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1. Introduction

In 1969, Pierre Deligne and David Mumford published The irreducibility of
the space of curves of given genus ([DM69]), containing two proofs of irreducibility
for the above moduli spaces. It is the second proof that creates an importance of
their paper beyond the scope of its main theorem. Following prior ideas by Giraud
and Grothendieck in this proof, Deligne and Mumford introduce the language of
algebraic stacks.

Since then, the field of algebraic stacks has gained a reputation for being notori-
ously difficult. See for example [HM98], where Harris and Morrison write on page
139 et seq. about the appearance of stacks in mathematical talks and their decision
to omit the topic:

Who hasn’t heard these words, or their equivalent, spoken in a talk?
And who hasn’t fantasized about grabbing the speaker by the lapels and
shaking him until he says what – exactly – he means by them? But
perhaps you’re now thinking that all that is in the past, and that at long
last you’re going to learn what a stack is and what they do. Fat chance.
[. . . ]

Well that’s how it goes in theory, anyway. In practice, there is one
respect in which the language of stacks isn’t wholly perfect; it’s difficult
to understand even the definition of a stack (we’re speaking strictly of
ourselves here). Actually, once you’ve absorbed the basic definitions, the
rest is not so bad, but there’s no question that the initial learning curve
is steep, not to say vertical.

Without doubt, one issue that might have created this image amongst mathe-
maticians is the original paper itself: The fourth section in which stacks are defined
is a mere collection of “some results on algebraic stacks” with the promise to give
the proofs “elsewhere”. The reader can guess what happened next. . .

So for years, there were no good sources giving a detailed account on this subject.
At the time of this writing, the situation has improved a bit. There is one standard
reference [LMB00] but this is not suitable for an introduction as it proceeds at a
quick pace. Also, Laumon and Moret-Bailly have a general perspective and do not
cover all the results needed by Deligne and Mumford. The same holds for the Stacks
Project [Sta15], a vast online encyclopedia building its way from commutative alge-
bra to algebraic stacks that is still under construction and hopefully will add many
more interesting details in the next years. Apart from this, there is an unfinished,
collaborative draft [Beh06] which aims at beginners, as well as sketchy online notes
from a course by Olsson1.

In this essay, I try to give a non-vertical but horizontal introduction to stacks.
My slogan will be the usual one for me:

1http://stacky.net/wiki/index.php?title=Course_notes
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Imagine yourself back at the point in time when you started to learn
about stacks. With that level of knowledge, what would have been the
introduction to stacks that you wished to read but that unfortunately
did not exist?

Of course, this approach is subjective as my prior knowledge may not be congruent
with that of others wanting to learn the theory of stacks. For example, the the-
ory of Grothendieck topologies and descent results have been known to me before,
but recognising that this might rather be a coincidence I decided to include a short
overview on those in the appendix. In the end, I hope that with the help of clari-
fying footnotes, the rest is digestible with the usual Hartshorne or Vakil graduate
education in algebraic geometry and some basic knowledge of categories.

In my own experience, almost nothing in mathematics (except for false theorems)
is as damaging as unmotivated definitions. Therefore, I am going to spend the next
section on motivating the later formalism. My hope is that by explaining the basic
problems and philosophy at the beginning, most of what follows will look like the
natural way to do it.

The third section deals with the abstract groundwork to express moduli prob-
lems in a categorical way and illuminates how this formulation gives “presheaves in
categories” while the fourth section deals with adding the right “sheaf conditions”.
In the fifth section, the bridge to algebraic geometry is constructed by imposing
algebraicity conditions on the abstract stacks from the previous section. Having
finally arrived at the definition of the objects we are working with, the sixth section
develops algebro-geometric properties for stacks.

As the grand final, we will apply a couple of propositions from the preceding
section to prove the irreducibility result of [DM69]. This will follow quickly as soon
as we have established some properties of stable curves. Since these are not essential
to the topic of algebraic stacks, I have included these properties with explanations
and references in an additional appendix section.

Several important aspects of algebraic stacks are omitted. The first one is the
useful connection to algebraic groupoids which is an emphasis of [Beh06]. Also
missing are the theory of modules on stacks, Artin stacks (in modern terminology
“algebraic stacks”2) and Artin’s criteria for algebraicity. Because we are interested
in applications of quasi-separated Deligne-Mumford stacks, we will not need to de-
velop a theory of algebraic spaces which are objects more general than schemes but
less general than stacks. (That we can make this restriction is explained after the
definition of Deligne-Mumford stacks.) The reader is nevertheless encouraged to
read on algebraic spaces since this facilitates the understanding of algebraic stacks.

Throughout the text, the term “scheme” will mean “scheme over a fixed base
scheme Λ” and fibre products are by default taken over the terminal object Λ unless
otherwise specified.

2After Deligne-Mumford, M. Artin came up with a more general definition of algebraic stacks.
This definition is mentioned in Section 5 but not used in this text.
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2. Motivation

What is a stack? The shortest (but oversimplifying) answer to this question that
one might encounter is to say that it is a sheaf which takes values in groupoids, i.e.
categories where every morphism is an isomorphism. The aim of this chapter is to
motivate how such objects can naturally arise and to build up an intuition for what
makes them interesting to work with.

Precise definitions will be given in the following chapters and the daring reader
(or those who have an aversion against lack of formalism) may skip this motivation.
For those, however, who are new to the world of stacks I hope to provide an anchor
to which they can hold amidst the abstract nonsense that is going to follow.

2.1. A moduli problem for ordered triangles

When trying to learn the language of stacks, an additional obstacle is posed by the
algebro-geometric baggage which comes with the theory. We seize a suggestion by M.
Artin to remove this weight and to firstly concentrate on the essential observations
that make the use of stacks necessary. Investigating moduli spaces for plane triangles
is a good way to do so. (For a longer treatment of triangles and moduli, read
[Beh14].)

Moduli problems ask for spaces that parametrise a collection of geometric objects
up to isomorphism. This means that every point of the wanted moduli space should
correspond to one isomorphism class and the geometry of the space should “reflect”,
when two objects are “close” to each other. Suppose we now want to find such a
moduli space for plane triangles up to isometry.

A first natural approach is to identify every triangle (actually every isomorphism
class) by its corresponding side lengths (a, b, c). Of course, only those triples satis-
fying the triangle equations give rise to a triangle. We therefore arrive at an open
subset of R3

T̃ = {(a, b, c) ∈ R3|a, b, c > 0, a+ b > c, b+ c > a, c+ a > b}

T̃ has the shape of an infinite pyramid. A two-dimensional cross section along
a+b+c = 2, i.e. points corresponding to perimeter 2 triangles, is shown in Figure 2.1.
(If we had considered triangles up to similarity, this would be the complete picture.)

Even with the vague notion used above, T̃ is not going to be a moduli space for
plane triangles, since for every triangle which is non-equilateral permutations of the
vertices give rise to several points in T̃ representing the same isometry class. The
number of points in T̃ standing for a triangle equals the index of its automorphism
group in S3.

The collection of objects that is in fact parametrised by our open subset are
the ordered plane triangles (for which we remember the side labels). In fact, the
geometry of T̃ goes beyond our simple bijection between points and isomorphism
classes, and this additional geometric information really is what moduli problems
ask for. It tells us which continuous families of ordered triangles exist:

5



Figure 2.1: T̃ cut along perimeter 2 together with some chosen points and their
corresponding triangles where a is the base, b the right side and c the
left side. The solid lines indicate isosceles triangles, the dashed lines
rectangular triangles.

Definition 2.1. A family of triangles is a (proper3) continuous fibre bundle map
π : S → S of topological spaces4, together with a continuously varying metric5 on
the fibres such that each fibre is isometric to a plane triangle.

A family of ordered triangles is a family of triangles together with three sections
A,B,C : S → S (i.e. π ◦ A = 1S and the same for B,C) which cut out exactly the
triangle vertices in each fibre.

Sometimes the base may be omitted in the notation when it is implicitly clear.

3Properness is not really needed here since for a fibre bundle it is equivalent to the quasi-
compactness of the fibres.

4This means there is a space F called the fibre and S can be covered by trivialising opens U
s.t. there exist isomorphisms φU : π−1(U) ∼= U × F with π1 ◦ φU = π|U where π1 is the first
projection map.

5a continuous map d : S ×S → R≥0 whose restriction to the fibre Sp := π−1(p) ∼= F at each point
p is a metric
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We can easily get families of ordered triangles by drawing paths in T̃ as in Fig-
ure 2.2. Furthermore, T̃ itself is the parametrising base of a family T̃ → T̃ of
ordered triangles which was sketched in Figure 2.1 where the triangles vary contin-
uously along the fibres. (T̃ could be realised as a subspace of R3 × R2.)

Figure 2.2: A path in T̃ giving rise to a family of ordered triangles.

The existence of the family T̃ enables us to get families over any base S with a map
S → T̃ by pulling back along S → T̃ . In the case of a continuous path [0, 1] → T̃ ,
this gives us families like the example above. Because the concept of pullbacks is so
essential to stacks, we remind the reader of their categorical definition.

Definition 2.2. A commutative diagram in any category

X ×Z Y X

Y Z

g

f

is called cartesian if it satisfies the following universal property:
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Figure 2.3: The family from Fig. Figure 2.2

For any T with commuting

T X

Y Z

g

f

there is a unique map T → X ×Z Y such that the following diagram commutes:

T

X ×Z Y X

Y Z

g

f

In this case X ×Z Y is called fibre product of X and Y over Z, pullback (written
f∗X if g is implicitly clear) or base change of g along f . It is unique up to canonical
isomorphism, if it exists.

For topological spaces the fibre product is realised by {(x, y) ∈ X×Y |g(x) = f(y)}
(the fibre product of the spaces seen as sets) equipped with the obvious projections
and the subspace topology of the product topology. It takes fibre bundles to fibre
bundles preserving the fibres, hence the pullback of a family of triangles is a family
again. Pulling back a family along the inclusion of an open set is the same as
restricting the family to that set.
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On the other hand, given a family of ordered triangles S → S, this always induces
a so called moduli map of the base spaces f : S → T̃ mapping p ∈ S to the point
corresponding to the isomorphism class of the fibre Sp. One can see that the moduli
map is continuous because the lengths of the triangle sides, which are the coordinates
of f(s) ∈ T̃ , vary continuously in the family S → S.

However, the crucial point here is that this moduli map determines the family S.
It can be recovered as being isomorphic6 to the pullback f∗T̃ : Given any trivialising
open U , there is only one canonical isomorphism of families S|U → f∗T̃ |U over U
because the sections A,B,C leave only one way to isometrically identify the fibres.
As so often with this sort of problem, the uniqueness on the local level tells us
that the local isomorphisms agree on overlaps and allows us to glue to a global
isomorphism of families.

Later, we are going to encounter gluing of isomorphisms of families as the defining
property of a prestack. The property needed to turn a prestack into a stack can also
be observed in this example, it is the gluing (or descent) of families: Let (Ui)i∈I
be a cover of S with open sets and Ui → Ui be families with isomorphisms φij :
Ui|Uij → Uj |Uij on the overlaps Uij := Ui ∩ Uj satisfying the cocycle condition
φjkφij = φik. Then we can glue these families uniquely (up to isomorphism) to a
family S → S and isomorphisms of families φi : S|Ui → Ui with transition functions
φ′ij := φjφ

−1
i |Uij = φij .

Concluding this subsection, we remark that we have found a topological space
T̃ classifying continuous families of ordered triangles: It is the base of a universal
family T̃ → T̃ s.t. every family of ordered triangles S → S arises as pullback from
a canonical moduli map S → T̃ . Such a space is called fine moduli space.

2.2. A moduli problem for triangles

The main ingredient for T̃ to be a fine moduli space was the absence of non-trivial
automorphisms. The fibres of families, which were ordered triangles, could be iden-
tified in one and only one way due to the remembered order. Now, if we return
to our original interest, unordered triangles, we may worry that the existence of
non-trivial automorphisms for isosceles triangles creates issues.

Indeed, these additional automorphisms render fine moduli spaces impossible. To
see this, consider the two isotrivial families over S1 as in Figure 2.4. Their fibres over
all points are isometric to an equilateral triangle. The first family is the trivial one,
the second rotates the fibre by 120◦ in one revolution (which is an automorphism of
equilateral triangles). Their moduli maps to a moduli space will be constant. But
only the first family is trivial and the pullback along the constant map. Thus, it is
the second family which contradicts the existence of a fine moduli space.7

6as fibre bundles with the isomorphism inducing an isometry on fibres and being compatible in
the obvious way with the sections labelling the vertices

7Note that the second family cannot be given the structure of a family of ordered triangles since
it is not possible to choose a consistent labelling of vertices/edges.
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Figure 2.4: Two isotrivial families of triangles.

When mathematicians say that stacks solve the “problem of too many automor-
phisms”, they are referring to the above problem. A point like the one corresponding
to an equilateral triangles may have non-trivial automorphisms and stacks are de-
signed to remember those.

A first naive approach to the moduli problem for plane unordered triangles may
start with the fine moduli space T̃ and take the quotient with respect of the S3-
action permuting the labels. What this does to Figure 2.1 is identifying the six
smaller triangles of a barycentric subdivision of T̃ . (Each of them corresponds to
an ordering of the sides, e.g. a ≤ b ≤ c.) Therefore, the result T (cross-sectioned
along an isoperimeter plane) looks like one of these subtriangles and we do also get
a quotient family T over T (see Figure 2.5). Of course, T cannot be a fine moduli
space for triangles and T not a universal family, as shown above.

