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Complete intersections - definition

Definition

A complete intersection of (complex) dimension n is the transverse
intersection of k algebraic hypersurfaces in CPn+k (for some k).
In particular, it is a smooth complex projective variety.

Definition

If a complete intersection is defined by hypersurfaces of degrees
d1, d2, . . . , dk , then

its multidegree is d = (d1, d2, . . . , dk)

its total degree is d = d1d2 . . . dk
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Complete intersections - examples

Example

Any nonsingular algebraic hypersurface is a complete intersection.
For example, the equation

z4
0 + z4

1 + z4
2 + z4

3 = 0

determines a smooth degree-4 hypersurface in CP3 (a K3 surface).

Counterexample

The set of points [z0 : z1 : z2 : z3] ∈ CP3 such that

z2
1 − z0z2 = 0

z2
2 − z1z3 = 0

z0z3 − z1z2 = 0
is a smooth projective variety (diffeomorphic to CP1 = S2), but
not a complete intersection.

Csaba Nagy The Sullivan-conjecture in complex dimension 4



Complete intersections - Thom’s theorem

Theorem (Thom)

The diffeomorphism class of a complete intersection depends only
on its multidegree.

Proof.

The space of tuples of polynomials (f1, . . . , fk) of degrees
(d1, . . . , dk) that define complete intersections is connected.

In fact, two complete intersections with the same multidegree are
deformation equivalent.

Definition

The n-dimensional complete intersection with multidegree d is
denoted by Xn(d).
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Complete intersections - examples

Example

Xn(1) = CPn.

Example

X1(d1, d2, . . . , dk) is an oriented surface of genus

2− d(2 + k −
∑k

i=1 di )

2

Example

X2(4), X2(3, 2) and X2(2, 2, 2) are K3 surfaces.
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Complete intersections - cohomology

Proposition

The inclusion j : Xn(d)→ CPn+k is n-connected.
That is, πi (j) : πi (Xn(d))→ πi (CPn+k) is an isomorphism if
i < n, and πn(j) : πn(Xn(d))→ πn(CPn+k) is surjective.

Proof.

Application of the Lefschetz hyperplane theorem.

Corollaries

If n ≥ 2, then Xn(d) is simply-connected.

H i (Xn(d)) ∼=


Z if i 6= n is even

0 if i 6= n is odd

free Abelian if i = n
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Complete intersections - cohomology

Definition

Let y ∈ H2(CPn+k) be a generator and x = j∗(y) ∈ H2(Xn(d)).

Proposition

If 2i < n, then x i is a generator of H2i (Xn(d)) ∼= Z.

xn = d · generator ∈ H2n(Xn(d)) ∼= Z.

Proof.

A degree-di hypersurface in CPn+k represents the Poincaré-dual of
diy , so Xn(d) represents the dual of dyk .

Corollary

If 2 < n, then d is a homotopy invariant of Xn(d).
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Complete intersections - normal bundle

Definition

Let H → CPn+k denote the complex conjugate of the tautological
line bundle (c1(H) = y).

Proposition

The stable normal bundle of CPn+k is νCPn+k
∼= −(n + k + 1)H.

The normal bundle of a degree-di hypersurface in CPn+k is H⊗di .

Proposition

The stable normal bundle of Xn(d) is the pullback of

−(n + k + 1)H ⊕ H⊗d1 ⊕ H⊗d2 ⊕ . . .⊕ H⊗dk
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Complete intersections - normal bundle

Proposition

The stable normal bundle of Xn(d) is the pullback of

−(n + k + 1)H ⊕ H⊗d1 ⊕ H⊗d2 ⊕ . . .⊕ H⊗dk

Proposition

c(νXn(d)) = (1 + x)−(n+k+1)
k∏

i=1

(1 + dix)

p(νXn(d)) = (1− x2)−(n+k+1)
k∏

i=1

(1− d2
i x

2)
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The Sullivan-conjecture - motivation

Proposition

The converse of Thom’s theorem is false. That is, diffeomorphic
complete intersections may have different multidegree.

