The Sullivan-conjecture in complex dimension 4

Csaba Nagy

28 January 2021

joint with Diarmuid Crowley

- Introduction to complete intersections
- Statement of the Sullivan-conjecture on the classification of complete intersections
- Proof of the Sullivan-conjecture in complex dimension 4

Definition

A complete intersection of (complex) dimension n is the transverse intersection of k algebraic hypersurfaces in $\mathbb{C}P^{n+k}$ (for some k). In particular, it is a smooth complex projective variety.

Definition

If a complete intersection is defined by hypersurfaces of degrees d_1, d_2, \ldots, d_k , then

- its multidegree is $\underline{d} = (d_1, d_2, \dots, d_k)$
- its total degree is $d = d_1 d_2 \dots d_k$

Example

Any nonsingular algebraic hypersurface is a complete intersection. For example, the equation

$$z_0^4 + z_1^4 + z_2^4 + z_3^4 = 0$$

determines a smooth degree-4 hypersurface in $\mathbb{C}P^3$ (a K3 surface).

Counterexample

The set of points $[z_0:z_1:z_2:z_3]\in \mathbb{C}P^3$ such that

$$z_1^2 - z_0 z_2 = 0$$

$$z_2^2 - z_1 z_3 = 0$$

 $z_0 z_3 - z_1 z_2 = 0$

is a smooth projective variety (diffeomorphic to $\mathbb{C}P^1 = S^2$), but not a complete intersection.

Theorem (Thom)

The diffeomorphism class of a complete intersection depends only on its multidegree.

Proof.

The space of tuples of polynomials (f_1, \ldots, f_k) of degrees (d_1, \ldots, d_k) that define complete intersections is connected.

In fact, two complete intersections with the same multidegree are deformation equivalent.

Definition

The *n*-dimensional complete intersection with multidegree \underline{d} is denoted by $X_n(\underline{d})$.

Example

$$X_n(1) = \mathbb{C}P^n.$$

Example

 $X_1(d_1, d_2, \ldots, d_k)$ is an oriented surface of genus

$$\frac{2-d(2+k-\sum_{i=1}^k d_i)}{2}$$

Example

 $X_2(4)$, $X_2(3,2)$ and $X_2(2,2,2)$ are K3 surfaces.

The inclusion $j : X_n(\underline{d}) \to \mathbb{C}P^{n+k}$ is n-connected. That is, $\pi_i(j) : \pi_i(X_n(\underline{d})) \to \pi_i(\mathbb{C}P^{n+k})$ is an isomorphism if i < n, and $\pi_n(j) : \pi_n(X_n(\underline{d})) \to \pi_n(\mathbb{C}P^{n+k})$ is surjective.

Proof.

Application of the Lefschetz hyperplane theorem.

Corollaries

• If
$$n \ge 2$$
, then $X_n(\underline{d})$ is simply-connected.

•
$$H^{i}(X_{n}(\underline{d})) \cong \begin{cases} \mathbb{Z} & \text{if } i \neq n \text{ is even} \\ 0 & \text{if } i \neq n \text{ is odd} \\ \text{free Abelian } \text{if } i = n \end{cases}$$

Definition

Let
$$y \in H^2(\mathbb{C}P^{n+k})$$
 be a generator and $x = j^*(y) \in H^2(X_n(\underline{d}))$.

Proposition

• If 2i < n, then x^i is a generator of $H^{2i}(X_n(\underline{d})) \cong \mathbb{Z}$.

•
$$x^n = d \cdot generator \in H^{2n}(X_n(\underline{d})) \cong \mathbb{Z}.$$

Proof.

A degree- d_i hypersurface in $\mathbb{C}P^{n+k}$ represents the Poincaré-dual of $d_i y$, so $X_n(\underline{d})$ represents the dual of dy^k .

Corollary

If 2 < n, then d is a homotopy invariant of $X_n(\underline{d})$.

Definition

Let $H \to \mathbb{C}P^{n+k}$ denote the complex conjugate of the tautological line bundle $(c_1(H) = y)$.

Proposition

The stable normal bundle of $\mathbb{C}P^{n+k}$ is $\nu_{\mathbb{C}P^{n+k}} \cong -(n+k+1)H$. The normal bundle of a degree- d_i hypersurface in $\mathbb{C}P^{n+k}$ is $H^{\otimes d_i}$.

