# The Sullivan-conjecture in complex dimension 4 

Csaba Nagy

28 January 2021
joint with Diarmuid Crowley

## Outline

(1) Introduction to complete intersections
(2) Statement of the Sullivan-conjecture on the classification of complete intersections
(3) Proof of the Sullivan-conjecture in complex dimension 4

## Complete intersections - definition

## Definition

A complete intersection of (complex) dimension $n$ is the transverse intersection of $k$ algebraic hypersurfaces in $\mathbb{C} P^{n+k}$ (for some $k$ ). In particular, it is a smooth complex projective variety.

## Definition

If a complete intersection is defined by hypersurfaces of degrees $d_{1}, d_{2}, \ldots, d_{k}$, then

- its multidegree is $\underline{d}=\left(d_{1}, d_{2}, \ldots, d_{k}\right)$
- its total degree is $d=d_{1} d_{2} \ldots d_{k}$


## Complete intersections - examples

## Example

Any nonsingular algebraic hypersurface is a complete intersection. For example, the equation

$$
z_{0}^{4}+z_{1}^{4}+z_{2}^{4}+z_{3}^{4}=0
$$

determines a smooth degree-4 hypersurface in $\mathbb{C} P^{3}$ (a K3 surface).

## Counterexample

The set of points $\left[z_{0}: z_{1}: z_{2}: z_{3}\right] \in \mathbb{C} P^{3}$ such that

$$
\begin{aligned}
z_{1}^{2}-z_{0} z_{2} & =0 \\
z_{2}^{2}-z_{1} z_{3} & =0 \\
z_{0} z_{3}-z_{1} z_{2} & =0
\end{aligned}
$$

is a smooth projective variety (diffeomorphic to $\mathbb{C} P^{1}=S^{2}$ ), but not a complete intersection.

## Complete intersections - Thom's theorem

## Theorem (Thom)

The diffeomorphism class of a complete intersection depends only on its multidegree.

## Proof.

The space of tuples of polynomials $\left(f_{1}, \ldots, f_{k}\right)$ of degrees $\left(d_{1}, \ldots, d_{k}\right)$ that define complete intersections is connected.

In fact, two complete intersections with the same multidegree are deformation equivalent.

## Definition

The $n$-dimensional complete intersection with multidegree $\underline{d}$ is denoted by $X_{n}(\underline{d})$.

## Complete intersections - examples

## Example

$$
X_{n}(1)=\mathbb{C} P^{n}
$$

## Example

$X_{1}\left(d_{1}, d_{2}, \ldots, d_{k}\right)$ is an oriented surface of genus

$$
\frac{2-d\left(2+k-\sum_{i=1}^{k} d_{i}\right)}{2}
$$

Example
$X_{2}(4), X_{2}(3,2)$ and $X_{2}(2,2,2)$ are $K 3$ surfaces.

## Complete intersections - cohomology

## Proposition

The inclusion $j: X_{n}(\underline{d}) \rightarrow \mathbb{C} P^{n+k}$ is n-connected.
That is, $\pi_{i}(j): \pi_{i}\left(X_{n}(\underline{d})\right) \rightarrow \pi_{i}\left(\mathbb{C} P^{n+k}\right)$ is an isomorphism if
$i<n$, and $\pi_{n}(j): \pi_{n}\left(X_{n}(\underline{d})\right) \rightarrow \pi_{n}\left(\mathbb{C} P^{n+k}\right)$ is surjective.

## Proof.

Application of the Lefschetz hyperplane theorem.

## Corollaries

- If $n \geq 2$, then $X_{n}(\underline{d})$ is simply-connected.

$$
\text { - } H^{i}\left(X_{n}(\underline{d})\right) \cong \begin{cases}\mathbb{Z} & \text { if } i \neq n \text { is even } \\ 0 & \text { if } i \neq n \text { is odd } \\ \text { free Abelian } & \text { if } i=n\end{cases}
$$

## Complete intersections - cohomology

## Definition

Let $y \in H^{2}\left(\mathbb{C} P^{n+k}\right)$ be a generator and $x=j^{*}(y) \in H^{2}\left(X_{n}(\underline{d})\right)$.

## Proposition

- If $2 i<n$, then $x^{i}$ is a generator of $H^{2 i}\left(X_{n}(\underline{d})\right) \cong \mathbb{Z}$.
- $x^{n}=d \cdot$ generator $\in H^{2 n}\left(X_{n}(\underline{d})\right) \cong \mathbb{Z}$.