Example (Libgober-Wood ’82)

X3(16, 10, 7, 7, 2, 2, 2) ≈ X3(14, 14, 5, 4, 4, 4)

Example (Crowley-N. ’19)

X4(3(150), 7(89), 9(65), 15(1), 25(130)) ≈ X4(5(261), 21(89), 27(64))

Proposition (Libgober-Wood ’82)

In dimension n > 2, if two complete intersections are deformation
equivalent, then they have the same multidegree.
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The Sullivan-conjecture

Conjecture

Let n ≥ 3. Two n-dimensional complete intersections are
diffeomorphic if and only if they have the same

total degree

Pontryagin-classes

Euler-characteristic

pi is a multiple of x2i , so Pontryagin-classes can be compared.

These conditions are necessary.
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The Sullivan-conjecture - results

Theorem

The Sullivan-conjecture holds for n = 3.

This follows from the classification of simply-connected 6-manifolds
with torsion-free homology done by Wall (’66) and Jupp (’73).

Theorem (Fang-Klaus ’96, Fang-Wang ’10)

The Sullivan-conjecture holds up to homeomorphism for 4 ≤ n ≤ 7.

If n = 4, then the conjecture holds smoothly up to connected sum
with a homotopy 8-sphere.

Theorem (Baraglia ’20)

If n = 4k + 1, Xn(d) and Xn(d ′) are spin, and they have the same
invariants, then α(Xn(d)) = α(Xn(d ′)).
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The Sullivan-conjecture - results

Theorem (Kreck-Traving ’96)

In dimension n, the Sullivan-conjecture holds if the total degree is
divisible by pd(2n+2p−1)/(2p−2)e for every prime p with
p(p − 1) ≤ n + 1.

For n = 4 the total degree must be divisible by 26.

Theorem (Crowley-N. ’18)

The Sullivan-conjecture holds for n = 4.
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Proof - homotopy spheres

Definition

Θn denotes the group of homotopy n-spheres:

Its elements are smooth n-manifolds homeomorphic to Sn, up
to orientation-preserving diffeomorphism.

The group operation is connected sum.

Theorem (Kervaire-Milnor ’63)

Θ4k
∼= Coker

(
J4k : π4k(SO)→ πS4k

)
if k > 1.

Definition

Σ8 denotes the non-trivial element of Θ8
∼= Z2.
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Proof - cases

By Fang-Klaus, for n = 4 the conjecture fails only if there are
complete intersections X = X4(d), Y = X4(d ′) such that

Y is diffeomorphic to X#Σ8, and

X is not diffeomorphic to X#Σ8

So for every X4(d) we need to prove that either

X4(d) is diffeomorphic to X4(d)#Σ8 (rigid case), or

X4(d) is not diffeomorphic to X4(d)#Σ8, and X4(d)#Σ8 is
not a complete intersection (flexible case)
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Proof - cases

spin

Case 1. (flexible)
non-spin

w4 6= 0

Case 2. (rigid)
w4 = 0

d is odd

Case 3. (flexible)

16|d
(Kreck-Traving)
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Proof - flexible cases

Example (Kasilingam)

CP4 is flexible (ie. CP4 6≈ CP4#Σ8).

If X4(d) is flexible, then we need to show that X4(d)#Σ8 is not
diffeomorphic to any complete intersection.

A way to do this is finding a special property that complete
intersections have, but X4(d)#Σ8 doesn’t.

Candidate property: every complete intersection is a smooth
complex projective variety, therefore Kähler.

Question

Does X4(d)#Σ8 have a Kähler metric?
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Proof - Case 1: spin (flexible)

Proposition

The S1-bundle over a complete intersection Xn(d) with first Chern
class c1 = x has a framing such that it is framed nullcobordant.