Proposition

The stable normal bundle of $X_n(\underline{d})$ is the pullback of

$$-(n+k+1)H \oplus H^{\otimes d_1} \oplus H^{\otimes d_2} \oplus \ldots \oplus H^{\otimes d_k}$$

The stable normal bundle of $X_n(\underline{d})$ is the pullback of

$$-(n+k+1)H \oplus H^{\otimes d_1} \oplus H^{\otimes d_2} \oplus \ldots \oplus H^{\otimes d_k}$$

Proposition

$$egin{aligned} c(
u_{X_n(\underline{d})}) &= (1+x)^{-(n+k+1)} \prod_{i=1}^k (1+d_ix) \ p(
u_{X_n(\underline{d})}) &= (1-x^2)^{-(n+k+1)} \prod_{i=1}^k (1-d_i^2x^2) \end{aligned}$$

The converse of Thom's theorem is false. That is, diffeomorphic complete intersections may have different multidegree.

Example (Libgober-Wood '82)

 $X_3(16, 10, 7, 7, 2, 2, 2) \approx X_3(14, 14, 5, 4, 4, 4)$

Example (Crowley-N. '19)

 $X_4(3^{(150)}, 7^{(89)}, 9^{(65)}, 15^{(1)}, 25^{(130)}) \approx X_4(5^{(261)}, 21^{(89)}, 27^{(64)})$

Proposition (Libgober-Wood '82)

In dimension n > 2, if two complete intersections are deformation equivalent, then they have the same multidegree.

Conjecture

Let $n \ge 3$. Two n-dimensional complete intersections are diffeomorphic if and only if they have the same

- total degree
- Pontryagin-classes
- Euler-characteristic
- p_i is a multiple of x^{2i} , so Pontryagin-classes can be compared.
- These conditions are necessary.

Theorem

The Sullivan-conjecture holds for n = 3.

This follows from the classification of simply-connected 6-manifolds with torsion-free homology done by Wall ('66) and Jupp ('73).

Theorem (Fang-Klaus '96, Fang-Wang '10)

The Sullivan-conjecture holds up to homeomorphism for $4 \le n \le 7$.

If n = 4, then the conjecture holds smoothly up to connected sum with a homotopy 8-sphere.

Theorem (Baraglia '20)

If n = 4k + 1, $X_n(\underline{d})$ and $X_n(\underline{d}')$ are spin, and they have the same invariants, then $\alpha(X_n(\underline{d})) = \alpha(X_n(\underline{d}'))$.

Theorem (Kreck-Traving '96)

In dimension n, the Sullivan-conjecture holds if the total degree is divisible by $p^{\lceil (2n+2p-1)/(2p-2)\rceil}$ for every prime p with $p(p-1) \leq n+1$.

For n = 4 the total degree must be divisible by 2^6 .

Theorem (Crowley-N. '18)

The Sullivan-conjecture holds for n = 4.

Definition

 Θ_n denotes the group of homotopy *n*-spheres:

- Its elements are smooth *n*-manifolds homeomorphic to *Sⁿ*, up to orientation-preserving diffeomorphism.
- The group operation is connected sum.

Theorem (Kervaire-Milnor '63)

$$\Theta_{4k} \cong \operatorname{Coker} (J_{4k} : \pi_{4k}(SO) \to \pi^S_{4k}) \quad \text{ if } k > 1.$$

Definition

 Σ^8 denotes the non-trivial element of $\Theta_8\cong \mathbb{Z}_2.$

By Fang-Klaus, for n = 4 the conjecture fails only if there are complete intersections $X = X_4(\underline{d})$, $Y = X_4(\underline{d}')$ such that

- Y is diffeomorphic to $X \# \Sigma^8$, and
- X is not diffeomorphic to $X \# \Sigma^8$

So for every $X_4(\underline{d})$ we need to prove that either

- $X_4(\underline{d})$ is diffeomorphic to $X_4(\underline{d}) \# \Sigma^8$ (rigid case), or
- X₄(<u>d</u>) is not diffeomorphic to X₄(<u>d</u>)#Σ⁸, and X₄(<u>d</u>)#Σ⁸ is not a complete intersection (flexible case)

Example (Kasilingam)

 $\mathbb{C}P^4$ is flexible (ie. $\mathbb{C}P^4 \not\approx \mathbb{C}P^4 \# \Sigma^8$).

If $X_4(\underline{d})$ is flexible, then we need to show that $X_4(\underline{d}) \# \Sigma^8$ is not diffeomorphic to any complete intersection.

A way to do this is finding a special property that complete intersections have, but $X_4(\underline{d}) \# \Sigma^8$ doesn't.

Candidate property: every complete intersection is a smooth complex projective variety, therefore Kähler.

Question

Does $X_4(\underline{d}) \# \Sigma^8$ have a Kähler metric?

The S^1 -bundle over a complete intersection $X_n(\underline{d})$ with first Chern class $c_1 = x$ has a framing such that it is framed nullcobordant.