However, T is a so-called coarse moduli space: The points of T stand in bijection
with isomorphism classes of objects (triangles in our case) and for any family of
triangles S → S we still get a continuous moduli map S → T with the same
construction as before. Moreover, T is initial among such spaces. For any other
space T ′ coming with a moduli map for any family, there is a continuous map
T → T ′ such that the moduli map of any family into T ′ is given by composing the
moduli map into T with T → T ′. This universal property implies the uniqueness of
coarse moduli spaces. In our case, the map T → T ′ is given by the moduli map of
the family T → T .

As a final note, we could have developed the previous moduli problem with smooth
families over manifolds. In this case, T̃ would again be the fine moduli space and
carry the structure of a smooth manifold. The quotient T on the other hand suddenly
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Figure 2.5: T := T̃ /S3 cut along a+ b+ c = 2. The base is not in T , but the other
two sides are.

exhibits a boundary and singular behaviour (which we could correct of course by a
different parametrisation). Later on, the reader will understand that the quotient
stack [T̃ /S3] is automatically smooth. This hints at a great advantage of stacks.
In cases, where the coarse moduli space is singular (as it happens with moduli of
curves), the stack will be smooth and thus the better object to work with.

2.3. Grothendieck’s philosophy of the functor of points

In this last motivational subsection, we reformulate our observations in a categorical
framework. Grothendieck’s philosophy was that instead of trying to understand an
object C in a category C, one should try to understand the contravariant functor of
points hC := C( ) := HomC( , C) : C→ Sets. Denote the category of contravariant
functors to Sets, i.e. set-valued presheaves, with natural transformations as mor-
phisms by PSh(C). No information is lost by our replacement as the Yoneda lemma
tells us:

Lemma 2.3 (Yoneda lemma). Let C be a category and C an object therein. Then
for any F ∈ PSh(C) there is a natural8 isomorphism

Hom(hC , F ) ∼= F (C)

Through the special case of F = hB for another object B ∈ C, we get the statement
that h : C → PSh(C), C 7→ hC is a fully faithful embedding of C into PSh(C).
The interesting question to ask is which presheaves are isomorphic to hC for a

8natural in F and C, if we see both sides as functor from PSh(C)× C
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suitable object C, or in other terms: Which contravariant functors F ∈ PSh(C) are
representable? Due to Yoneda, a representing C always is unique up to isomorphism.

Solving the question of representability is strongly connected to our previous
search for fine moduli spaces. Having defined a notion of families over a base in
C and a notion of isomorphism for families which are stable under pullback, we
can define a presheaf F sending a base C to the set of isomorphism classes of fam-
ilies parametrised by C. A morphism f : C → D gets mapped to a morphism
F (D) → F (C) pulling back any family over D along f . It is elementary to check
that the existence of a fine moduli space M exactly means representability of F ,
where M is the representing object. The universal family in F (M) is then given
by the image of hM ∼= F under the Yoneda isomorphism. The notion of a coarse
moduli space M is equivalent to a natural transformation ψ : F → hM s.t.

(i). ψΩ : F (Ω)→ Hom(Ω,M) is a bijection for some notion of points Ω (i.e. just a
point for our topological spaces, or SpecC or all algebraically closed fields for
schemes).

(ii). ψ is initial: For any other ψ′ : F →M ′ there is φ : hM → hM ′ with ψ′ = ψ ◦φ.

Let us for the rest of the subsection restrict to the category Sch/Λ of schemes over
a fixed base Λ. We are going to use the notion of Grothendieck topologies which is
recapped in Appendix A. It is an important result that morphisms of schemes can
be glued Zariski-locally and thus any representable presheaf F must be a sheaf over
the big Zariski site Zar/Λ. Together with a second condition, for which we need a
short definition, we can state a criterion for representability of F .

Definition 2.4. Let C be (just for this definition) any category admitting fibre
products.

(i). A morphism F → G of presheaves on C is representable, if for any X ∈ C and
hX → G, the fibre product hX×GF (realised by componentwise fibre product)
is representable by a scheme Y . (This gives a first projection hY → hX , or
equivalently Y → X).

(ii). Let P be a property of schemes stable under composition with isomorphisms
from the left and right. We say that a representable morphism F → G like
above has property P , if the projection Y → X has P .

(iii). A family of representable Fi → F that are open immersions (due to scheme
morphisms gi : Y → X for any Λ-scheme X) is called an open cover, if the
images of the open immersions gi cover X (for any Λ-scheme X).

Proposition 2.5. A presheaf F ∈ PSh(Sch/Λ) is representable iff the following
are true:

(i). F is a sheaf over Zar/Λ.

(ii). There exists an open cover of F by representable Fi.
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Proof. see [G1̈0, Theorem 8.9].

The philosophy of this statement is that by looking at presheaves that admit an
open cover by schemes, we do not get anything new. We just stick with the old
concept of schemes.

The first historical step to algebraic stacks was to relax the condition on the cover,
i.e. replace the Zariski site by the étale site. For any scheme C the functor hC is
also a sheaf over this finer site. And indeed, by doing so, we arrive at a more general
concept than schemes.

Definition 2.6. An algebraic space is a sheaf F on Ét/Λ s.t.

(i). The diagonal F → F ×Λ F is representable.

(ii). There exists an étale covering of F by representable functors.

The first condition ensures that any morphism from a scheme hC to F is repre-
sentable (a fact we are going to see similarly for stacks). We will mention algebraic
spaces from time to time but not treat them in detail.

For a standard reference in algebraic spaces, see [Knu71]. As an important remark,
algebraic spaces are often required to be quasi-separated, i.e. have quasi-compact
diagonal. An unwanted consequence of such a definition is that schemes are algebraic
spaces via the Yoneda embedding if and only if they are quasi-separated. Algebraic
spaces allow taking quotients by free group actions (in a certain sense) but do not
solve our problem of “stacky points” resulting from non-trivial automorphisms. For
this, the idea is to give the families over C the structure of a category instead of a
set of isomorphism classes. Define a morphism between families C → C and D → D
as a cartesian diagram

C D

C D
f

In other words, C is the family D pulled back along f . Now let F (C) be the sub-
category of families over C with morphisms coming for which f = 1C . Obviously,
1∗CC ∼= C, so all morphisms in F (C) are isomorphisms, which is the definition of a
groupoid category. Taking the set of isomorphism classes of F (C) brings us back to
the set-theoretic structure.

With this observation, we have come to the point, where we see the reason for
wanting something like a sheaf valued in groupoids, also known as stack. Because the
natural concept for categories are not strict isomorphisms but isomorphisms up to
natural isomorphism (also known as equivalences of categories), the correct, subtle
definition for groupoid-valued sheaves we need will take us the next two sections.

A Deligne-Mumford stack will be a stack that does also admit an étale cover
by schemes, analogously to the definition of algebraic spaces. Finally, in certain
situation one needs to relax the étale cover condition to smoothness and gets an
Artin stack (or algebraic stack in modern terminology) which can cover the case of
quotients by group actions with non-finite stabilisers.
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3. Fibred categories

The ingenious idea in the definition of stacks is to make the moduli problem its own
solution and then add geometrical information to this description. In this section
we will deal with the first step and see how moduli problems are nothing else but so-
called fibred categories or, more specifically, categories fibred in groupoids. Stacks
will be fibred categories with extra conditions. Roughly speaking from a moduli
point of view, a category fibred in groupoids contains the families of the moduli
problem as objects with pullbacks as morphism and has a functor to a base category
sending a family to its parametrising base. After making the basic definitions,
important examples are introduced.

3.1. Definition and first properties

Fix a base category S.

Definition 3.1. (i). A category X over S is a functor p : X → S. A morphism
of categories pX : X → S and pY : Y → S over S is a functor F : X → Y
commuting with the projections pX = pYF .

(ii). An element x in X with p(x) = S is said to lie over S. A diagram

x′ x

S′ S

φ

p p

f

commutes if p(φ) = f . In this case, φ lies over f .

(iii). The fibre over S ∈ S is defined as the subcategory XS of objects over S and
morphisms mapping to 1S .

In the general theory, we try to consistently use small letters x, y, z, . . . for ob-
jects resp. Greek letters for morphisms in X, capital letters S, T, U, . . . for objects
resp. small letters f, g, h, . . . for morphisms in S and capital letters F,G,H, . . . for
morphisms between categories over S.

The notion of a fibred category allows to talk about pulling back objects in a
category over S along a map in S. The problem that needs to be tackled here is
that for two suitable maps f, g, the pullbacks (gf)∗ and f∗g∗ are only naturally
isomorphic in general.

Definition 3.2. Fix a category X over S.

(i). A commutative diagram

x′ x

S′ S

φ

f
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is (strongly) cartesian if any commutative

z x′ x

Z S′ S

φ

f

can be extended uniquely and commutatively by a morphism z → x′. Then,
x′ is called pullback of x along f and written as f∗x. It is determined up to
canonical isomorphism. The morphism φ is called cartesian.

(ii). X is a fibred category if given any x, S′, S like above, there is a pullback f∗x.
A morphism of fibred categories over S is a morphism as categories over S
sending cartesian morphisms to cartesian morphisms.

By making choices, the pullback along f : S′ → S in a fibred category can be
easily made a functor f∗ : XS → XT : Choose (with the axiom of choice) a pullback
f∗x → x for every x ∈ XS . Then for every φ : x′ → x in XS the commutative
diagram

x′

f∗x′ f∗x x

S′ S′ S
f

gives a unique morphism f∗x′ → f∗x in XS′ (i.e. over 1S′). The uniqueness auto-
matically proves the functoriality.

Definition 3.3. A choice of pullbacks is called a cleavage.

The identity functor is a possible choice of pullback along 1S , so every other
choice is naturally isomorphic to this one. The composition of pullbacks satisfies the
cartesian property again and is itself a pullback. Therefore, we get the canonical
isomorphism (gf)∗ ∼= f∗g∗. Moreover, by abstract nonsense, one can check that
these isomorphisms satisfy the “cocycle condition”, i.e.

f∗(g∗h∗) f∗(hg)∗ ((hg)f)∗

(f∗g∗)h∗ (gf)∗h∗ (h(gf))∗

∼= ∼=

∼= ∼=
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commutes. Also
f∗ (1S ◦ f)∗

f∗ ◦ 1XS f∗ ◦ 1∗S

∼=
∼=

and vice versa for the composition with identity from the other side. These properties
make ∗ a so-called pseudo functor and one may think of a fibred category as a
collection of pullback functors with this condition. However, the first definition we
gave is much easier to check.

The fibre over S of a fibred category serves as the value of our stack at S (cf. the
motivational chapter) and the pullbacks as the restriction maps along covers. Since
algebraic stacks always take values in groupoids (categories where all morphisms are
isomorphisms), we define:

Definition 3.4. A category fibred in groupoids (CFG) is a fibred category such that
all fibres are groupoids. A morphism of CFGs is a morphism of fibred categories.

Alternatively, many sources define CFGs directly by requiring the cartesian lifting
property for all morphisms in the way the next lemma states.

Lemma 3.5. Let X be a category over S. X is a CFG iff

(i). Any morphism in S can be lifted to one in the category X lying over it.

(ii). For any commutative diagram

Z

S

S′

h

g

f

and morphisms φ, ψ lying over f, g, there is a unique morphism γ lying over
h s.t.

z

x

x′

γ

ψ

φ

commutes.

Proof. Rephrasing condition (ii) into one diagram, we see that it claims every lifted
morphism is cartesian, while condition (i) says that lifts exist. Thus, these two
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conditions are equivalent to saying that X is a fibred category in which every mor-
phism is a pullback. But pullbacks along the identity are isomorphisms, thus the
two conditions imply that X is fibred in groupoids.

Conversely, suppose we are given a morphism ψ : x′ → x over f : S′ → S.
The universal property of pullbacks gives a morphism x′ → f∗x lying over 1S′ . If
X is fibred in groupoids, this has to be an isomorphism, hence x′ → x itself is a
pullback.

This proof, which was not very difficult also makes clear that taking the sub-
category of a fibred category X comprising the same objects but only cartesian
morphisms yields a CFG.

Corollary 3.6. Let X,Y be CFGs over S. Any morphism X → Y as categories
over S is a morphism of CFGs.

Proof. All morphisms φ in CFGs are cartesian morphisms.

3.2. Examples

Example 3.7. Let X be an object in S. We can define a CFG X over S as “objects
over X”: The objects are morphisms f : S′ → X of schemes (often denoted as S′

with implicit structure morphism f) and morphisms f → g are scheme morphisms
h with f = g ◦ h. The projection p to S maps f to S′ and h to h. The pullback of
S → X along S′ → S is given by the composition S′ → S → X. If S has a terminal
object Λ, then Λ ∼= S.

Example 3.8 (Grothendieck construction). Via taking F := hX , the previous ex-
ample is a special case of the following CFG SF obtained from a presheaf

F : Sopp → Sets

or more generally a (contravariant) functor F : Sopp → Groupoids9. (Sets are
the special case of groupoid categories where the only morphisms are the identity
morphisms.)