## Proof.

A degree- $d_{i}$ hypersurface in $\mathbb{C} P^{n+k}$ represents the Poincaré-dual of $d_{i} y$, so $X_{n}(\underline{d})$ represents the dual of $d y^{k}$.

## Corollary

If $2<n$, then $d$ is a homotopy invariant of $X_{n}(\underline{d})$.

## Complete intersections - normal bundle

## Definition

Let $H \rightarrow \mathbb{C} P^{n+k}$ denote the complex conjugate of the tautological line bundle $\left(c_{1}(H)=y\right)$.

## Proposition

The stable normal bundle of $\mathbb{C} P^{n+k}$ is $\nu_{\mathbb{C} P^{n+k}} \cong-(n+k+1) H$. The normal bundle of a degree-d $d_{i}$ hypersurface in $\mathbb{C} P^{n+k}$ is $H^{\otimes d_{i}}$.

## Proposition

The stable normal bundle of $X_{n}(\underline{d})$ is the pullback of

$$
-(n+k+1) H \oplus H^{\otimes d_{1}} \oplus H^{\otimes d_{2}} \oplus \ldots \oplus H^{\otimes d_{k}}
$$

## Complete intersections - normal bundle

## Proposition

The stable normal bundle of $X_{n}(\underline{d})$ is the pullback of

$$
-(n+k+1) H \oplus H^{\otimes d_{1}} \oplus \boldsymbol{H}^{\otimes d_{2}} \oplus \ldots \oplus \boldsymbol{H}^{\otimes d_{k}}
$$

## Proposition

$$
\begin{aligned}
& c\left(\nu_{X_{n}(\underline{d})}\right)=(1+x)^{-(n+k+1)} \prod_{i=1}^{k}\left(1+d_{i} x\right) \\
& p\left(\nu_{X_{n}(\underline{d})}\right)=\left(1-x^{2}\right)^{-(n+k+1)} \prod_{i=1}^{k}\left(1-d_{i}^{2} x^{2}\right)
\end{aligned}
$$

## The Sullivan-conjecture - motivation

## Proposition

The converse of Thom's theorem is false. That is, diffeomorphic complete intersections may have different multidegree.

> Example (Libgober-Wood '82)
> $X_{3}(16,10,7,7,2,2,2) \approx X_{3}(14,14,5,4,4,4)$

Example (Crowley-N. '19)

$$
X_{4}\left(3^{(150)}, 7^{(89)}, 9^{(65)}, 15^{(1)}, 25^{(130)}\right) \approx X_{4}\left(5^{(261)}, 21^{(89)}, 27^{(64)}\right)
$$

## Proposition (Libgober-Wood '82)

In dimension $n>2$, if two complete intersections are deformation equivalent, then they have the same multidegree.

## The Sullivan-conjecture

## Conjecture

Let $n \geq 3$. Two $n$-dimensional complete intersections are diffeomorphic if and only if they have the same

- total degree
- Pontryagin-classes
- Euler-characteristic
- $p_{i}$ is a multiple of $x^{2 i}$, so Pontryagin-classes can be compared.
- These conditions are necessary.


## The Sullivan-conjecture - results

## Theorem

The Sullivan-conjecture holds for $n=3$.
This follows from the classification of simply-connected 6-manifolds with torsion-free homology done by Wall ('66) and Jupp ('73).

## Theorem (Fang-Klaus '96, Fang-Wang '10)

The Sullivan-conjecture holds up to homeomorphism for $4 \leq n \leq 7$.
If $n=4$, then the conjecture holds smoothly up to connected sum with a homotopy 8 -sphere.

## Theorem (Baraglia '20)

If $n=4 k+1, X_{n}(\underline{d})$ and $X_{n}\left(\underline{d}^{\prime}\right)$ are spin, and they have the same invariants, then $\alpha\left(X_{n}(\underline{d})\right)=\alpha\left(X_{n}\left(\underline{d}^{\prime}\right)\right)$.

## The Sullivan-conjecture - results

## Theorem (Kreck-Traving '96)

In dimension n, the Sullivan-conjecture holds if the total degree is divisible by $p^{\lceil(2 n+2 p-1) /(2 p-2)\rceil}$ for every prime $p$ with $p(p-1) \leq n+1$.

For $n=4$ the total degree must be divisible by $2^{6}$.

## Theorem (Crowley-N. '18)

The Sullivan-conjecture holds for $n=4$.

## Proof - homotopy spheres

## Definition

$\Theta_{n}$ denotes the group of homotopy $n$-spheres:

- Its elements are smooth $n$-manifolds homeomorphic to $S^{n}$, up to orientation-preserving diffeomorphism.
- The group operation is connected sum.