Proof.

 $X_n(\underline{d})$ is the transverse intersection of $X_{n+1}(\underline{d})$ and $\mathbb{C}P^{n+k}$ in $\mathbb{C}P^{n+k+1}$:

$$\mathbb{C}P^{n+k} \longrightarrow \mathbb{C}P^{n+k+1}$$

$$\uparrow \qquad \uparrow$$

$$X_n(\underline{d}) \longrightarrow X_{n+1}(\underline{d})$$

- $X_{n+1}(\underline{d}) \setminus X_n(\underline{d})$ is stably parallelizable.
- The normal bundle of $X_n(\underline{d}) \subset X_{n+1}(\underline{d})$ has $c_1 = x$.

Proof - Case 1: spin (flexible)

Proposition

If $X_4(\underline{d})$ is spin, then the S¹-bundle over $X_4(\underline{d}) \# \Sigma^8$ with $c_1 = x$ is not framed nullcobordant with any framing.

Outline of proof.

- The framed cobordism class of the S^1 -bundle changes by $\Sigma^8 \times S^1$, with some framing.
- The framed cobordism class of $\Sigma^8 \times S^1$ depends on the framing of the $S^1.$
- The framings of S^1 are in bijection with $\pi_1(SO) \cong \pi_2(BSO) \cong \mathbb{Z}_2$, detected by w_2 .
- If $w_2(X_4(\underline{d})) = 0$, then $\Sigma^8 \times S^1$ is not framed nullcobordant.
- The framed cobordism class of the S¹-bundle remains non-zero if we change the framing.

The main tool in these cases is Kreck's modified surgery theory. Setting:

- M_0 and M_1 are 2*q*-manifolds, $q \ge 3$
- W is a cobordism between M_0 and M_1
- B is a fixed space with a bundle ξ over it
- $F: W \to B$ is a *normal map*: it is covered by a bundle map $\nu_W \to \xi$
- $\chi(M_0) = \chi(M_1)$
- f_0 and f_1 are *q*-connected, where $f_i = F|_{M_i}$

In this setting an obstruction $\theta(W, F)$ is defined.

 $\theta(W, F)$ is elementary $\Leftrightarrow W$ can be replaced by an h-cobordism If M_0 is a complete intersection*, then $\theta(W, F)$ is elementary.

If $X_4(\underline{d})$ is non-spin and $w_4(X_4(\underline{d})) \neq 0$, then $X_4(\underline{d}) \approx X_4(\underline{d}) \# \Sigma^8$.

We apply modified surgery in the following setting:

• $B = \mathbb{C}P^{\infty} \times BString$ is the normal 3-type of $X_4(\underline{d})$

•
$$\xi = -5H \oplus H^{\otimes d_1} \oplus \ldots \oplus H^{\otimes d_k}$$
 is the bundle over $\mathbb{C}P^{\infty}$

- $f_0: X_4(\underline{d}) \to B$ is the embedding $X_4(\underline{d}) \to \mathbb{C}P^\infty$
- $f_1: X_4(\underline{d}) \# \Sigma^8 \to B$ is f_0 precomposed with a homeomorphism
- Needed: f_0 and f_1 are normally bordant

Proposition

The map
$$i:\mathbb{Z}_2\cong\Theta_8 o\Omega_8^{String}(\mathbb{C}P^\infty,\xi)$$
 is trivial

Proof - Case 2: non-spin, $w_4 \neq 0$ (rigid)

Definition

• Let T be the non-trivial D^6 -bundle over S^2 .

•
$$\Theta_8(S^2, 1) = \{g \in \operatorname{Diff}(\partial T) \mid H_*(g) = \operatorname{id}\}/\operatorname{isotopy}$$

Theorem (Crowley-N.)

 $\Theta_8(S^2,1)\cong\mathbb{Z}_4.$

If $X_4(\underline{d})$ is non-spin, then T can be embedded in $X_4(\underline{d})$, so a diffeomorphism of ∂T determines a cut-and-reglue operation.

The effect on the bordism class is given by a homomorphism $\Theta_8(S^2, 1) \to \Omega_8^{String}(\mathbb{C}P^{\infty}, \xi).$

Moreover, the map $i: \Theta_8 \to \Omega_8^{String}(\mathbb{C}P^{\infty}, \xi)$ is the composition $\mathbb{Z}_2 \to \mathbb{Z}_4 \cong \Theta_8(S^2, 1) \to \Omega_8^{String}(\mathbb{C}P^{\infty}, \xi).$

Proposition (Fang-Klaus)

If $w_2(X_4(\underline{d})) \neq 0$ and $w_4(X_4(\underline{d})) \neq 0$, then

$$\operatorname{Tor} \Omega_8^{String}(\mathbb{C}P^{\infty},\xi) = \operatorname{Im}(i:\Theta_8 \to \Omega_8^{String}(\mathbb{C}P^{\infty},\xi))$$

So we have the following commutative diagram:

This implies that the map *i* is trivial.