In even greater generality, let F : Sopp → Categories10 be a functor (i.e. a presheaf
of categories). Associate to F the following fibred category SF over S:

Objects are pairs (U, x) of objects U in S and x ∈ F (U). Morphisms from (U, x)
to (V, y) are pairs (f, φ) of morphisms f : U → V and φ : x→ f∗y, where we write
f∗ := F (f). The composition of (g, ψ : y → g∗z) ◦ (f, φ : x → f∗y) is defined as
(g ◦ f, f∗(ψ) ◦ φ). The projection to S forgets the second component of the pairs.
This very general definition coincides with the one given in the first example, i.e.
there is an obvious isomorphism between the CFGs constructed previously and in
the general way.

9groupoid categories as objects with functors as morphisms
10categories as objects with functors as morphisms
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Lemma 3.9. SF is a fibred category. If F goes to the full subcategory of groupoids,
SF is a CFG.

Proof. This is simple checking, as long as one remembers that due to functoriality
(g◦f)∗ = f∗◦g∗. The pullback of (U, x) along f is given by (f, 1f∗x) and its required
cartesian lifting of

(Z, z) (V, f∗x) (U, x)

Z V U

(h,φ)

(f,1f∗x)

h

g f

can be achieved by (g, φ).

The fibre of SF at U is just F (U). If this always is a groupoid, then SF is fibred
in groupoids.

On the other hand, for a fibred category X we see that iff we can make a choice of
pullbacks with (g ◦ f)∗ = f∗ ◦ g∗, then X is isomorphic as a fibred category to some
SF (namely F : S′ 7→ XS′ , f → f∗), a situation called splitting.

If X is fibred in discrete categories/sets, then there is always exactly one choice
of pullback and (g ◦ f)∗ = f∗ ◦ g∗ holds automatically. Thus, we get an equivalence
of the full subcategory of categories fibred in sets and the category of presheaves in
sets. (A morphism between categories fibred in sets X→ Y consists of maps between
the fibres XS → YS that are compatible with the pullbacks. These are the same
data as for a natural transformation between the corresponding presheaves.) In the
special case of functors hS we see by Yoneda that Hom(S, S′) = Hom(S, S′) i.e.
the Grothendieck construction gives a fully faithful embedding of S into categories
fibred in sets.

Example 3.10. We take a stable class of arrows A in S, closed under base change
and composition with isomorphisms. A morphism between two arrows f, g are
two morphisms dom(f) → dom(g), codom(f) → codom(g) making a commutative
square with f, g. The resulting category SA has a projection functor to S forgetting
any information on the domain. This is a fibred category, in which the cartesian
morphisms are given by cartesian squares (which we assume to exist). Of course,
we may restrict to these arrows and get a CFG.

Examples are Aff/Λ and QAff/Λ, affine and quasi-affine arrows in Sch/Λ.

Example 3.11. Types of sheaves of modules that are stable under pullback form
fibred categories. Examples are quasi-coherent sheaves QCoh/Λ, quasi-coherent
sheaves of commutative algebrasQCohComm/Λ, locally free sheaves of fixed rank. . .
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Example 3.12 (Quotients). Let S have fibre products and a terminal object Λ.
Given a Grothendieck topology on S we can define a quotient [X/G] for G a group
object in S acting on X11:

The objects of [X/G] are morphisms S ← E → X such that E → S is a principal
G-bundle or G-torsor and E → X is equivariant.

An equivariant morphism f : X ′ → X of objects acted on by G is one satisfying
the commutativity12 of

X ′ ×Λ G X ×Λ G

X ′ X

f×1G

f

A principal G-bundle is an object E over S with transitive, free action of G. Such
actions can be pulled back along f : S′ → S by defining the action of G on X ×S S′
as before on X and trivially on S′. For a principal G-bundle we require that there
is a cover fi : Ui → S such that f∗i X is isomorphic to the trivial G-torsor over Ui.
This means there is a G-equivariant isomorphism over Ui to the torsor Ui ×G with
Ui ×G→ Ui being the first projection and G just acting on the second factor.

Remark 3.13. The following is a useful characterisation of triviality: An isomorphism
of a principal G-bundle E → S to the trivial G-torsor S ×G gives rise to a section
S → E corresponding to the identity section mapping s 7→ (s, e) where e is the
neutral element13. On the other hand, given a section σ : S → E, we get an
isomorphism S ×G→ E given by (s, g) 7→ σ(s)g.

A morphism (E′ → S′, E′ → X)→ (E → S,E → X) is given by a G-equivariant
morphism E′ → E and S′ → S forming a cartesian diagram

E′ E

S′ S

and compatible with the morphisms to X:

E′ E

X

11Group object means that G(T ) can be given the structure of a group for all T making hG a
functor to Groups. An action (on the right) is a morphism X ×Λ G → X inducing actions
X(T )×G(T )→ X(T ). The reader may just think of algebraic groups for instance.

12or equivalently inducing G-equivariant maps fT : X ′(T ) → X(T ) (fT (x′g) = fT (x′)g for all
x′ ∈ X ′(T ), g ∈ G(T )).

13As we will do again later, we (ab)use the point-wise notation which under the Yoneda embedding
shall be interpreted in this case as hT → hT × hG, f 7→ (f, e) where e is the map to the neutral
element.
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The projection functor to S sends (E → S,E → X) to S and a morphism like
above to the base morphism S′ → S.

Indeed, this yields a CFG. Pullbacks are given by the fibre product in S: If
f : S′ → S is a morphism in S and (E → S,E → X) an object in [X/G] lying
over S, then we have already seen that G acts on f∗E = E ×S,f S′. Furthermore, a
trivialising cover Ui → S pulls back to a cover f∗Ui → S′, hence f∗E is a principal G-
bundle. The morphism E×S,f S′ → E is equivariant since G acts trivially on S′ and
f∗E → X can be defined as composition of two equivariant maps f∗E → E → X.
Because we required cartesian diagrams in our definition of morphisms in [X/G], any
morphism in [X/G] is cartesian, thus we have constructed not just a fibred category
but a CFG.

Example 3.14. Note the special case of BG := [X/G] where X = Λ in S (e.g. the
point Spec k in Sch/k). Then, BG classifies principal G-bundles since there is only
one choice for E → X. On the other hand, the categorical quotient14 X/G exists
and is just X again. Therefore, even if the categorical quotient exists, X/G is very
different from [X/G] in general.

Example 3.15. Let S = Sch/S. Fix an integer g ≥ 0. There is a CFG Mg of
smooth curves of genus g. Objects are proper, flat families C → T in S whose
geometric fibres are connected curves of arithmetic genus g. Morphisms (C ′ →
T ′) → (C → T ) are pairs (C ′ → C, T ′ → T ) such that the four maps form a
cartesian diagram. Composition can be defined componentwise (as “composition”
of cartesian diagrams is cartesian). The pullback property for all morphisms follows
directly from the universal property of fibre products. Projection to S is given by
just remembering the base objects/morphisms.

Example 3.16. Slightly decorating, we can define a CFGMg,n of n-pointed curves
(n ≥ 0). It is defined almost like the previous example but objects contain the
additional data of n disjoint sections σ1, . . . , σn : T → C and morphisms must
commute with sections of same index.

Example 3.17. Let 2g−2+n > 0. A very important object in the paper by Deligne-
Mumford is the compactificationMg,n. The objects are proper, flat families C → T
with n disjoint sections. The family’s geometric fibres Cs are stable n-pointed curves
of genus g, i.e.

(i). Cs is a connected curve of arithmetic genus g.

(ii). The only singularities in Cs are ordinary double points.

(iii). The sections pick non-singular points.

(iv). Each rational component of Cs has at least three marked points (i.e. a point
which is chosen by sections or singular).

(see Appendix B for a motivation and facts on stable curves we need).

14a morphism π : X → X/G that is G-invariant (π ◦ σ = π ◦ p2 for σ the group action and
p2 : X ×G→ X the projection) and through which every other such morphism factors.
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3.3. 2-categories

As seen in the last subsection, fibred categories (and therefore stacks) are a special
type of categories and morphisms between them are functors. Thus, the answer to
the question when two stacks are “structurally equal” is not the notion of isomor-
phism, a morphism having an inverse, but of categorical equivalence, a morphism
having an inverse up to natural isomorphism. It is now time to deal with this
problem, that we have been avoiding so far, properly within the framework of 2-
categories.

The idea of 2-categories is that besides morphisms between objects which are
called 1-morphisms in this setting, the 2-category also knows morphisms between
1-morphisms which we call 2-morphisms. As a prototypical example the reader may
think of Categories, categories with functors as 1-morphisms and natural transfor-
mations as 2-morphisms. (In fact, all our 2-categories arise from this prototype.)
To get a definition of 2-categories, one can take Categories and write down all the
properties satisfied in there:

Definition 3.18. A 2-category C consists of:

(i). a class of objects Ob(C).

(ii). for every pair X,Y of objects a category Hom(X,Y ) whose objects F : X → Y
we call 1-morphisms and whose morphisms we write as α : F ⇒ F ′ and call
2-morphisms. The composition of 2-morphisms is called vertical composition.

(iii). a functor

Hom(Y, Z)×Hom(X,Y )→ Hom(X,Z)

The image of 1-morphism pairs (F,G) on the left is denoted by F ◦ G and
called composition of 1-morphisms. The image of 2-morphism pairs (β, α) on
the left is called horizontal composition.

such that

(i). Ob(C) with 1-morphism and composition of 1-morphisms forms a category.

(ii). Horizontal composition is associative.

(iii). 11X is a unit of horizontal composition for all X.

A 2-category is a (2,1)-category, if all 2-morphisms are isomorphisms.

A conceptually better way is to define the notion of monoidal and afterwards
enriched categories and define inductively 0-categories as sets (of some kind - see
the next remark) and (n+ 1)-categories as categories enriched over n− Categories.

Remark 3.19. This is the only remark we are going to make about foundational
issues. Any reader who worries about sets and classes, is advised to check that one
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of the proposed solutions works. Any reader who does not worry may stop reading
here.

Modern set theory as defined by ZFC has been carefully designed to avoid patho-
logical examples like “the set of all sets”15. However, Grothendieck’s approach to
replace mathematical objects by much larger objects brings this system to its lim-
its. The objects of naturally arising categories like X simply do not form sets! So
how is it possible to make statements quantifying over CFGs, when they are not
mathematical objects in the sense of ZFC?

The approach proposed in [AGV+72] is to “blame” set theory for being too re-
strictive and not encompassing the correct notion of “collection” (see also [Mac98,
I.6]). They define a universe as a set closed under the usual operations that mathe-
maticians perform with sets (working with members, pairs, power sets and unions).
The existence of a universe containing ω would provide a model for ZFC and there-
fore cannot be proved in ZFC. Grothendieck et al. add the independent axiom to
ZFC that every objects is contained in a universe and always work with respect to
sets in a universe.

In our setting, we would postulate the existence of three universes U0 ∈ U1 ∈ U2.
U0 would be the universe containing ordinary sets, the sets in U1 would be re-
served for the classes and categories like Sets,Groups, . . . , and U2 for 2-classes and
2-categories. Constructions with sets will always stay in U0, constructions with
categories in U1.

Those who want to stay within ZFC may instead look into [Sta15, Section 000H].
The approach there is to bound the cardinality of involved sets and do a good amount
of bookkeeping.

Definition 3.20. A sub-2-category of a 2-category C is a subclass of objects ob C
and a subcategory of Hom(X,Y ) for all X,Y which together form a 2-category. If
the Hom-categories are the same as in C, we speak of a full sub-2-category.

We can always construct a sub-2-category which is a (2, 1)-category by removing
all 2-morphisms that are not 2-isomorphisms. Examples of 2-categories we know
are:

Example 3.21. Categories, the prototypical example.

Example 3.22. Groupoids can be given the structure of a full sub-2-category of
Categories.

Example 3.23. One can make Categories/S, the categories over S, a 2-category.
2-morphisms are defined as those natural transformations α : F ⇒ G such that
αx : Fx → Gx lies over the identity, i.e. in a fibre, for all x. With the same
definition for 2-morphisms, we get that fibred categories Fib/S and CFGs CFG/S
are 2-categories. In fact, CFG/S is a (2,1)-category since all αx lie over the identity,
thus are isomorphisms in a fibre. Categories/S and Fib/S are also (2,1)-category by

15which cannot exist since its power set would have higher cardinality
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restricting to natural isomorphisms. Finally, we may also take the full sub-2-category
of categories fibred in sets whose fibres are all discrete categories (sets). Since the
only possible morphisms between objects in a fibre are identities, all 2-morphisms
in this 2-category have to be identities.

2-categories have a notion of equivalence weaker than isomorphism: A morphism
F : X → Y in a 2-category is an equivalence if there are G : Y → X and isomor-
phisms F ◦ G ⇒ 1Y , G ◦ F ⇒ 1X . In this case, X and Y are called equivalent
(write X ' Y ). We show that equivalence of fibred categories is nothing else than
(fibrewise) equivalence of categories:

Proposition 3.24. Let F : X → Y be a morphism of categories over S. The
following are equivalent:

(i). F is an equivalence of categories over S.

(ii). F is an equivalence of categories.

If the categories are fibred, the two conditions are also equivalent to:

(iii). FS : XS → YS is an equivalence of categories for all base objects S.

Proof. (i)⇒ (ii), (ii)⇒ (iii) are trivial. Below, we will show (iv)⇒ (i) where (iv)
means: F is fully faithful and an equivalence on fibres. Clearly, (ii)⇒ (iv). Thus it
remains to additionally show (iii)⇒ (iv).