Proof.

Xn(d) is the transverse intersection of Xn+1(d) and CPn+k in
CPn+k+1:

CPn+k // CPn+k+1

Xn(d)

OO

// Xn+1(d)

OO

Xn+1(d) \ Xn(d) is stably parallelizable.

The normal bundle of Xn(d) ⊂ Xn+1(d) has c1 = x .
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Proof - Case 1: spin (flexible)

Proposition

If X4(d) is spin, then the S1-bundle over X4(d)#Σ8 with c1 = x is
not framed nullcobordant with any framing.

Outline of proof.

The framed cobordism class of the S1-bundle changes by
Σ8 × S1, with some framing.

The framed cobordism class of Σ8 × S1 depends on the
framing of the S1.

The framings of S1 are in bijection with
π1(SO) ∼= π2(BSO) ∼= Z2, detected by w2.

If w2(X4(d)) = 0, then Σ8 × S1 is not framed nullcobordant.

The framed cobordism class of the S1-bundle remains
non-zero if we change the framing.
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Proof - non-spin cases

The main tool in these cases is Kreck’s modified surgery theory.
Setting:

M0 and M1 are 2q-manifolds, q ≥ 3

W is a cobordism between M0 and M1

B is a fixed space with a bundle ξ over it

F : W → B is a normal map: it is covered by a bundle map
νW → ξ

χ(M0) = χ(M1)

f0 and f1 are q-connected, where fi = F
∣∣
Mi

In this setting an obstruction θ(W ,F ) is defined.
θ(W ,F ) is elementary ⇔ W can be replaced by an h-cobordism
If M0 is a complete intersection*, then θ(W ,F ) is elementary.
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Proof - Case 2: non-spin, w4 6= 0 (rigid)

Proposition

If X4(d) is non-spin and w4(X4(d)) 6= 0, then X4(d) ≈ X4(d)#Σ8.

We apply modified surgery in the following setting:

B = CP∞ × BString is the normal 3-type of X4(d)

ξ = −5H ⊕ H⊗d1 ⊕ . . .⊕ H⊗dk is the bundle over CP∞

f0 : X4(d)→ B is the embedding X4(d)→ CP∞

f1 : X4(d)#Σ8 → B is f0 precomposed with a homeomorphism

Needed: f0 and f1 are normally bordant

Proposition

The map i : Z2
∼= Θ8 → ΩString

8 (CP∞, ξ) is trivial

Csaba Nagy The Sullivan-conjecture in complex dimension 4



Proof - Case 2: non-spin, w4 6= 0 (rigid)

Definition

Let T be the non-trivial D6-bundle over S2.

Θ8(S2, 1) = {g ∈ Diff(∂T ) | H∗(g) = id} /isotopy

Theorem (Crowley-N.)

Θ8(S2, 1) ∼= Z4.

If X4(d) is non-spin, then T can be embedded in X4(d), so a
diffeomorphism of ∂T determines a cut-and-reglue operation.

The effect on the bordism class is given by a homomorphism
Θ8(S2, 1)→ ΩString

8 (CP∞, ξ).

Moreover, the map i : Θ8 → ΩString
8 (CP∞, ξ) is the composition

Z2 → Z4
∼= Θ8(S2, 1)→ ΩString

8 (CP∞, ξ).
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Proof - Case 2: non-spin, w4 6= 0 (rigid)

Proposition (Fang-Klaus)

If w2(X4(d)) 6= 0 and w4(X4(d)) 6= 0, then

Tor ΩString
8 (CP∞, ξ) = Im

(
i : Θ8 → ΩString

8 (CP∞, ξ)
)

So we have the following commutative diagram:

Z2
∼= Θ8r�

$$

i // // Im(i) ⊂ ΩString
8 (CP∞, ξ)

Z4
∼= Θ8(S2, 1)

::

This implies that the map i is trivial.
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Proof - Case 3: odd d (flexible)

In this case the map Θ8 → ΩString
8 (CP∞, ξ) is non-trivial.