In this case the map $\Theta_8 \to \Omega_8^{String}(\mathbb{C}P^{\infty},\xi)$ is non-trivial.

Suppose that $X_4(\underline{d})$ and $X_4(\underline{d}')$ have the same invariants. We apply modified surgery in the following setting:

- $B = \mathbb{C}P^{\infty} \times BString$ is the normal 3-type of $X_4(\underline{d})$
- $\xi = -5H \oplus H^{\otimes d_1} \oplus \ldots \oplus H^{\otimes d_k}$ is the bundle over $\mathbb{C}P^{\infty}$
- $f_0: X_4(\underline{d}) \to B$ is the embedding $X_4(\underline{d}) \to \mathbb{C}P^\infty$
- $f_1: X_4(\underline{d}') \to B$ is the embedding $X_4(\underline{d}') \to \mathbb{C}P^\infty$

Proposition

 f_0 and f_1 are normally bordant.

The embedding $X_4(\underline{d}) \to \mathbb{C}P^{\infty}$ factors through a degree-d map $X_4(\underline{d}) \to \mathbb{C}P^4$, covered by a bundle map

Proof - Case 3: odd d (flexible)

Definition

A degree-d normal map is a diagram

where ξ is a stable vector bundle, \overline{f} is a bundle-morphism, and $\deg(f) = d$.

Definition

 $\mathcal{N}_d(M)$ denotes the set of cobordism classes of degree-d normal maps into M. $\mathcal{N}_d(M,\xi)$ denotes the set of cobordism classes of degree-d normal maps into M, with fixed bundle ξ over M.

Proof - Case 3: odd d (flexible)

Definition

A fibrewise degree-d map is a diagram

where $S(\eta)$ and $S(\eta')$ are the sphere bundles of η and η' , \overline{f} is a fibre-preserving map, and its restriction to any fibre has degree d.

Definition

 $\mathcal{F}_d(M)$ denotes the set of fibrewise degree-*d* maps over *M* up to fibrewise homotopy equivalence and stabilization.

 $\mathcal{F}_d(M,\xi)$ denotes the set of fibrewise degree-*d* maps over *M* such that $\nu_M \oplus \eta' \oplus (-\eta) \cong \xi$, up to fibrewise homotopy equivalence and stabilization.

Theorem (Brumfiel-Madsen '76)

There is a space $(QS^0/O)_d$ such that $\mathcal{F}_d(M) \cong [M, (QS^0/O)_d]$ for every M.

Theorem (Hambleton-Madsen '86)

There is a bijection between $\mathcal{F}_d(M)$ and $\mathcal{N}_d(M)$, that restricts to a bijection between $\mathcal{F}_d(M,\xi)$ and $\mathcal{N}_d(M,\xi)$.

The degree-*d* normal map

$$\left[X_4(\underline{d}) \to \mathbb{C}P^4\right] \in \mathcal{N}_d(\mathbb{C}P^4,\xi)$$

corresponds to the following fibrewise degree-*d* map over $\mathbb{C}P^4$:

$$\left[S(H\oplus H\ldots\oplus H)\to S(H^{d_1}\oplus H^{d_2}\oplus\ldots\oplus H^{d_k})
ight]\in \mathcal{F}_d(\mathbb{C}P^4,\xi)$$

Proof - Case 3: odd d (flexible)

We have the following diagram:

 Θ_8 acts on $\mathcal{N}_d(\mathbb{C}P^4)$, and hence on $[\mathbb{C}P^4, (QS^0/O)_d]$. It is enough to show that elements of $[\mathbb{C}P^4, (QS^0/O)_d]$ coming from complete intersections cannot differ by the action Σ^8 . Since $\Theta_8 \cong \mathbb{Z}_2$, it is enough to prove this 2-locally.

After localization at 2 we have the following homotopy equivalences: $((QS^0/O)_d)_{(2)} \simeq (G/O)_{(2)} \simeq (BO)_{(2)} \times (\text{Coker } J)_{(2)}$

The first equivalence was proved by Brumfiel and Madsen, and holds for d odd.

The second equivalence comes from Sullivan's solution of the Adams conjecture.

Proposition

If two complete intersections have the same invariants, then they represent the same element in $[\mathbb{C}P^4, BO]_{(2)} \times [\mathbb{C}P^4, \operatorname{Coker} J]_{(2)}$.