \to M$ is a homotopy automorphism of M with $\tau(f \circ g^{-1}) = \tau(f)$.

Theorem (s-cobordism theorem, strong version)

If $n \ge 5$ and M is an n-manifold with $\pi_1(M) = G$, then for every $x \in Wh(G)$ there is a (unique) h-cobordism (W; M, N) with $\tau(M \to W) = x$.

Proposition

The homotopy equivalences $M \to W \leftarrow N$ determine a homotopy equivalence $N \to M$, and we have $\tau(N \to M) = (-1)^n \bar{x} - x$

where $x \mapsto \overline{x}$ is a naturally defined involution on Wh(G).

Corollary

If $n \ge 5$ and M is an n-manifold with $\pi_1(M) = G$, then for every element of the form $(-1)^n \bar{x} - x \in Wh(G)$ there is a homotopy equivalence $N \to M$ with $\tau(N \to M) = (-1)^n \bar{x} - x$.

Let $M = S^1 \times L$ for some lens space $L = L_{2k-1}(m; q_1, \ldots, q_k)$.

Theorem (N-Nicholson-Powell)

If $m \notin \{2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 29\}$, then $\{\bar{x} - x \mid x \in Wh(\mathbb{Z} \oplus \mathbb{Z}_m)\} \neq 0.$

Theorem (N-Nicholson-Powell)

Every homotopy automorphism of $S^1 \times L$ is simple.

Theorem (N-Nicholson-Powell)

If $m \notin \{2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 29\}$, then there is a 2k-manifold N that is homotopy equivalent (h-cobordant) but not simple homotopy equivalent to $S^1 \times L$.

Proposition

Let *M* and *N* be n-manifolds with fundamental group *G*. Suppose that $\{(-1)^n \bar{x} - x \mid x \in Wh(G)\} = 0$. If *M* and *N* are h-cobordant, then they are simple homotopy equivalent.

Proof.

An h-cobordism (W; M, N) determines a homotopy equivalence $f : N \rightarrow M$ with

$$\tau(f) = (-1)^n \bar{x} - x$$

where $x = \tau(M \to W)$.

Theorem (N-Nicholson-Powell)

Let $S^j
ightarrow M
ightarrow K$ be an orientable sphere bundle, where

- K is a k-manifold
- j > k and j is odd

Then every homotopy automorphism of M is simple.

If $k \geq 4$, then every group can be realised as $\pi_1(M) = \pi_1(K)$.

Theorem (N-Nicholson-Powell)

Let $n \ge 11$ or n = 9. Let G be a finitely presented group. Then the following are equivalent:

- There is a pair of n-manifolds with fundamental group G that are h-cobordant but not simple homotopy equivalent.
- $\{(-1)^n \bar{x} x \mid x \in Wh(G)\} \neq 0.$