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@ Introduction to complete intersections

@ Statement of the Sullivan-conjecture on the classification of
complete intersections

© Proof of the Sullivan-conjecture in complex dimension 4
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Complete intersections - definition

Definition

A complete intersection of (complex) dimension n is the transverse
intersection of k algebraic hypersurfaces in CP"* (for some k).
In particular, it is a smooth complex projective variety.

Definition

If a complete intersection is defined by hypersurfaces of degrees
di,do,...,d, then

e its multidegree is d = (d1, da, . .., dk)
@ its total degree is d = did> . .. dx
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Complete intersections - examples

Any nonsingular algebraic hypersurface is a complete intersection.
For example, the equation

B+ +z+23=0

determines a smooth degree-4 hypersurface in CP3 (a K3 surface).

Counterexample

The set of points [zy: z1 : z2 : z3] € CP3 such that
212 — 2022 =0
222 —z2123=0
2023 — 2122 = 0
is a smooth projective variety (diffeomorphic to CP* = S2), but
not a complete intersection.
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Complete intersections - Thom's theorem

Theorem (Thom)

The diffeomorphism class of a complete intersection depends only
on its multidegree.

The space of tuples of polynomials (fi,. .., fx) of degrees
(di,...,dk) that define complete intersections is connected. []

In fact, two complete intersections with the same multidegree are
deformation equivalent.

Definition

The n-dimensional complete intersection with multidegree d is
denoted by X,(d).
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Complete intersections - examples

X,(1) = CP".

Xi(di, da, ..., dx) is an oriented surface of genus

2—d2+ k-, d)
2

X2(4), X2(3,2) and X»(2,2,2) are K3 surfaces.
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Complete intersections - cohomology

Proposition

The inclusion j : X,(d) — CP"¥ s n-connected.
That is, 7;(j) : 7i(Xa(d)) — 7;(CP") is an isomorphism if
i < n, and 7,(j) : 7p(Xa(d)) — ma(CP ") is surjective.

Application of the Lefschetz hyperplane theorem. [

Corollaries

e If n > 2, then X,(d) is simply-connected.

7 if i # nis even
o H'(X,(d) =<0 if i # n is odd

free Abelian ifi=n
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Complete intersections - cohomology

Definition
Let y € H2(CP"tk) be a generator and x = j*(y) € H?(X,(d)).

o If2i < n, then x' is a generator of H* (X,(d)) = Z.
o x" = d - generator € H*"(X,(d)) = Z.

A degree-d; hypersurface in CP™ represents the Poincaré-dual of
d;y, so X,(d) represents the dual of dy*. Ol

If2 < n, then d is a homotopy invariant of X,(d).
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Complete intersections - normal bundle

Definition

Let H — CP"™ ¥ denote the complex conjugate of the tautological
line bundle (c1(H) = y).

The stable normal bundle of CP™ ¥ is ygpni & —(n+ k + 1)H.
The normal bundle of a degree-d; hypersurface in CP"tk js H®d

The stable normal bundle of X,(d) is the pullback of

—(n+k+1)H@ H®H @ H®%: @ ... @ H®%
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Complete intersections - normal bundle

Proposition

The stable normal bundle of X,(d) is the pullback of

—(n+k+1)HP H®L @ H®: @ ... @ H®%

k
C(VX,,(Q)) = (1 + X)i(n+k+1) H(l aF d,'X)
i=1

k
PV, (@) = (1 —x*)"HHDTT(1 - d7x?)
i=1

Csaba Nagy The Sullivan-conjecture in complex dimension 4



The Sullivan-conjecture - motivation

Proposition

The converse of Thom's theorem is false. That is, diffeomorphic
complete intersections may have different multidegree.

Example (Libgober-Wood '82)
X3(16,10,7,7,2,2,2) ~ X3(14,14,5,4,4,4)

Example (Crowley-N. '19)
Xa(3(150), 7(89) 9(65) 15(1) 25(130)) ~ X, (5(261), 21(89) 27(64))

Proposition (Libgober-Wood '82)

In dimension n > 2, if two complete intersections are deformation
equivalent, then they have the same multidegree.
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The Sullivan-conjecture

Let n > 3. Two n-dimensional complete intersections are
diffeomorphic if and only if they have the same

o total degree

@ Pontryagin-classes

@ FEuler-characteristic

pi is a multiple of x*', so Pontryagin-classes can be compared.

These conditions are necessary.
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The Sullivan-conjecture - results

The Sullivan-conjecture holds for n = 3.

This follows from the classification of simply-connected 6-manifolds
with torsion-free homology done by Wall ('66) and Jupp ('73).