(iii)⇒ (iv): Full faithfulness of FS for all S implies full faithfulness of F .
Given φ′ : Fx′ → Fx in Y over f : S′ → S, we need a unique φ : x′ → x with

Fφ = φ′. We have cartesian morphisms η : f∗x → x and η′ : Ff∗x → Fx. This
gives a unique factorisation:

Fx′ Ff∗x Fx

S′ S′ S

ψ′

φ′

η′

f

The morphism ψ′ lies in the fibre over S′, so there is a unique ψ : x′ → f∗x with
Fψ = ψ′. Then F (ηψ) = η′ψ′ = φ′. On the other hand any φ with Fφ = φ′ gives
rise to a factorisation as above and therefore it is determined.

(iv) ⇒ (i): Let us construct the inverse G for F required in (i) now. Assuming
axiom of choice, for every y in Y lying over S, choose Gy in XS with isomorphism
αy : y → F (Gy) over 1S (F is essentially surjective). For every φ : y′ → y, there is
a unique φ′ making

y′ y

F (Gy′) F (Gy)

φ

∼=αy′ ∼=αy

φ′
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commute. φ′ has a unique preimage Gφ by full faithfulness of F . This definition of
G is functorial due to uniqueness of Gφ.

1Y ⇒ FG is given by α. This is a natural transformation due to the above diagram
and lies over 1S , hence it is a 2-morphism of fibred categories. For 1X ⇒ GF we
need isomorphisms βx : x → G(Fx) for all x in X over S. By full faithfulness of
F , the isomorphism αx : Fx → FGFx over 1S has a unique inverse image under
F lying over 1S and this is the required βx. It is a natural transformation because
after applying F the diagram

x′ x

GF (x′) GF (x)

φ

∼=βx′ ∼=βx

GFφ

commutes and thus, by full faithfulness had to commute before applying F .

The Proposition shows that in our definition of 2-morphisms for categories over
categories, the restriction to specific natural transformations did not change the
notion of equivalence. Up to now, we could have worked with more 2-morphisms.
However, these 2-morphisms make it possible to formulate a 2-Yoneda lemma clari-
fying the relation between fibres and S-valued points:

Proposition 3.25 (2-Yoneda lemma). Let X → S be a fibred category and S an
object in S. There is a functor yS

Hom(S,X)→ XS

which is an equivalence of categories.

Proof. yS sends a morphism F : S → X to F (1S) and a 2-morphism α : F ⇒ G
to α1S : F (1S) → G(1S). This is functorial: 1F 7→ 1F 1S = 1F (1S) and β ◦ α 7→
(β ◦ α)1S = β1S ◦ α1S .

Make a choice of pullbacks such that 1∗Sx = x. For an object x in XS we can
define F : S → X sending an object f : S′ → S to the pullback of x along f . On
morphisms

T T ′

S

φ

f
g

define F (φ) as composition f∗x = (g ◦ φ)∗x ∼= φ∗g∗x → g∗x. Then F (1f ) = 1f∗x
and for ψ : g → h

φ∗g∗x g∗x

f∗x φ∗ψ∗h∗x ψ∗h∗x

(ψφ)∗h∗x h∗x

∼= ∼=
∼=

∼= ∼=
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commutes due to the pseudo-functoriality of ∗. Thus, F is in Hom(S,X).

yS : F 7→ F (1S) = 1∗Sx = x

which proves essential surjectivity.
For full faithfulness, consider a 2-morphism α : F → G in Hom(S,X). This means

that one is given αf : F (f)→ G(f) in XT for any f : T → S such that

F (f) F (g)

G(f) G(g)

F (h)

αf αg

G(h)

commutes for all h : f → g. Suppose α1S = β1S . This yields for any f : T → S (by
considering f → 1S) a commutative diagram

F (1S)

F (f) G(f) G(1S)

T T S

α1S
=β1SF (f→1S)

αf∨βf G(f→1S)

f

f

Because f → 1S is cartesian (S is a CFG) and G is a morphism of fibred categories,
G(f → 1S) is cartesian too, therefore αf = βf . Conversely, for given α1S = β1S , the
last diagram uniquely defines αf for any f : T → S. The resulting α is indeed a
natural transformation:

For another g : T ′ → S and h : f → g, we know from above that in

F (f) F (g) F (1S)

G(f) G(g) G(1S)

F (h)

αf

F (f→1S)

αg α1S

G(h) G(f→1S)

the right and outer square commute and we want commutativity of the left square.
This is implied by the diagram

F (f) G(g) G(1S)

T T ′ S

αg◦F (h)

∨G(h)◦αf

G(g→1S)

h

f

g
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Due to the 2-Yoneda lemma, we will freely switch between objects in a fibre and
morphisms from a scheme into the fibred category.

The following corollary sheds light on the relation between preshaves in categories
and fibred categories.

Corollary 3.26. Any fibred category X is equivalent to a split one, i.e. SF for
some presheaf in categories.

Proof. We construct F : S→ Categories as follows: For objects S let

F (S) := Hom(S,X)

and for morphisms f : S → S′ take the morphism F (f) : Hom(S′,X)→ Hom(S,X)
induced by precomposition with f̄ : S → S′.

Now construct the obvious functor G : SF → X taking objects (U, x) to x(1U )
and morphisms (f : U → V, φ : x → y ◦ f̄) to x(1U ) → y(f̄(1U )) = y(f) → y(1V ).
The 2-Yoneda lemma yields that

GU : F (U) = Hom(U,X)→ XU

is an equivalence. Now the claim follows from Proposition 3.24.

Warning: Although every fibred category is equivalent to a split one, the category
of fibred categories is not equivalent to that of presheaves in categories. The reason
is that the morphisms between presheaves always have to respect the splittings while
those of fibred categories do not.

We end our discussion of 2-categories by revising our notion of commutative dia-
grams.

Definition 3.27. A diagram in a 2-category is called 2-commutative, if its 1-
morphisms commute up to given 2-isomorphisms and these 2-isomorphisms commute
in the induced diagram taking 1-morphisms (and their compositions) as vertices.

In fact, most diagrams in the world of stacks do only 2-commute.

3.4. 2-fibre products

Because the natural way to think about relations in 2-categories is up to 2-isomor-
phisms, the 2-fibre product has to take this into consideration, too. The notion of
2-fibre products in 2-categories that are non-strict16 can be a bit tricky as there are
different non-equivalent definitions involving 2-isomorphisms or mere 2-morphisms.
Therefore we restrict to (2,1)-categories.

16To our 2-categorical horror, there are also various strict 2-fibre products determining up to
isomorphism. However, conceptually we are interested in a notion stable under equivalence.
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Definition 3.28. A 2-commutative diagram in a (2,1)-category

X ×Z Y X

Y Z

is called 2-cartesian, if it satisfies the following universal property:

For any T with 2-commuting

T X

Y Z

there is a map γ : T → X ×Z Y such that the following diagram 2-commutes

T

X ×Z Y X

Y Z

and if γ′ is a second such morphism, then there is a unique 2-isomorphism γ ⇒ γ′

making the overall diagram 2-commute. In this case X ×Z Y is called 2-pullback or
2-fibre product and unique up to equivalence.

Like fibre products in categories, 2-fibre products satisfy commutativity, associa-
tivity and invariance under taking a product with an object over itself, but only up
to equivalence.

For a morphism X → S, there is a canonical diagonal morphism ∆X : X →
X ×S X induced by the identity. This morphism will play a very prominent role
in the theory of representable morphisms. It is also useful in recovering arbitrary
2-fibre products:

Lemma 3.29. Let X → Y , X ′ → Y ′, Z → Y , Z → Y ′ be morphisms over an object
S.

(i). (X ×S X ′)×Y×SY ′ Z is equivalent to (X ×Y Z)×Z (X ′ ×Y ′ Z).

(ii). (X ×S X ′)×Y×SY Y is equivalent to X ×Y X ′. (Remember: Any fibre product
can be realised by the diagonal morphism.)
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Proof. The second statement follows from the first with Y = Y ′ = Z. For the first
statement consider the 2-commutative diagram

(X ×Y Z)×Z (X ′ ×Y ′ Z)

(X ×S X ′)×Y×SY ′ Z X ×S X ′ X ′ ×Y ′ Z X ′

X ×Y Z Z

Y ×S Y ′ Y ′

X Y S

in which the dashed arrows come from universal properties.

Lemma 3.30. Let F : X → Z and G : Y → Z be morphisms of categories over S.
A 2-fibre product X ×Z Y in the (2,1)-category of categories over S is given by the
following construction:

(i). Objects are quadruples (S, x, y, φ) with x resp. y objects in XS resp. YS and
φ : F (x)→ G(y) an isomorphism in ZS.

(ii). Morphisms (a, b) : (S, x, y, φ) → (S′, x′, y′, φ′) are morphisms a : x → x′,
b : y → y′ mapping to the same S → S′ in S and forming a commutative
square

F (x) G(y)

F (x′) G(y′)

φ

F (a) G(b)

φ′

Composition is given componentwise.

Projections p1, p2 are given by forgetful functors.

Proof. The isomorphism α : Fp1 ⇒ Gp2 is given by α(S,x,y,φ) := φ : F (x)→ G(y).
Let p′ : T→ S, p′1 : T→ X, p′2 : T→ Y, α′ : Fp′1 → Gp′2 be a test object. Define

γ : T → X ×Z Y as γ(t) := (p′(t), p′1(t), p′2(t), α′t) on objects and (p′1(ψ), p′2(ψ)) on
morphisms. If γ′(t) := (p′(t), p′′1(t), p′′2(t), α′′t ) is a second such morphism, then the
isomorphisms

a : p′′1(t) = p1(γ′(t))→ p′1(t)

b : p′′2(t) = p2(γ′(t))→ p′2(t)

induce a morphism (a, b) : γ′(t) ⇒ γ(t). It is easy to check that this is functorial
and the only choice possible.
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Lemma 3.31. With the above construction (X ×Z Y)S = XS ×ZS YS as categories
(over the one point category S).

Proof. Trivial.

Lemma 3.32. The (2,1)-category of fibred categories is closed under 2-fibre prod-
ucts.

Proof. Just check that (X ×Z Y) in categories over S has pullbacks: For an object
(S, x, y, φ) and f : S′ → S choose pullbacks a : f∗x → x and b : f∗y → y. Then
F (a), G(b) are cartesian morphisms to F (x) ∼= G(y) and therefore we have a unique
isomorphism f∗φ : F (f∗x)→ G(f∗y) such that

F (f∗x) G(f∗y)

F (x) G(y)

f∗φ

F (a) G(b)

φ

commutes. Hence, we have found a morphism

(a, b) : (S′, f∗x, f∗y, f∗φ)→ (S, x, y, φ)

This is cartesian: Any (a′, b′) : (T, x′, y′, φ′)→ (S, x, y, φ) gives unique c : x′ → f∗x,
d : y′ → f∗y such that

F (x′) G(y′)

F (f∗x) G(f∗y)

F (x) G(y)

F (c)

F (a′)

G(d)

G(b′)
f∗φ

F (a) G(b)

φ

commutes. Inserting φ′ does not destroy the commutativity due to the uniqueness
of F (x′)→ G(f∗y).

Corollary 3.33. The (2,1)-category of categories fibred in groupoids or sets are
closed under 2-fibre products.

Proof. Use the last two lemmata.

Lemma 3.34. For F,G,H presheaves in discrete categories/sets:

SF ×SH SG
∼= SF×HG

In particular, for objects in S: X ×Z Y is isomorphic to X ×Z Y

Proof. The only 2-morphisms of categories fibred in sets are identities.
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There are more interesting examples of 2-fibre products.

Example 3.35. Take a quotient [X/G] and a scheme S. Any morphism S → [X/G]
determines an object E in [X/G]S . Let X → [X/G] be the morphism sending
f : T → X to the trivial torsor T ×G with equivariant map to X given by (t, g) 7→
f(t)g. We claim that

E X

S [X/G]

is 2-cartesian.

Objects in the 2-fibre product are given by scheme morphisms T → S, T → X
and an isomorphism ET ∼= T ×G in [X/G]T . An object in E is a scheme morphism
T → E. This induces a section T → ET and thus an isomorphism ET ∼= T ×G. We
conclude that the above diagram is 2-commutative.

The induced functor F : E → S ×[X/G] X is given on objects by sending T → E
to the object given by T → E → S, T → E → X and the isomorphism ET ∼= T ×G
described above. On the other hand, objects in the fibre product give a section
T → ET which by composition with ET → E gives an object in E. This proves
essential surjectivity of F .

Morphisms (T ′ → E) → (T → E) over E get send by F to the same morphism
over S and X. This satisfies the compatibility condition of morphisms in the 2-fibre
product:

T ′ ×G ET ′

T ×G ET

∼=

∼=

On the other hand, T ′ → T over S and X sin the 2-fibre product satisfying this
compatibility give rise to a 2-commutative diagram:

T ′ T ′ ×G ET ′ E

T T ×G ET E

∼=

∼=

Following the horizontal arrows, one finds T ′ → T over E with image under F equal
to the original morphism. This proves full faithfulness.