Suppose that X4(d) and X4(d ′) have the same invariants.
We apply modified surgery in the following setting:

B = CP∞ × BString is the normal 3-type of X4(d)

ξ = −5H ⊕ H⊗d1 ⊕ . . .⊕ H⊗dk is the bundle over CP∞

f0 : X4(d)→ B is the embedding X4(d)→ CP∞

f1 : X4(d ′)→ B is the embedding X4(d ′)→ CP∞

Proposition

f0 and f1 are normally bordant.
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Proof - Case 3: odd d (flexible)

The embedding X4(d)→ CP∞ factors through a degree-d map
X4(d)→ CP4, covered by a bundle map

νX4(d)
//

��

−5H ⊕ Hd1 ⊕ . . .⊕ Hdk

��
X4(d) // CP4
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Proof - Case 3: odd d (flexible)

Definition

A degree-d normal map is a diagram

νN
f̄ //

��

ξ

��
N

f // M

where ξ is a stable vector bundle, f̄ is a bundle-morphism, and
deg(f ) = d .

Definition

Nd(M) denotes the set of cobordism classes of degree-d normal
maps into M.
Nd(M, ξ) denotes the set of cobordism classes of degree-d normal
maps into M, with fixed bundle ξ over M.
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Proof - Case 3: odd d (flexible)

Definition

A fibrewise degree-d map is a diagram

S(η)
f̄ //

!!

S(η′)

||
M

where S(η) and S(η′) are the sphere bundles of η and η′, f̄ is a
fibre-preserving map, and its restriction to any fibre has degree d .

Definition

Fd(M) denotes the set of fibrewise degree-d maps over M up to
fibrewise homotopy equivalence and stabilization.
Fd(M, ξ) denotes the set of fibrewise degree-d maps over M such
that νM ⊕ η′ ⊕ (−η) ∼= ξ, up to fibrewise homotopy equivalence
and stabilization.
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Proof - Case 3: odd d (flexible)

Theorem (Brumfiel-Madsen ’76)

There is a space (QS0/O)d such that Fd(M) ∼= [M, (QS0/O)d ]
for every M.

Theorem (Hambleton-Madsen ’86)

There is a bijection between Fd(M) and Nd(M), that restricts to
a bijection between Fd(M, ξ) and Nd(M, ξ).

The degree-d normal map[
X4(d)→ CP4

]
∈ Nd(CP4, ξ)

corresponds to the following fibrewise degree-d map over CP4:[
S(H ⊕ H . . .⊕ H)→ S(Hd1 ⊕ Hd2 ⊕ . . .⊕ Hdk )

]
∈ Fd(CP4, ξ)
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Proof - Case 3: odd d (flexible)

We have the following diagram:

Fd(CP4, ξ) oo //
_�

��

Nd(CP4, ξ) //
_�

��

ΩString
8 (CP∞, ξ)

Fd(CP4) oo
H-M //

OO

B-M
��

Nd(CP4)

[CP4, (QS0/O)d ]

Θ8 acts on Nd(CP4), and hence on [CP4, (QS0/O)d ].
It is enough to show that elements of [CP4, (QS0/O)d ] coming
from complete intersections cannot differ by the action Σ8.
Since Θ8

∼= Z2, it is enough to prove this 2-locally.
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Proof - Case 3: odd d (flexible)

Proposition

After localization at 2 we have the following homotopy
equivalences:
((QS0/O)d)(2) ' (G/O)(2) ' (BO)(2) × (Coker J)(2)

The first equivalence was proved by Brumfiel and Madsen, and
holds for d odd.
The second equivalence comes from Sullivan’s solution of the
Adams conjecture.

Proposition

If two complete intersections have the same invariants, then they
represent the same element in [CP4,BO](2) × [CP4,Coker J](2).
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