Theorem (Fang-Klaus '96, Fang-Wang '10)

The Sullivan-conjecture holds up to homeomorphism for4 < n <7.

If n =4, then the conjecture holds smoothly up to connected sum
with a homotopy 8-sphere.

Theorem (Baraglia '20)

If n =4k + 1, X,(d) and X,(d") are spin, and they have the same
invariants, then a(X,(d)) = a(Xa(d')).
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The Sullivan-conjecture - results

Theorem (Kreck-Traving '96)

In dimension n, the Sullivan-conjecture holds if the total degree is
divisible by pl(2n+2p=1)/2P=2)1 for every prime p with
p(p—1)<n+1.

For n = 4 the total degree must be divisible by 2°.

Theorem (Crowley-N. '18)

The Sullivan-conjecture holds for n = 4.
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Proof - homotopy spheres

©, denotes the group of homotopy n-spheres:

@ Its elements are smooth n-manifolds homeomorphic to S”, up
to orientation-preserving diffeomorphism.

@ The group operation is connected sum.

A\

Theorem (Kervaire-Milnor '63)
Oy = Coker(J4k : w4k (SO) — Wfk) if k > 1.

\

Definition

¥ 8 denotes the non-trivial element of ©g = Z,.
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Proof - cases

By Fang-Klaus, for n = 4 the conjecture fails only if there are
complete intersections X = Xy(d), Y = X4(d’) such that

@ Y is diffeomorphic to X#ZS, and
e X is not diffeomorphic to X#¥8

So for every Xu(d) we need to prove that either
o X4(d) is diffeomorphic to X4(d)#X8 (rigid case), or

o X4(d) is not diffeomorphic to X4(d)#X8, and Xq(d)#X8 is
not a complete intersection (flexible case)
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Proof - cases

Case 1. (flexible) /non—spm
wy # 0 N
Case 2. (rigid) /4 \
d is odd 16|d
Case 3. (flexible) (Kreck-Traving)
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Proof - flexible cases

Example (Kasilingam)
CP* is flexible (ie. CP* % CP*4#%8).

If X4(d) is flexible, then we need to show that Xj(d)#%8 is not
diffeomorphic to any complete intersection.

A way to do this is finding a special property that complete
intersections have, but X;(d)#X® doesn't.

Candidate property: every complete intersection is a smooth
complex projective variety, therefore Kahler.

Does X4(d)#%8 have a Kihler metric?
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Proof - Case 1: spin (flexible)

Proposition

The S*-bundle over a complete intersection X,(d) with first Chern
class c; = x has a framing such that it is framed nullcobordant.

Proof.

X,(d) is the transverse intersection of X, 1(d) and CP"™*X in
(CPn-i-k-i-l:
CPn+k (Cpn—i-k—i-l

]

Xn (g) — > An+1l (g)

o Xp+1(d) \ Xn(d) is stably parallelizable.
@ The normal bundle of X,(d) C Xp+1(d) has ¢ = x.

D/
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Proof - Case 1: spin (flexible)

If X4(d) is spin, then the S*-bundle over X4(d)#%X8 with ¢; = x is
not framed nullcobordant with any framing.

Outline of proof.

@ The framed cobordism class of the S-bundle changes by
Y8 x S1 with some framing.

@ The framed cobordism class of ¥& x S depends on the
framing of the S*.

@ The framings of S! are in bijection with
7T1(SO) = 7T2(BSO) = 7o, detected by wy.

o If wa(Xs(d)) = 0, then £8 x St is not framed nullcobordant.

@ The framed cobordism class of the S1-bundle remains
non-zero if we change the framing.
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Proof - non-spin cases

The main tool in these cases is Kreck's modified surgery theory.
Setting:
My and My are 2g-manifolds, g > 3

@ W is a cobordism between My and M;

@ B is a fixed space with a bundle & over it

@ F: W — B is a normal map: it is covered by a bundle map
vw — §

o x(Mo) = x(M)

e fy and f; are g-connected, where f; = F‘M,-

In this setting an obstruction 8( W, F) is defined.
O(W,F) is elementary < W can be replaced by an h-cobordism
If My is a complete intersection*, then O(W, F) is elementary.
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Proof - Case 2: non-spin, wy # 0 (rigid)

Proposition
If X4(d) is non-spin and wy(Xs(d)) # 0, then X4(d) ~ Xa(d)#X8.