## Theorem (Kervaire-Milnor '63)

$$
\Theta_{4 k} \cong \operatorname{Coker}\left(J_{4 k}: \pi_{4 k}(S O) \rightarrow \pi_{4 k}^{S}\right) \quad \text { if } k>1
$$

## Definition

$\Sigma^{8}$ denotes the non-trivial element of $\Theta_{8} \cong \mathbb{Z}_{2}$.

By Fang-Klaus, for $n=4$ the conjecture fails only if there are complete intersections $X=X_{4}(\underline{d}), Y=X_{4}\left(\underline{d}^{\prime}\right)$ such that

- $Y$ is diffeomorphic to $X \# \Sigma^{8}$, and
- $X$ is not diffeomorphic to $X \# \Sigma^{8}$

So for every $X_{4}(\underline{d})$ we need to prove that either

- $X_{4}(\underline{d})$ is diffeomorphic to $X_{4}(\underline{d}) \# \Sigma^{8}$ (rigid case), or
- $X_{4}(\underline{d})$ is not diffeomorphic to $X_{4}(\underline{d}) \# \Sigma^{8}$, and $X_{4}(\underline{d}) \# \Sigma^{8}$ is not a complete intersection (flexible case)


## Proof - cases



## Proof - flexible cases

## Example (Kasilingam)

$\mathbb{C} P^{4}$ is flexible (ie. $\mathbb{C} P^{4} \not \approx \mathbb{C} P^{4} \# \Sigma^{8}$ ).

If $X_{4}(\underline{d})$ is flexible, then we need to show that $X_{4}(\underline{d}) \# \Sigma^{8}$ is not diffeomorphic to any complete intersection.

A way to do this is finding a special property that complete intersections have, but $X_{4}(\underline{d}) \# \Sigma^{8}$ doesn't.

Candidate property: every complete intersection is a smooth complex projective variety, therefore Kähler.

## Question

Does $X_{4}(\underline{d}) \# \Sigma^{8}$ have a Kähler metric?

## Proof - Case 1: spin (flexible)

## Proposition

The $S^{1}$-bundle over a complete intersection $X_{n}(\underline{d})$ with first Chern class $c_{1}=x$ has a framing such that it is framed nullcobordant.

## Proof.

$X_{n}(\underline{d})$ is the transverse intersection of $X_{n+1}(\underline{d})$ and $\mathbb{C} P^{n+k}$ in $\mathbb{C} P^{n+k+1}$ :

$$
\begin{gathered}
\underset{\uparrow}{\mathbb{C} P^{n+k}} \longrightarrow \mathbb{C} P^{n+k+1} \\
X_{n}(\underline{d}) \longrightarrow X_{n+1}(\underline{d})
\end{gathered}
$$

- $X_{n+1}(\underline{d}) \backslash X_{n}(\underline{d})$ is stably parallelizable.
- The normal bundle of $X_{n}(\underline{d}) \subset X_{n+1}(\underline{d})$ has $c_{1}=x$.


## Proof - Case 1: spin (flexible)

## Proposition

If $X_{4}(\underline{d})$ is spin, then the $S^{1}$-bundle over $X_{4}(\underline{d}) \# \Sigma^{8}$ with $c_{1}=x$ is not framed nullcobordant with any framing.

## Outline of proof.

- The framed cobordism class of the $S^{1}$-bundle changes by $\Sigma^{8} \times S^{1}$, with some framing.
- The framed cobordism class of $\Sigma^{8} \times S^{1}$ depends on the framing of the $S^{1}$.
- The framings of $S^{1}$ are in bijection with $\pi_{1}(S O) \cong \pi_{2}(B S O) \cong \mathbb{Z}_{2}$, detected by $w_{2}$.
- If $w_{2}\left(X_{4}(\underline{d})\right)=0$, then $\Sigma^{8} \times S^{1}$ is not framed nullcobordant.
- The framed cobordism class of the $S^{1}$-bundle remains non-zero if we change the framing.

The main tool in these cases is Kreck's modified surgery theory. Setting:

- $M_{0}$ and $M_{1}$ are $2 q$-manifolds, $q \geq 3$
- $W$ is a cobordism between $M_{0}$ and $M_{1}$
- $B$ is a fixed space with a bundle $\xi$ over it
- $F: W \rightarrow B$ is a normal map: it is covered by a bundle map $\nu_{W} \rightarrow \xi$
- $\chi\left(M_{0}\right)=\chi\left(M_{1}\right)$
- $f_{0}$ and $f_{1}$ are $q$-connected, where $f_{i}=\left.F\right|_{M_{i}}$

In this setting an obstruction $\theta(W, F)$ is defined.
$\theta(W, F)$ is elementary $\Leftrightarrow W$ can be replaced by an h-cobordism If $M_{0}$ is a complete intersection*, then $\theta(W, F)$ is elementary.