4. Stack conditions

From now on, fix a Grothendieck topology on the base category S. In this section, we
will state two conditions that define when a fibred category is a stack. As motivated
in the first chapter, these will be gluing of morphisms and descent on objects.
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4.1. Preheaves of morphisms and prestacks

Given a fibred category X → S and objects S in S, x and y in XS , make a choice
of pullbacks. We define a presheaf in sets on S:

HomX(x, y) : (f : T → S) 7→ HomXT (f∗x, f∗y)

For g : f → f ′ in S, define the restriction map

HomXT (f ′∗x, f ′∗y)→ HomXT (f∗x, f∗y) ∼= HomXT (g∗f ′∗x, g∗f ′∗y)

as φ 7→ g∗φ, the unique morphism f∗x → f∗y that forms a commutative diagram
with the canonical f∗x→ f ′∗x, f∗x→ f ′∗x and φ. These choices are independent of
the cleavage, i.e. for a different choice (f•x, f•y) instead of (f∗x, f∗y) the canonical
isomorphisms HomXT (f•x, f•y′) ∼= HomXT (f∗x, f∗y) satisfy the commutativity rela-
tion of a natural isomorphism. (If they did not, this would contradict the uniqueness
of g∗φ.)

It is also clear that for two equivalent fibred categories X and Y,

HomX(x, y) ∼= HomY(x, y)

and that a morphism Y→ Z induces HomY(x, y)→ HomZ(x, y).

Lemma 4.1. HomX(x, y) is in fact a presheaf.

Proof. By the previous remarks we can replace X by an equivalent split category
(Corollary 3.26) and choose pullbacks that split. But this means g∗f∗ = (f ◦ g)∗, so
the claim that the restriction maps are compatible is obvious.

Definition 4.2. A fibred category X is a prestack, if

(A) for every choice of S, x, y the presheaf HomX(x, y) is a sheaf.

The 2-category of prestacks is defined as full sub-2-category of fibred categories.

Note that isomorphisms glue to isomorphisms since if two morphisms are locally
inverse to each other, then there composition yields the identity morphism locally
and thus globally. Hence, for any prestack there is a subsheaf

IsomX(x, y) ⊂ HomX(x, y)

Lemma 4.3. The (2,1)-category of prestacks is closed under 2-fibre products.

Proof. Let F : X → Z, G : Y → Z be morphisms of prestacks. From the explicit
construction of the 2-fibre product and cartesian morphisms therein, one sees that
setting z = F (x) ∼= G(y), z′ = F (x′) ∼= G(y′)

HomX×ZY
((S, x, y, φ), (S′, x′, y′, φ′)) = HomX(x, x′)×HomZ(z,z′) HomY(y, y′)

The fact that the category of sheaves is closed under fibre products in the category
of presheaves finishes the proof.
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Lemma 4.4. If F is a presheaf in sets, then SF is a prestack iff F is separated17.

Proof. For f : T → S, setting x′ = f∗x, y′ = f∗y, the prestack condition translates
to exactness of

HomXT (x′, y′)→
∏
i HomXTi

(x′|Ti , y′|Ti)
∏
i,j HomXTij

(x′|Tij , y′|Tij )

where as a usual convention Tij := Ti ×T Tj and pullback is suggestively written
as restriction (x|Ti := f∗i x). Since the Hom-categories are discrete, the equaliser of
the right arrow is the whole

∏
i HomXTi

(x′|Ti , y′|Ti) and this means that we get an
equality x′ = y′ iff we have equalities x′|Ti = y′|Ti for all i. We get the first sheaf
condition for all x, y by taking f = 1S , thus x′ = x, y′ = y.

Example 4.5. In general, the prestack condition is related to descent on morphism
which is possible in subcanonical sites. Let A be a a stable set of arrows as in
Example 3.10 on a subcanonical site. Then the fibred category SA is a prestack:

Let (Ti → T ) be a covering. Take two arrows S → T , S′ → T in A

Si := S ×T Ti

Sij := S ×T Tij = Si ×S Sj

and analogously for S′. Given morphisms fi : Si → S′i over Ti such that fi and fj
agree on Sij ∼= Sji, we need to find a unique f : S → S′ over T agreeing with fi on
Si for all i.

The compositions gi : Si → S′i → S′ agree on Sij . Now hS′ is a sheaf by assump-
tion, so there is a unique morphism f : S → S′ restricting to the gi. It is indeed a
morphism over T since (Si → S′i → S′ → T ) = (Si → S′i → Ti → T ) agree on Sij
and hT is a sheaf.

Example 4.6. Working with the previous example, we see that [X/G] and Mg,n

are prestacks for any subcanonical topology. For morphisms constructed by local
data, we have additional conditions like equivariance and compatibility with sections
but these are equivalent to commutativity of some diagram which can be checked
locally.

4.2. Stacks

The missing condition for stacks is descent on objects. For this, we define a category
of descent data. Let X → S be a fibred category. For fibre products we denote by
pn the projection to the n-th component and by pnm the projection to the product
of the n-th and m-th component etc. Also write fibre products Ti ×T Tj as Tij etc.

Definition 4.7. Let (Ti → T ) be a family of morphisms in S.

17F is separated if it satisfies the first sheaf condition: Given two sections x, y ∈ F (T ) such that
their pullback to a cover (fi : Ti → T ) agrees, the sections are equal.
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(i). A descent datum on X relative to (Ti → T ) is a family of objects xi in XTi
for all i and isomorphisms φij : p∗1xi → p∗2xj in all XTij satisfying the cocycle
condition

p∗12p
∗
1xi p∗12p

∗
2xj p∗23p

∗
2xj

p∗13p
∗
1xi p∗13p

∗
3xk p∗23p

∗
3xk

∼=

p∗12φij ∼=

p∗23φjk

p∗13φik ∼=

in XTijk where the ∼= denote canonical isomorphisms.

(ii). A morphism of descent data (xi, φij) → (x′i, φ
′
ij) relative to (Ti → T ) is a

family of morphisms φi : xi → x′i such that

p∗1xi p∗2xj

p∗1x
′
i p∗2x

′
j

φij

p∗1φi p∗2φj

φ′ij

commutes. The composition of descent data morphisms works componentwise.

We define DD((Ti → T )) as the resulting category.

This definition is nothing else but the gluing data of families that we know from
the motivational section with categorical fibre products replacing intersections and
pullbacks replacing restrictions. Descent data can be pulled back along covers:

Definition 4.8. Let (Ti → T )i∈I , (T
′
j → T ′)j∈I′ be two families of morphisms in

S. Let α : I ′ → I, f : T ′ → T and fj : T ′j → Tα(j) constitute a morphism
(T ′j → T ′)→ (Ti → T ) as defined in Definition A.2.

Then we define a pullback functor of descent data

f∗ : DD((Ti → T ))→ DD((T ′j → T ′))

given by
(xi, φij) 7→ (f∗j xα(j), (fj × fj′)∗φα(j)α(j′))

on objects and by (φi) 7→ (f∗j φα(j)) on morphisms.

Lemma 4.9. This is indeed well-defined and functorial.

Proof. Functoriality is clear. Well-definedness is easy as soon as one notes that

T ′ijk T ′ij T ′i

Tijk Tij Ti

p′12

fi×fj×fk

p′1

fi×fj fi

p12 p1

commutes and analogously for the other projections. Then, one is able to shift the
f ’s in the cocycle condition to the front as fi × fj × fk or to the front as fi × fj in
the required commuting relation of descent data morphisms.
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Now we can define what it means for descent data to glue to a global object.

Definition 4.10. (i). For x lying over T we have the trivial descent datum (x, (1x))
relative to (1T ).

(ii). For x lying over T and (Ti → T ), we get a canonical descent datum by pulling
back the trivial descent datum.

(iii). A descent datum is called effective, if it is isomorphic to the canonical descent
datum of an object x.

Having developed the above formalism we define a stack.

Definition 4.11. A stack is a prestack such that

(B) for every cover (Ti → T ) in the chosen Grothendieck topology, all descent data
relative to (Ti → T ) are effective.

The 2-category of stacks is defined as full sub-2-category of the 2-category of pre-
stacks. A stack that is fibred in groupoids/sets is called a stack in groupoids/sets.

Stack condition (B) says that local objects with compatible overlaps glue together
to a global object. Then stack condition (A) implies that given two global objects
x, y having isomorphic canonical descent data, the local isomorphisms glue together
to a global one, x ∼= y. We can reformulate the two stack conditions in categorical
terms:

Lemma 4.12. Let X be a fibred category. For any family T = (fi : Ti → T ), there
is a canonical functor jT : XT → DD((Ti → T )) sending objects to their canonical
descent data and morphisms to the pullbacks of the morphisms between the trivial
descent data.

(i). X is a prestack iff jT is fully faithful for all covers T .

(ii). X is a stack iff jT is an equivalence for all covers T .

Proof. (i). If φ : x→ y is a morphism in XT , it gets mapped to (f∗i φ : f∗i x→ f∗i y)
in DD((Ti → T )). Now the sheaf condition on HomX(x, y) states exactly that
all families (φi : f∗i x → f∗i y) agreeing when pulled back (f∗j φi = f∗i φj) come
from a global φ : x→ y (jT is surjective on Hom-sets) and that this φ is unique
(jT is injective on Hom-sets).

(ii). Stack condition (B) means that jT is essentially surjective for all covers T .
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Warning Replacing covers (Ti → T ) by the disjoint union
∐
Ti → T as it is often

done in Grothendieck topologies involves a minor problem: A priori, it is not clear
that descent relative to (Ti →

∐
Ti) is effective. For this, it suffices to check that the

base change functors XT → XTi induce an equivalence of categories XT →
∏

XTi .

Lemma 4.13. If F is a presheaf in sets, then SF is a stack iff F is a sheaf.

Proof. We already know that stack condition (A) is equivalent to separatedness, the
first sheaf condition. Stack condition (B) on the other hand is the second sheaf
condition that objects being equal on the overlaps glue together.

Lemma 4.14. The (2,1)-category of stacks is closed under 2-fibre products.

Proof. For the 2-fibre product X ×F,Z,G Y of stacks as prestacks, we have to verify
stack condition (B). A descent datum relative to (Ti → T ) in the 2-pullback category
looks like ((Ti, xi, yi, φi), (ψij , χij)). From this we get descent data (xi, ψij) and
(yi, χij) which glue to give objects x and y. Via φi we have isomorphisms

F (x)|Ti ∼= F (x|Ti) ∼= F (xi)→ G(yi) ∼= G(y|Ti) ∼= G(y)|Ti
in ZTi and one can check that these glue together on overlaps to give an isomorphism
φ : F (x) → G(y). The canonical datum of (T, x, y, φ) relative to (Ti → T ) is then
indeed canonically isomorphic to the given one.

Corollary 4.15. The (2,1)-categories of stacks in groupoids/sets are closed under
2-fibre products.

4.3. Examples

Example 4.16. The CFG S is a stack in groupoids for any object S in S iff the
chosen Grothendieck topology is subcanonical.

Example 4.17. Algebraic spaces are étale sheaves in sets and can therefore be seen
as stacks with respect to the étale topology.

Non-trivial examples usually need some result from faithfully flat descent theory.

Example 4.18. For G a quasi-affine group scheme, [X/G] is a stack for the fpqc
topology. We have already checked it is a prestack. Stack condition (B) follows
by descent of quasi-affine morphisms which lets us construct a torsor E → S for
given torsors Ei → Si and a covering (Si → S). All conditions on the action, local
triviality and the existence of a global equivariant morphism to X can be checked
locally by descent on morphisms.

If in our definition of G-torsors, we had allowed algebraic spaces instead of just
schemes, we would not have to restrict to the quasi-affine case ([Sta15, Tag 036Z]).

Example 4.19. We could directly show that Mg,n is a stack but later we will see
that it is equivalent to a quotient stack and is thus covered by the previous example.
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5. Deligne-Mumford stacks

This chapter introduces the last condition we need in order to make a stack an
algebraic object, namely that of a smooth cover. All algebraic stacks are stacks in
groupoids, so from now on, let “stack” always mean “stack in groupoids”. Another
convention often made is to call stacks “isomorphic” when in fact they are just
equivalent, but we are not going to adapt this.

Also fix the base site as Ét/Λ. There are some minor differences between defini-
tions found in the literature and we are going to mention these. The first one is that
[Sta15] use the coarser fppf topology as a more natural topology for descent. (All
our stacks will be stacks in both senses.)

5.1. Representable morphisms

As seen in the motivational section, where we talked about morphisms of functors
having geometric properties like being an open immersion, we need the notion of a
representable morphism of stacks.

Definition 5.1. A morphism X → Y of stacks is representable if for every scheme
S and S → Y the 2-fibre product X×Y S is representable, i.e. there is a scheme T
such that the fibre product is equivalent to T .

Alternative definition This definition is sufficient for our scope aiming at Deligne-
Mumford stacks. For Artin stacks however, one should just require representability
by algebraic spaces, i.e. there is an algebraic space T such that the fibre product is
equivalent to ST .

Definition 5.2. Let P be a property of morphisms of schemes stable under base
change and local on the target (in our chosen site, i.e. surjective, smooth, étale,. . . in
the étale topology). We say a representable morphism X→ Y has property P if for
every S → Y, the morphism of schemes X×Y S → S has property P .

As a useful remark, note that by the 2-Yoneda lemma F : X → Y being a
monomorphism in the sense of representable morphism, coincides with F being fully
faithful. (F is fully faithful iff FT : Hom(T ,X) → Hom(T ,Y) is fully faithful iff
T ×X Y→ T is a monomorphism.)

Lemma 5.3.

(i). The composition of representable morphisms is representable.

(ii). If a morphism and its target are representable, then so is its domain.

(iii). Arbitrary base change of representable morphisms is representable.

(iv). Products of representable morphisms are representable.