We apply modified surgery in the following setting:
@ B = CP® x BString is the normal 3-type of Xy(d)
0 £ = -5H®H®" @ ... @ H®% is the bundle over CP>
o fy: X4(d) — B is the embedding Xs(d) — CP>
o fi: Xy(d)#X8 — B is fy precomposed with a homeomorphism

@ Needed: fy and f; are normally bordant

Proposition

The map i : 7 = ©g — Q3" (CP>, £) is trivial
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Proof - Case 2: non-spin, wy # 0 (rigid)

Definition
@ Let T be the non-trivial D%-bundle over S2.
e O5(5%,1) = {g € Diff(OT) | Hi(g) = id} /isotopy

Theorem (Crowley-N.)
Og(5?,1) = Zy.

If Xa(d) is non-spin, then T can be embedded in Xy(d), so a
diffeomorphism of 0T determines a cut-and-reglue operation.

The effect on the bordism class is given by a homomorphism
05(52,1) — Q"E(CP>,¢).

Moreover, the map i : Og — Qg"i"g((CPoo,f) is the composition
Ty — T4 = Og(52,1) — Q3"ME(CP>, ¢).
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Proof - Case 2: non-spin, wy # 0 (rigid)

Proposition (Fang-Klaus)

If W2(X4(Q)) 7£ 0 and W4(X4(g)) 7é 0, then

Tor Q3"™8(CP>,£) = Im(i : Og — Q3" (CP>,¢))

So we have the following commutative diagram:

7> = O i Im(i) C Q5"™8(CP>,¢)

74 = Og(S%,1)

This implies that the map i is trivial.
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Proof - Case 3: odd d (flexible)

In this case the map ©g — Q3" (CP>,¢) is non-trivial.

Suppose that X4(d) and X4(d’) have the same invariants.
We apply modified surgery in the following setting:

@ B = CP> x BString is the normal 3-type of Xy(d)

0 £ = —5H® H®" @ ... @ H®% s the bundle over CP™
o fy: X4(d) — B is the embedding Xs(d) — CP>

o fi : Xa(d') — B is the embedding Xy(d') — CP>

Proposition

fo and f; are normally bordant.
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Proof - Case 3: odd d (flexible)

The embedding X4(d) — CP> factors through a degree-d map
Xs(d) — CP*, covered by a bundle map

Vx,(d) —= —SHO H% & ... & H%

|

Xa(d) cp*
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Proof - Case 3: odd d (flexible)

A degree-d normal map is a diagram

f

vy —=¢&
|
N M

where £ is a stable vector bundle, fisa bundle-morphism, and
deg(f) = d.

Ny4(M) denotes the set of cobordism classes of degree-d normal
maps into M.

Ny(M, €) denotes the set of cobordism classes of degree-d normal
maps into M, with fixed bundle & over M.

f

—_—
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Proof - Case 3: odd d (flexible)

A fibrewise degree-d map is a diagram

S(n) T

N

M
where S(n) and S(n’) are the sphere bundles of 5 and 7/, f is a

fibre-preserving map, and its restriction to any fibre has degree d.

F4(M) denotes the set of fibrewise degree-d maps over M up to
fibrewise homotopy equivalence and stabilization.

Fd4(M, &) denotes the set of fibrewise degree-d maps over M such
that vy &0’ & (—n) = &, up to fibrewise homotopy equivalence
and stabilization.
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Proof - Case 3: odd d (flexible)
iel- 76)

Theorem (Brumfiel-Madsen '76

There is a space (QS°/0)q such that Fy(M) = [M,(QS°/0)4]
for every M.

Theorem (Hambleton-Madsen '86)

There is a bijection between F4(M) and Ny(M), that restricts to
a bijection between Fy(M, &) and Ny(M,&).

The degree-d normal map
[Xa(d) — CP*] € Ny(CP*,¢)
corresponds to the following fibrewise degree-d map over CP*:

[SHOH...0 H) = S(H" ®@ H2 @ ... ® H%)] € F4(CP*¢)
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Proof - Case 3: odd d (flexible)

We have the following diagram:

F4(CP*€) Ny(CTP*, &) —— Q58 (CP>, ¢)

Fa(CPH <M . Ay (CPY)

s

[CP*,(QS°/0)d]

Os acts on Ny(CP*), and hence on [CP*, (QS°/0)4].

It is enough to show that elements of [CP*, (QS%/0)4] coming
from complete intersections cannot differ by the action Y2
Since ©g = Zo,, it is enough to prove this 2-locally.
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Proof - Case 3: odd d (flexible)

Proposition

After localization at 2 we have the following homotopy
equivalences:

((QSO/O)d)(z) ~ (G/O)(z) ~ (BO)(2) X (Coker J)(z)

The first equivalence was proved by Brumfiel and Madsen, and
holds for d odd.

The second equivalence comes from Sullivan’s solution of the
Adams conjecture.

Proposition

If two complete intersections have the same invariants, then they
represent the same element in [CP*, BO](5) x [CP*, Coker J]5).
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