## Proof - Case 2: non-spin, $w_{4} \neq 0$ (rigid)

## Proposition

If $X_{4}(\underline{d})$ is non-spin and $w_{4}\left(X_{4}(\underline{d})\right) \neq 0$, then $X_{4}(\underline{d}) \approx X_{4}(\underline{d}) \# \Sigma^{8}$.
We apply modified surgery in the following setting:

- $B=\mathbb{C} P^{\infty} \times$ BString is the normal 3-type of $X_{4}(\underline{d})$
- $\xi=-5 H \oplus H^{\otimes d_{1}} \oplus \ldots \oplus H^{\otimes d_{k}}$ is the bundle over $\mathbb{C} P^{\infty}$
- $f_{0}: X_{4}(\underline{d}) \rightarrow B$ is the embedding $X_{4}(\underline{d}) \rightarrow \mathbb{C} P^{\infty}$
- $f_{1}: X_{4}(\underline{d}) \# \Sigma^{8} \rightarrow B$ is $f_{0}$ precomposed with a homeomorphism
- Needed: $f_{0}$ and $f_{1}$ are normally bordant


## Proposition

The map $i: \mathbb{Z}_{2} \cong \Theta_{8} \rightarrow \Omega_{8}^{\text {String }}\left(\mathbb{C} P^{\infty}, \xi\right)$ is trivial

## Proof - Case 2: non-spin, $w_{4} \neq 0$ (rigid)

## Definition

- Let $T$ be the non-trivial $D^{6}$-bundle over $S^{2}$.
- $\Theta_{8}\left(S^{2}, 1\right)=\left\{g \in \operatorname{Diff}(\partial T) \mid H_{*}(g)=\mathrm{id}\right\} /$ isotopy


## Theorem (Crowley-N.)

$\Theta_{8}\left(S^{2}, 1\right) \cong \mathbb{Z}_{4}$.
If $X_{4}(\underline{d})$ is non-spin, then $T$ can be embedded in $X_{4}(\underline{d})$, so a diffeomorphism of $\partial T$ determines a cut-and-reglue operation.
The effect on the bordism class is given by a homomorphism $\Theta_{8}\left(S^{2}, 1\right) \rightarrow \Omega_{8}^{\text {String }}\left(\mathbb{C} P^{\infty}, \xi\right)$.
Moreover, the map $i: \Theta_{8} \rightarrow \Omega_{8}^{S t r i n g}\left(\mathbb{C} P^{\infty}, \xi\right)$ is the composition $\mathbb{Z}_{2} \rightarrow \mathbb{Z}_{4} \cong \Theta_{8}\left(S^{2}, 1\right) \rightarrow \Omega_{8}^{\text {String }}\left(\mathbb{C} P^{\infty}, \xi\right)$.

## Proof - Case 2: non-spin, $w_{4} \neq 0$ (rigid)

## Proposition (Fang-Klaus)

If $w_{2}\left(X_{4}(\underline{d})\right) \neq 0$ and $w_{4}\left(X_{4}(\underline{d})\right) \neq 0$, then

$$
\text { Tor } \Omega_{8}^{\text {String }}\left(\mathbb{C} P^{\infty}, \xi\right)=\operatorname{Im}\left(i: \Theta_{8} \rightarrow \Omega_{8}^{\text {String }}\left(\mathbb{C} P^{\infty}, \xi\right)\right)
$$

So we have the following commutative diagram:


This implies that the map $i$ is trivial.

## Proof - Case 3: odd d (flexible)

In this case the map $\Theta_{8} \rightarrow \Omega_{8}^{\text {String }}\left(\mathbb{C} P^{\infty}, \xi\right)$ is non-trivial.
Suppose that $X_{4}(\underline{d})$ and $X_{4}\left(\underline{d}^{\prime}\right)$ have the same invariants.
We apply modified surgery in the following setting:

- $B=\mathbb{C} P^{\infty} \times$ BString is the normal 3-type of $X_{4}(\underline{d})$
- $\xi=-5 H \oplus H^{\otimes d_{1}} \oplus \ldots \oplus H^{\otimes d_{k}}$ is the bundle over $\mathbb{C} P^{\infty}$
- $f_{0}: X_{4}(\underline{d}) \rightarrow B$ is the embedding $X_{4}(\underline{d}) \rightarrow \mathbb{C} P^{\infty}$
- $f_{1}: X_{4}\left(\underline{d}^{\prime}\right) \rightarrow B$ is the embedding $X_{4}\left(\underline{d}^{\prime}\right) \rightarrow \mathbb{C} P^{\infty}$


## Proposition

$f_{0}$ and $f_{1}$ are normally bordant.