(v). If G ◦ F and G are representable, then so is F .
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Proof. The proof is trivial just plays around with equivalences of 2-fibre products.
We give the main steps.

(i). Use X×Z S ' X×Y (Y×Z S).

(ii). Special case of (i).

(iii). Use same equivalence but the other way around.

(iv). Combine (i) and (iii).

(v). Get a 2-cartesian diagram

X×Y S S

X×Z S Y×Z S S

X Y Z

in which the objects in the second row are representable and therefore X×Y S
is.

Corollary 5.4. Let P be a property as above. The composition, base change and
product of morphisms having P , has P again.

Proof. Use the same identities as in Lemma 5.3.

Lemma 5.5. If P ′ is a second property stable under base change and local on the
target and P ⇒ P ′ for morphisms of schemes, then also P ⇒ P ′ for representable
morphisms of stacks.

Proof. Trivial.

Lemma 5.6. Let P be a property as above and X→ Y a representable morphism of
stacks. Then it suffices to check P for base change along one representable T → Y
which is étale and surjective. If P is smooth local on the target, étale can be relaxed
to smooth.

Proof. Let T ′ → Y be a scheme over Y. Look at the diagram

T ′ ×Y X T ′ ×Y T ×Y X T ×Y X

T ′ T ′ ×Y T T

where the left and the right square are 2-cartesian. The right vertical arrow has P
by assumption, then the middle vertical arrow has P by base change. Finally, by
locality on the target, the left vertical arrow has P .
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We are interested the most in representability of morphisms of the form S → X
because covers by schemes/algebraic spaces will look like this. The next proposi-
tion illuminates the earlier, cryptic remark about the importance of the diagonal
morphism.

Proposition 5.7. For a stack X over S, the following are equivalent:

(i). The diagonal morphism ∆X/S is representable.

(ii). For all schemes S, T and S → X, T → X, the fibre product S ×X T is repre-
sentable.

(iii). For all schemes S, all S → X are representable.

(iv). For all schemes S and F : S → X, G : S → X, S ×F,X,G S is representable.

(v). For all schemes S and objects x, y in the fibre XS, the sheaf IsomX(x, y) is
representable by a scheme over S.

Proof. (ii)⇒ (iii)⇒ (iv) are trivial.

(i)⇒ (ii) because S ×X T ' S × T ×X×X X by Lemma 3.29.

For (iv)⇒ (v)⇒ (i) it suffices to prove the claim

SIsomX(x,y) ' X×X×X,(x,y) S

(v)⇒ (i) follows directly, (iv)⇒ (v) after identifying

X×X×X,(x,y) S ' ((S × S)×(x×y),X×X X)×S×S S ' (S ×x,X,y S)×S×S S

Proof of claim Objects in the product on the right hand side are of the form18

(z, f : T → S, (α : z → f∗x, β : z → f∗y))

Note that (z, f, (α, β)) ∼= (f∗x, f, (1f∗x, βα
−1)) via (α, 1f ), a well-defined isomor-

phism due to the commutativity of

(z, z) (f∗x, f∗y)

(f∗x, f∗x) (f∗x, f∗y)

(α,β)

(α,α)

(1f∗x,βα
−1)

Let Y denote the full subcategory containing objects of the form (f∗x, f, (1f∗x, φ)).
By the above isomorphism X ×X×X,(x,y) S ' Y. Lying over any h : g → f there is

18For simplicity of notation, we omit the base object T in the quadruples.
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at most one morphism from (g∗x, g, (1g∗x, ψ)) to (f∗x, f, (1f∗x, φ)), namely the one
given by g∗x→ f∗x and h : g → f . It has to satisfy the compatibility

(g∗x, g∗x) (g∗x, g∗y)

(f∗x, f∗x) (f∗x, f∗y)

(1g∗x,ψ)

(1f∗x,φ)

which means ψ = h∗φ. Therefore Y is fibred in sets19 and the pullback of

(f∗x, f, (1f∗x, φ))

along h is given by (g∗x, g, (1g∗x, h
∗φ)). Thus we see that

(φ : f∗x→ f∗y) 7→ (f∗x, f, (1f∗x, φ))

defines a natural isomorphism of sheaves IsomX(x, y) ∼= Hom( ,Y).

The claim used in the proof is at least as important as the proposition itself since
it establishes the connection between properties of the diagonal and properties of
the isomorphism sheaves.

5.2. Algebraicity

Having seen why the diagonal morphism is important, we state the definition of a
Deligne-Mumford stack. The reader may compare it with the definition of algebraic
spaces Definition 2.6.

Definition 5.8. A stack X is a Deligne-Mumford stack (DM stack) if

(i). The diagonal X→ X× X is representable.

(ii). There exist a scheme S and an étale, surjective morphism S → X (repre-
sentable by (i)) called an atlas or presentation.

The (2,1)-category of Deligne-Mumford stacks is defined as full sub-2-category of
the (2,1)-category of stacks (in groupoids).

Warning and alternative definition The above definition is not quite right. It
would be better to only require that the diagonal is representable by algebraic spaces.
Then, we can define an Artin stack or in modern terminology20 algebraic stack by
weakening the morphism in (ii) to be smooth and surjective. For quasi-separated
Deligne-Mumford stacks (see below) which are our main interest, representability

19The original 2-fibre product is therefore a stack in setoids (groupoids where every automorphism
is the identity). By collapsing isomorphism classes, every category fibred in setoids can be
replaced with an equivalent one fibred in sets, like we did with Y in this case.

20In their original paper [DM69], Deligne and Mumford call their stacks “algebraic”.
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of the diagonal by algebraic spaces implies representability by schemes (see Corol-
lary 5.14), so the above definition is sufficient. Very often, the condition of quasi-
separatedness is included into the definition of DM stacks.

All statements we make here could also be proven with the broader definition of
representability by algebraic spaces as soon as the required properties of algebraic
spaces would be established.

When trying to define quasi-separatedness, we certainly want the diagonal mor-
phism to be quasi-compact. However, unlike in the case of schemes and algebraic
spaces, the diagonal itself is not automatically separated. Thus, we add this condi-
tion.

Definition 5.9. A stack is quasi-separated if the diagonal morphism is quasi-
compact and separated.

Alternative definition Note that [Sta15] has the weaker condition of a quasi-
compact and quasi-separated diagonal morphism.

Example 5.10. For algebraic spaces F (in particular schemes), SF is a DM stack.
An atlas is given by the étale atlas of the algebraic space (which is just X → X for a
scheme X). If F is quasi-separated as a scheme/algebraic space, F is quasi-separated
as a stack. The void stack ∅ is represented by the void scheme.

Lemma 5.11. The diagonal of a Deligne-Mumford stack is unramified21.

Proof. Taking an atlas S → X and a test scheme T → X×X, we get a 2-commutative
diagram

X×X×X T ×X S T ×X×X S × S

S S × S

X X× X

X×X×X T T

All outer squares except for the top one are 2-cartesian, hence the top one is 2-
cartesian too. But therefore, the top arrow is an immersion. Because the two outer
down arrows are surjective étale (S × S → X× X is étale, see proof of Lemma 5.3),
the bottom arrow is unramified too.

Corollary 5.12. A quasi-separated Deligne-Mumford stack has diagonal of finite
type. Thus, the diagonal is quasi-finite and quasi-affine.

21in the sense of Raynaud, so in particular locally of finite type
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Proof. The quasi-compactness condition of quasi-separatedness together with locally
of finite type from the preceding statement implies the stack is of finite type. Of
finite type and unramified imply quasi-finite. And quasi-finite and separated imply
quasi-affine.

Remark 5.13. In more generality, Artin stacks have diagonals of locally of finite
type (cf. [LMB00, 4.2]). Unramifiedness and the implications in the corollary are
also valid for representability by algebraic spaces, thus it follows that the diago-
nal of a quasi-separated DM stack is quasi-affine, even with the weaker notion of
representability by algebraic spaces. But this implies the diagonal is representable
by schemes, because all algebraic spaces quasi-affine over schemes are themselves
schemes.

Corollary 5.14. For x an object over quasi-compact S in a quasi-separated Deligne-
Mumford stack X, x has only finitely many automorphisms over S.

Proof. We can assume connectedness of S. Because IsomX(x, x) over S is quasi-finite
and separated, any section S → IsomX(x, x) is determined by choosing the image of
a fixed and an inclusion of the residue fields ([Sta15, Tag 024V]), for which we have
only finitely many options.

Corollary 5.14 shows that Deligne-Mumford stacks can only capture stacky points
with finite stabilisers. Moreover, in the presence of nontrivial sections, the diagonal
cannot be an embedding, a crucial difference between stacks and schemes/algebraic
spaces!

Lemma 5.15. The (2,1)-category of DM stacks is closed under 2-fibre products.

Proof. Let X,Y be DM stacks over Z, a stack in groupoids with representable di-
agonal. (More is not needed for Z.) The analogous proof also works for algebraic
stacks. Representability of the diagonal is implied by the cartesian diagram in the
proof of Lemma 4.3. If S → X, T → Y are atlases, then S ×Z T is representable by
a scheme and

S ×Z T → X×Z Y

is étale and surjective as product of étale and surjective maps.

5.3. Important criteria

In order to check that a stack is a Deligne-Mumford stack, we need to check two
further conditions, one on the diagonal and one about the existence of étale covers.
The next proposition makes it easier to check the diagonal conditions.

Proposition 5.16. Let X be a stack, S a scheme and x, y objects in XS. Assume
that there exists an étale cover f : S′ → S such that IsomX(f∗x, f∗y) is represented
by a scheme T ′, quasi-affine over S′. Then IsomX(x, y) is represented by a scheme
T , quasi-affine over S. As a direct consequence, if we can find such a cover for all
S, the diagonal morphism of X is quasi-affine (hence quasi-compact and separated).
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Proof. Set F = IsomX(x, y). The assumption gives isomorphisms γ : hT ′ ∼= F ×hS
×hS′ given on sections by g 7→ (γ1(g), γ2(g)). Hence we get isomorphisms

hS′ ×hS hT ′ ∼= hS′ ×hS F ×hS hS′ ∼= hT ′ ×hS hS′

given by (f, g) 7→ (f, γ1(g), γ2(g)) 7→ (γ−1(γ1(g), f), γ2(g)). These satisfy the cocycle
condition

hS′ ×hS hT ′ ×hS hS′ hT ′ ×hS hS′ ×hS hS′

hS′ ×hS hS′ ×hS hT ′

as can be checked: The top arrow maps (f1, g, f2) 7→ (γ−1(γ1(g), f1), γ2(g), f2), while
the composition of the other two maps

(f1, g, f2) 7→ (f1, γ2(g), γ−1(γ1(g), f2))

7→ (γ−1(γ1(γ−1(γ1(g), f2)), f1), γ2(g), γ2(γ−1(γ1(g), f2)))

= (γ−1(γ1(g), f1), γ2(g), f2)

Thus, after reversing the Yoneda embedding, one can apply faithfully flat descent
for quasi-affine morphisms and gets a scheme T quasi-affine over S such that hT ×hS
hS′ ∼= hT ′ .

22

Applying the sheaf condition for S′ → S to F and hT , we see that they are both
equalisers of the same sets (modulo compatible isomorphism), so F (S) ∼= hT (S) over
hS(S) = 1S and for any S′′ → S values of both sheaves are given by pulling back
along hS′′ → hS . It follows that F ∼= hT .

Example 5.17. This can be used to check (A) for the quotient stack [X/G] of a
quasi-affine group scheme G acting on a quasi-separated scheme X: It suffices to
check that after trivialising, Isom(S × G,S × G) is represented by a scheme quasi-
affine over S. We freely use element notation s ∈ S, t ∈ T, g ∈ G with trust in the
reader’s ability to translate this into set-theoretic statements for Hom-functors.

Let f : T → S be a morphism. Then an isomorphism i : T ×G→ T ×G which is
G-equivariant has the form (t, g) 7→ (t, α(t)g) for some α : T → G. The equivariant
morphisms S × G → X are of the form (s, g) 7→ x(s)g, (s, g) 7→ y(s)g for some
x, y : S → X. Then, compatibility of i with the structure morphisms to X means

x(f(t))g = y(f(t))(α(t)g)

for all g ∈ G, so particularly for g = e the neutral elements (and then for all other g).
Therefore Isom(S×G,S×G) is represented by (S×G)×X×XX where S×G→ X×X
22The construction of descent data from sheaves is a more general statement: For an fppf covering

(Si → S), there is an equivalence of categories between descent data (Ti/Si, φij) and sheaves
F on S such that hSi ×hS F are representable (see [Sta15, Tag 02W4] - they do not work with
fpqc sites because of problems when bounding cardinalities).
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via (s, g) 7→ (x(s), y(s)g) and X → X ×X the diagonal morphism:

HomS(T, (S ×G)×X×X X)

= {a : T → S, α : T → G, β : T → X|a = f, x(a(t)) = β(t) = y(a(t))α(t)}
= {α : T → G|x(f(t)) = y(f(t))α(t)}

This scheme is quasi-affine over S because S ×G is quasi-affine over S and

(S ×G)×X×X X → (T ×G)

is a base change of X → X × X, locally quasi-finite and separated (as for every
scheme) and quasi-compact (due to X quasi-separated), hence quasi-affine.

The next proposition deals with the condition of finding an étale cover. More
precisely, it states that it is sufficient to find a smooth, surjective cover as long as
the diagonal is unramified.