## Proof - Case 3: odd d (flexible)

The embedding $X_{4}(\underline{d}) \rightarrow \mathbb{C} P^{\infty}$ factors through a degree-d map $X_{4}(\underline{d}) \rightarrow \mathbb{C} P^{4}$, covered by a bundle map


## Proof - Case 3: odd d (flexible)

## Definition

A degree-d normal map is a diagram

where $\xi$ is a stable vector bundle, $\bar{f}$ is a bundle-morphism, and $\operatorname{deg}(f)=d$.

## Definition

$\mathcal{N}_{d}(M)$ denotes the set of cobordism classes of degree- $d$ normal maps into $M$.
$\mathcal{N}_{d}(M, \xi)$ denotes the set of cobordism classes of degree-d normal maps into $M$, with fixed bundle $\xi$ over $M$.

## Proof - Case 3: odd d (flexible)

## Definition

A fibrewise degree-d map is a diagram

where $S(\eta)$ and $S\left(\eta^{\prime}\right)$ are the sphere bundles of $\eta$ and $\eta^{\prime}, \bar{f}$ is a fibre-preserving map, and its restriction to any fibre has degree $d$.

## Definition

$\mathcal{F}_{d}(M)$ denotes the set of fibrewise degree- $d$ maps over $M$ up to fibrewise homotopy equivalence and stabilization. $\mathcal{F}_{d}(M, \xi)$ denotes the set of fibrewise degree-d maps over $M$ such that $\nu_{M} \oplus \eta^{\prime} \oplus(-\eta) \cong \xi$, up to fibrewise homotopy equivalence and stabilization.

## Proof - Case 3: odd d (flexible)

## Theorem (Brumfiel-Madsen '76)

There is a space $\left(Q S^{0} / O\right)_{d}$ such that $\mathcal{F}_{d}(M) \cong\left[M,\left(Q S^{0} / O\right)_{d}\right]$ for every $M$.

## Theorem (Hambleton-Madsen '86)

There is a bijection between $\mathcal{F}_{d}(M)$ and $\mathcal{N}_{d}(M)$, that restricts to a bijection between $\mathcal{F}_{d}(M, \xi)$ and $\mathcal{N}_{d}(M, \xi)$.

The degree- $d$ normal map

$$
\left[X_{4}(\underline{d}) \rightarrow \mathbb{C} P^{4}\right] \in \mathcal{N}_{d}\left(\mathbb{C} P^{4}, \xi\right)
$$

corresponds to the following fibrewise degree-d map over $\mathbb{C} P^{4}$ :

$$
\left[S(H \oplus H \ldots \oplus H) \rightarrow S\left(H^{d_{1}} \oplus H^{d_{2}} \oplus \ldots \oplus H^{d_{k}}\right)\right] \in \mathcal{F}_{d}\left(\mathbb{C} P^{4}, \xi\right)
$$

## Proof - Case 3: odd d (flexible)

We have the following diagram:

$\Theta_{8}$ acts on $\mathcal{N}_{d}\left(\mathbb{C} P^{4}\right)$, and hence on $\left[\mathbb{C} P^{4},\left(Q S^{0} / O\right)_{d}\right]$. It is enough to show that elements of $\left[\mathbb{C} P^{4},\left(Q S^{0} / O\right)_{d}\right]$ coming from complete intersections cannot differ by the action $\Sigma^{8}$.
Since $\Theta_{8} \cong \mathbb{Z}_{2}$, it is enough to prove this 2-locally.

## Proof - Case 3: odd d (flexible)

## Proposition

After localization at 2 we have the following homotopy equivalences:

$$
\left(\left(Q S^{0} / O\right)_{d}\right)_{(2)} \simeq(G / O)_{(2)} \simeq(B O)_{(2)} \times(\text { Coker } J)_{(2)}
$$

The first equivalence was proved by Brumfiel and Madsen, and holds for $d$ odd.
The second equivalence comes from Sullivan's solution of the Adams conjecture.

## Proposition

If two complete intersections have the same invariants, then they represent the same element in $\left[\mathbb{C} P^{4}, B O\right]_{(2)} \times\left[\mathbb{C} P^{4}, \text { Coker } J\right]_{(2)}$.