Proposition 5.18. Let X be a stack over a Noetherian scheme Λ. Assume that

(i). The diagonal ∆X is representable and unramified.

(ii). There exists a smooth, surjective cover U → X.

(iii). U is of finite type over Λ.

Then there exists a scheme T of finite type over Λ and an étale, surjective cover
T → X making X a Deligne-Mumford stack.

Like [Edi00, 2.1], we are only proving the case where the residue fields of Λ are
perfect, e.g. Λ = Z. Noetherian and finite type properties can be dropped from the
statement ([Sta15, Tag 06N3]).

Proof. The proof idea can be described as follows:

Pick a closed point Spec k = u ∈ U . It is enough to cut out a closed subscheme Zu
of an étale neighbourhood of U which pulled back along the atlas is a neighbourhood
of u.23 The global étale cover will then be a finite disjoint union of such Zu by
Noetherianess. By assumption the fibre u×XU is smooth over k. The problem is the
relative dimension which we have to slice down to 0. After showing that u×XU → U
is unramified using the unramified diagonal (and in our case extra assumptions), we
can restrict locally to one (étale) branch V ′ → U ′ of this morphism and take as
Zu a subscheme intersecting the fibre transversely. This situation is pictured in
Figure 5.1.

Now to the details: Choose a closed point u = Spec k ∈ U and take the fibre
V = u×X U which is smooth over k. Set z the point in V induced by (1u, u→ U).

23We could try to find an étale slice Zu that contains u but in fact, not every point in U is contained
in such a slice (cf. [Beh06, Exercise 5.7] for an example).
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Figure 5.1: Illustration of the slicing in the proof of Proposition 5.18

Next, prove that V → U is unramified. For this note that V → u×Λ U arises as
base change of the diagonal along u×ΛU → X×ΛX, hence is unramified. u→ U → Λ
is also unramified since U is of finite type over Λ, meaning k(u) is a finite (separable)
extension of a (perfect) residue field of Λ. Therefore u ×Λ U → U is unramified.
Composition V → u×Λ U → U yields the claim.

The result in [GD67, 18.4.8] lets us restrict locally around z to a branch of V → U ,
i.e. we have étale neighbourhoods V ′ and U ′ of V and U respectively with z′ ∈ U
mapping to z, u′ ∈ U mapping to u and a closed immersion V ′ ↪→ U ′ giving a
commutative diagram

V ′ U ′

V U

The local ring OV ′,z′ is regular, therefore after shrinking V ′ the point z′ is cut out
by a regular sequence of sections of OV ′ f1, . . . , fn. Lifting these to sections of OU ′ ,
gives a closed subscheme Zu of U ′.

We show that Zu → X is étale in a neighbourhood of z′. It suffices to check after
base change along U (Lemma 5.6). For this, we see that Zu is cut out of U ′ by
a regular sequence, which means it is a regular immersion and so is the flat base
change Zu×X U → U ′×X U . Therefore by smoothness of U ′×X U → U ′ and [GD67,
17.12.1], Zu×XU → U is smooth in a neighbourhood of z′. To compute the relative
dimension, note that the fibre z′ ×U Zu ×X U is isomorphic to V ′ ×U ′ Zu ∼= z′, a
point, in an étale neighbourhood.

Having found étale Zu → X for each u ∈ U , each of finite type over Λ like U
and U ′, the disjoint union of all of them is étale and surjective because the pullback
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along U → X is surjective: Its image is open in U and contains every closed point.
Because U is Noetherian (of finite type over a Noetherian scheme), it is enough to
pick finitely many Zu ×X U still covering U .

Example 5.19. Return to the case of a smooth quasi-affine group scheme acting
on a quasi-separated scheme. This is a typical example of how finding a smooth,
surjective atlas can be much easier than finding an étale one: The base change of
the canonical morphism X → [X/G] along S → [X/G] has been computed as a
principal homogeneous G-bundle E → S in Example 3.35.

If G is étale (over Λ), we are done since X → [X/G] is étale surjective. If not,
we need some extra condition to conclude the diagonal is unramified and apply our
criterion. Beside X being of finite type and Λ having perfect residue fields, which
we assumed in our proof of the criterion, the crucial condition is that the stabilisers
of geometric points x → X under the action of G shall be finite and geometrically
reduced.

Because of finiteness, the fibre of IsomX(E,E)→ S at any point Spec k in S can
have only finitely many points, hence is a disjoint union of field extensions of k. Now
a point SpecK over Spec k is separable because it is geometrically reduced ([Sta15,
Tag 030W]). Having seen that every fibre is a disjoint union of separable extensions,
unramifiedness of all Isom-schemes, hence of the diagonal, follows by [Sta15, Tag
02G8].

6. Properties of stacks and stack morphisms

In this chapter, we generalise geometric properties known from schemes (or alge-
braic spaces) to algebraic stacks. On the one hand, the objective is to develop the
properties that we need for the irreducibility of moduli stacks of curves in the next
chapter.

On the other hand, we will go a bit further than necessary, in order to get used to
working with stacks. Many statements made are also valid for Artin stacks, if one
makes the usual replacements (algebraic spaces instead of schemes, smooth instead
of étale).

6.1. Properties of stacks

A first broad definition can be made for properties P of schemes which are local in
the étale topology (e.g. normal, locally Noetherian,. . . ).

Definition 6.1. Let P be a property of schemes which is étale local. We say that
a Deligne-Mumford stack has P , if there is an étale, surjective atlas satisfying P .

Lemma 6.2. If one atlas has P , then any étale surjective atlas has P .

Proof. Let S → X be the atlas satisfying P . If S′ → X is a second atlas, then the
projection maps of S′ ×X S are étale surjective base changes. Therefore,

(S′ ×X S → S → X) = (S′ ×X S → S′ → X)
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has P , so by locality S′ → X has P .

Corollary 6.3. If P, P ′ are properties like above, and P ⇒ P ′ for schemes, then
P ⇒ P ′ also for DM stacks.

Proof. Trivial.

Other non-local properties need to be dealt with in a different way.

Definition 6.4. A DM stack X is quasi-compact, if there exists a quasi-compact
atlas S → X.

Definition 6.5. A DM stack X is Noetherian, if it is quasi-compact, locally Noethe-
rian and quasi-separated(!).

To define connectedness, we have the notion of a disjoint union:

Definition 6.6. Given a family of categories (Xi)i∈I over S, define their disjoint
union

∐
i∈I Xi as the category having as objects (i, x), where i ∈ I, x ∈ Xi, and as

morphisms (i, x) → (j, y) the morphisms x → y for i = j but no morphisms for
i 6= j. The projection to S is defined in the obvious way.

It is also obvious that all our defined 2-categories are closed under disjoint unions
and not very difficult to see that this definition coincides with our notion of con-
nectedness for schemes.

Definition 6.7. A DM stack is connected, if it cannot be written as the disjoint
union of two non-void (necessarily) DM stacks.

Lemma 6.8. Let X be a locally Noetherian, DM stack. Then X can be written
in a unique way as the disjoint union of connected DM stacks. These are called
connected components of X.

Proof. Writing a DM stack as disjoint union gives rise to writing its (locally Noethe-
rian) atlas as disjoint union.

The second important topological property in the world of schemes is irreducibility.
For this, we define the notion of substacks.

Definition 6.9. A morphism of stacks X → Y is an open immersion/closed im-
mersion/immersion, if it is representable and an open immersion/closed immer-
sion/immersion in the sense of representable morphisms. An open/closed/locally
closed substack of X is a strictly24 full subcategory whose inclusion is an open im-
mersion/closed immersion/immersion.

Note that the substack definition is not stable under equivalence. However, we
have the following lemma:

24If x is an object in the subcategory and x ∼= y, then y is in the subcategory too.
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Lemma 6.10. If i : X → Y is an open immersion/closed immersion/immersion,
then there is a unique open/closed/locally closed substack of Y through which i fac-
tors.

Proof. Trivial.

Lemma 6.11. Given two open/closed/locally closed substacks U,U′ ⊂ X, there in-
tersection as categories (taking objects contained in both and all morphisms between
them) yields an open/closed/locally closed substack again.

Proof. The constructed subcategory is strictly full. Note that U∩U′ is equivalent to
U×XU

′, hence a DM stack. It is indeed an open/closed/locally closed substack since
given atlases S → X and T = S ×X U → U, T ′ = S ×X U′, an atlas of U ×X U′ → U′

is given by T ×X T
′ which maps to S via the composition of two (open/closed)

immersions.

Definition 6.12. A DM stack is called irreducible, if any two open substacks in it
have non-void intersection.

Pulling back an open substack along an atlas gives an open subscheme. An im-
portant observation to be able to think about substacks in terms of atlases is that
the other direction works too:

Lemma 6.13. Let S → X be the atlas of a DM stack and U ⊂ S an open subscheme.
Then there exists an open substack Y of X with atlas U → Y giving U ↪→ S → X
after composition with Y→ X.

Proof. One can define Y as the full subcategory of X whose fibre category over an
arbitrary scheme T are the objects x over T such that T ×x,X U → T is surjective.
This is stricty full. Because for f : T ′ → T the two squares

T ′ ×f∗x,X U T ×x,X U U

T ′ T X
f x

are 2-cartesian, Y has cartesian arrows, hence is fibred in groupoids. (Surjectivity
is stable under base change.) From this diagram, it also follows that we have rep-
resentable Isom-sheaves (the same as before) and that Y is closed under descent on
objects (choosing f to be an étale cover and using surjectivity is local on the target).
Thus, we have shown every property of a DM stack except for the étale atlas which
we will do at the end.

Objects in T ×x,X Y are of the form (f : T ′ → T, y ∈ Ob(XT ′), f
∗x ∼= y) with

surjective T ′ ×y,X U → T ′. This gives a diagram like the last one but with f∗x
replaced by y. The middle vertical arrow is smooth by stability under base change,
so in particular open and we can take its image T0 in T , an open subscheme.
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If f does not land in T0, then T ′ ×y,X U → T ′ must not be surjective due to
2-commutativity of the left square. If on the other hand f lands in T0, then we can
replace the base T by T0 and get that T ′ ×y,X U → T ′ is surjective as base change
of a surjective morphism. Concluding from the just established logical equivalence,
T×x,XY is equivalent to T0, therefore Y→ X will be a representable open immersion.

Setting g = (U ↪→ S → X), we know that U ×g,X,g U is surjective, a section
being given by the diagonal morphism. This means, by definition of Y, g is in YU .
Therefore, there exists a 2-commutative diagram

U S

Y X

g′

The morphism U ×g,X Y → U is an open immersion with a section (1, g′), thus it
is an isomorphism. But this means g′ is the base change of g along Y → X. This
implies it is étale. It is surjective because for T → Y

U ×X T U ×X Y U

T Y X

is 2-cartesian and by construction the left vertical arrow is surjective.

With the preceding lemma, arbitrary unions of open substacks can be defined:

Lemma 6.14. Let (Xi) be a family of open substacks of X. Then there exists an
open substack

⋃
Xi ⊂ X with open immersions Xi →

⋃
Xi for all i such that the Xi

cover
⋃
Xi, i.e.

∐
Xi →

⋃
Xi is surjective.

Proof. Take an atlas S → X and open immersions Si ⊂ S corresponding to Xi ⊂ X.
Then the open subscheme

⋃
Si ⊂ S gives rise to the open substack

⋃
Xi ⊂ X. This

has the desired properties as ∐
Si

∐
Xi

⋃
Si

⋃
Xi

S X

is 2-cartesian and
∐
Si →

⋃
Si is surjective.

A direct description of (
⋃
Xi)T is that it contains all objects x over T with∐

(T ×x,X Xi)→ T surjective.
For matters of completeness, we state without proof a lemma relating open and

closed substacks as well as a direct corollary.
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Lemma 6.15. Let U ⊂ X be an open substack. Then there exists a unique closed
substack Z ⊂ X such that for all atlases S → X, S ×X Z is the closed reduced
complement of S ×X U in S. If U = ∅, we write Z = Xred.

Proof. see [LMB00, 4.10].

Corollary 6.16. Let X be a locally Noetherian DM stack. Up to permutation, there
exists a unique family Xi of closed reduced substacks, the irreducible components
such that none is contained in another and they cover Xred.

Proof. Trivial.

6.1.1. Points of a stack

Without doubt, the notion of substacks “smells like topological spaces”. Indeed, we
will now introduce a topological space associated to a DM stack.

Definition 6.17. Let X be a DM stack. Denote by |X| the set
∐
k XSpec(k) where

k ranges over all fields (over Λ) modulo the following equivalence relation: Two
elements x, x′ over k respectively k′ are equivalent iff there exists an extension K
of k and k′ such that the pullbacks of x and x′ are isomorphic. Elements in |X| are
called points of X.

A morphism F : X→ Y of DM stacks gives rise to a map |F | : |X| → |Y|, x 7→ F ◦x
which is independent of the chosen representative since fields that pull back to an
extension over X do so over Y. Under this association, 2-commutative diagrams
become commutative. As a special case, if F is an equivalence, then |F | is bijective.

If S → X is an atlas, every point x : Spec k → X comes from S. To see this, just
take a point in the scheme S ×X Spec k. Hence, we only need to care about residue
fields of S. In particular, the stack notion of point coincides with that known from
schemes. (From the above remark, one may also reassure oneself that there are no
set-theoretic issues in defining |X|.)

Lemma 6.18. (i). A DM stack is empty iff its point set is.

(ii). A representable morphism of DM stacks F is surjective iff |F | is25.

(iii). The natural map |X×Z Y| → |X| ×|Z| |Y| is surjective.

(iv). For any DM stack |X| = |Xred|.

(v). If X,Y are locally closed substacks of Z and X is reduced or Y is open (com-
plementary cases), then X ⊂ Y iff |X| ⊂ |Y|.

Proof. The proofs are all straightforward.

25This also holds for non-representable morphisms with the notion introduced in the next subsec-
tion.

49



The topology on |X| is defined in the obvious way, namely we take as open sets
all |U| where U ⊂ X is an open substack. This is called the Zariski topology of the
stack.

Lemma 6.19. If F : X→ Y is a morphism of DM stacks, then |F | is continuous.

Proof. Choose two atlases giving a 2-commutative diagram

S T

X Y

This gives a commutative diagram

|S| |T |

|X| |Y|

and from our discussion of open substacks we know that the vertical arrows are
continuous and open. Also, the top arrow between spaces underlying schemes is
continuous. Thus, the preimage of an open |V| ⊂ |Y| in |S| is an open V . Because
the left vertical arrow also is surjective, we know that |F |−1(|V|) is the image of V
in |Y|, which is open.

The continuity of |F | allows us to use notions like connectedness, irreducibility
and density in an intuitive, topological way. We may also define closed, open, dom-
inant and universally closed morphisms of DM stacks in the obvious way. Quasi-
compactness, which we defined earlier, behaves as expected:

Lemma 6.20. A DM stack X is quasi-compact iff |X| is quasi-compact.

Proof. If S → X is a quasi-compact atlas, then |X| is the image of the quasi-compact
set |S| under a continuous map, hence quasi-compact. On the other hand, having
|X| quasi-compact, implies that we can choose finitely many elements from a cover
of S by quasi-compact opens which map surjectively to |X| and therefore give a
quasi-compact atlas.

Corollary 6.21. (i). |X| admits a base of open quasi-compacts.

(ii). For an open, surjective morphism F of DM stacks, e.g. an atlas, every open
quasi-compact in the target is the image of an open quasi-compact.

Proof. (i). This is clear since it is valid for an atlas |S| and |S| → |X| is open.

(ii). Follows from (i).
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As always, there are more interesting facts about the Zariski topology (like sober-
ness, Chevalley’s theorem and constructible sets. . . ). However, we stop at this point
and end with a lemma which is of importance for Deligne-Mumford’s irreducibility
proof.

Lemma 6.22. A locally Noetherian, normal, connected DM stack X is irreducible.
(Hence, for an arbitrary normal, locally Noetherian DM stack, the connected and
irreducible components coincide.)

Proof. Choose a (normal) atlas S → X. Cover S by locally Noetherian, affine,
connected, normal opens Ui. Then it follows that the Ui are spectra of normal
domains (see [Sta15, Tag 030C]), hence irreducible. The images |Ui| of the |Ui|’s are
irreducible by continuity and cover |X|. So |X| is locally irreducible and connected,
hence irreducible.

6.2. Properties of stack morphisms

The reader may check that for suitable properties P all definitions made coincide
with the one made for representable morphisms. A first broad definition can be
applied to properties P étale local on source-and-target, i.e. for any commutative
diagram of schemes

Si S

Ti T

fi f

with étale covers Si → S, Ti → T , P (f) iff ∀i : P (fi).
26 Examples are flat, smooth,

unramified, étale, normal, locally of finite type/presentation. . .

Definition 6.23. A morphism of DM stacks f : X→ Y is said to have property P
assumed étale local on source-and-target, iff for some atlases S → X, T → Y and
morphisms S → T with 2-commutative diagram

S X

T Y

S → T has P .

Lemma 6.24. If some choice of atlases S → T like above satisfies P , so does any
choice.

26This is the Deligne-Mumford definition. The one found in [Sta15, Tag 04QW] is a bit stronger
in that it assumes stability under postcomposition with open immersions.
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Proof. Let S′ → T ′ be a second choice. Then consider the 2-commutative diagram

S S ×X S
′ S′

T T ×Y T
′ T ′

where the horizontal arrows are étale covers and use locality.

Lemma 6.25. Let P, P ′ be properties étale local on source-and-target.

(i). If P is stable under composition/base change as property of schemes, then it
is as property of stacks.

(ii). If P ⇒ P ′ as properties of schemes, then also as properties of stacks.

Proof. Trivial.

Definition 6.26. A morphism F : X→ Y of DM stacks is quasi-compact if for any
quasi-compact scheme S and S → Y, S ×Y X is a quasi-compact stack.

By looking at open subschemes, we see that this notion of quasi-compactness
coincides with the one we have for schemes.

Lemma 6.27. Quasi-compactness is stable under base change and composition.

Proof. Trivial.

It is also not difficult to see that a morphism F is quasi-compact iff the preimages
of open quasi-compacts under |F | are quasi-compact again.

Definition 6.28. A morphism of DM stacks is of finite type/presentation if it is
locally of finite type/presentation and quasi-compact.

For separated morphisms, we want a notion that is stronger than our notion of
quasi-separated morphisms (over Λ) but circumventing the issue of not having a
diagonal immersion.

Definition 6.29. A morphism F : X → Y is separated if its diagonal ∆F : X →
X×Y X is proper. As usual, if X→ Λ is separated, we say X is separated.

A DM stack is separated iff the diagonal morphism is finite iff it is quasi-separated
and universally closed. This follows from the equivalence of the following properties
for scheme morphisms (proved in [Sta15, Tag 02LS]):

(i). finite

(ii). proper and finite fibres

(iii). universally closed, separated, locally of finite type and finite fibres
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Definition 6.30. A morphism of DM stacks is proper if it is separated, of finite
type and universally closed.

This is the definition of [LMB00], the original one in [DM69] is rather ad hoc.
There are valuative criteria for stacks which we only give in the case of morphisms

X → Λ. For the formulation of the criteria, assume X to be quasi-separated and of
finite type and Λ Noetherian.

Proposition 6.31 (Valuative criterion for separation). X is separated iff the fol-
lowing is true: For any complete discrete valuation ring R with fraction field K and
algebraically closed residue field, a morphism Spec(R) → Λ, and two choices g1, g2

for g making the diagram

X

Spec(R) Λ

g

2-commute, any 2-isomorphism between the restrictions of g1, g2 to Spec(K) can be
extended to a 2-isomorphism between g1 and g2. Moreover, it suffices to consider
g1, g2 whose restrictions factor through a given dense open substack of X.

Proof. For separation, we have to check that base changes of the diagonal morphism
∆X along some (g′1, g

′
2) : S → X × X (the naming g′1, g

′
2 is chosen suggestively) are

proper. Applying the valuative criterion for properness of scheme morphisms (e.g.
in [Gro61, 7.3.8]) gives a unique lift in the diagram

Spec(K) IsomX(g′1, g
′
2)

Spec(R) S
f

But this lifting is exactly the extension needed in the statement of the proposition.
(One direction gives a lifting of isomorphisms for f∗g′1, f

∗g′2, the other direction
follows by choosing S = Spec(R), f = 1S .)

In order to see the last remark, note that properness of the representable diagonal
can be checked for base changes along atlases T → X. A dense open in X gives a
dense open in the atlas which in turn gives by base change a dense open in the above
valuative criterion for schemes. In this case, it is known that the criterion can be
checked on a dense open (cf. [Gro61, 7.3.10 (ii)]).

Proposition 6.32 (Valuative criterion for properness). Assume X is separated. X
is proper iff the following is true: For any complete discrete valuation ring R with
fraction field K and algebraically closed residue field and a 2-commutative diagram

Spec(K) X

Spec(R) Λ
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there exists a finite extension K ′/K with integral closure R′ of R in K ′ and an
extension of the above diagram

Spec(K ′) Spec(K) X

Spec(R′) Spec(R) Λ

which is 2-commutative. (All morphisms between spectra shall be induced by the
canonical inclusions.) Furthermore, it suffices to check this for Spec(K) → X fac-
toring through a fixed, dense open substack.

Proof. The proof requires some work (especially a stacky version of Chow’s lemma,
see [LMB00, 7.12]) which would go beyond the scope of this introduction. It is
however important to remember that unlike the scheme version, the lift in this
valuative criterion is only guaranteed after switching to a larger field. See [Edi00]
with an example due to Vistoli for why this is necessary.

At this point, we are almost ready to proceed to Deligne and Mumford’s irre-
ducibility proof. There is only one little proposition missing which is the central
lemma making their proof work.

Proposition 6.33. Assume Λ is Noetherian. Let F : X → Λ be a stack morphism
of finite type, proper and flat. If F has geometrically normal fibres, then the number
of connected components in the geometric fibres is locally constant.

Proof. We show why this is true for a scheme morphism f : X → Λ. Recall the
Stein factorisation

X Y Λ
f ′ g

where Y = Spec f∗(OX), f ′ is proper with f ′∗OX = OY and g is finite. Now by
Zariski’s connectedness theorem, the fibres of f ′ are connected, so the connected
components of f stand in bijection with those of g.

Applying [Gro63, 7.8.10] says that for a proper flat morphism with geometrically
normal fibres of finite type the finite morphism g in the Stein factorisation is in fact
étale. But then by [GD67, 18.8.2] the number of points in the geometric fibres of g
is locally constant.

7. Irreducibility of the moduli stack of genus g curves

The central theorem in [DM69] is that the coarse moduli spaces Mg and M̄g of
smooth resp. stable genus g > 1 curves are irreducible. This is a remarkable
property since it allows us to intersect any two non-empty, open conditions on the
moduli spaces and automatically get curves satisfying both (e.g. smoothness, having
no automorphisms, reducedness).
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For the purpose of this chapter, set Λ = SpecZ. In order to use the theory of DM
stacks, we first have to verify that Mg and Mg are DM stacks (which we have not
done so far). Deligne and Mumford do this directly but with what we have shown
before, it is enough to see that these CFGs are equivalent to quotient stacks. Again,
the reader is referred to consult Appendix B for facts about stable curves.

Proposition 7.1. There exists an equivalence of categories Mg ' [H̄g,ν/G], where
G := PGL(N + 1), taking Mg to [Hg,ν/G].

Proof. The equivalence can be constructed explicitly:

Given a family of stable curves π : C → S, we need to give a principal G-
bundle E → S. Our construction for E is to take the bundle associated27 to the
projective bundle Pπ := P(π∗(ω

⊗ν
C/S)). Next, we construct the equivariant map to

H̄g,ν : Pullback C → S along η : E → S and get a family of stable curves

π′ : C ×S E → E

In general, for all f : S′ → S, we have a canonical isomorphism (due to [Har10,
8.10])

ωC×SS′
∼= f∗(ωC/S)

Therefore, there is a canonical isomorphism Pπ′ ∼= η∗ Pπ which gives C×SE → E the
structure of a family of ν-canonically embedded, stable curves (cf. [Har10, 7.12]).
But this means we get an equivariant map E → H̄g,ν .

This finishes the construction of the functor on objects. For morphisms

C ′ C

S′ S

φ′

π′ π

φ

we see π′∗(ωC′/S′)
∼= φ∗π∗(ωC/B), which gives rise to a morphism of the associated

principal G-bundles. The reader may check that this indeed is functorial.

To see this is an equivalence, remember from our discussion of fibred categories
that it is enough to show equivalence on fibres. A non-trivial automorphism of C
over S must induce a non-trivial automorphism on Pπ since it acts non-trivially on
the ν-canonical embedding of C. On the other hand, a non-trivial element α of G
leaving the embedding invariant cannot act trivially on it because the fixed points
of α always form a (proper) linear subspace. We deduce that our functor is faithful
and full.

27On a trivialising open U of the projective bundle P , the associated G-bundle is given by U ×G.
Transitions are defined by the transition functions of P (which are elements in G).
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Finally, for essential surjectivity, take an S ← E → H̄g,ν in [H̄g,ν/G]. By pulling
back the universal G-equivariant family Y over H̄g,ν , we get a cartesian diagram

C ′ Y

E H̄g,ν

where C ′ → E is a family of ν-canonically embedded curves and the bottom arrow
is by assumption G-equivariant, so G acts equivariantly and freely on C ′ → E. We
would like to take a quotient family C ′/G→ E/G = S. To do this, note that locally
on trivialisations of E the quotient of C ′ exists and can be given by some (quasi-
coherent) sheaves of ideals. These sheaves satisfy the cocycle condition, so that
descent theory yields a global sheaf of ideals defining C ′/G. Finally, C ′/G×SE ∼= C ′.
So the quotient family maps isomorphically to S ← E → H̄g,ν and we are done.

Remark 7.2. This proof also works for Mg,n = [Hg,n,ν/G]. The technique used
at the very end is the common technique for descent of projective morphisms (see
[Vis05, 4.3.3]) and reduces to descent of quasi-coherent sheaves because we have
a canonical projective embedding via an ample line bundle. In a similar way, we
could have proven descent onMg directly. For g = 1 however, there is no canonical
embedding, in fact descent fails in this case.

Corollary 7.3. Mg and Mg are smooth, quasi-separated DM stacks of finite type
over SpecZ.

Proof. Stable curves over an algebraically closed field k have finite automorphism
group. Also, because there are non non-trivial vector fields on a stable curve, i.e.
no non-trivial k[ε]/(ε2)-valued points, the isomorphism sheaves are reduced. Thus,
all conditions to form a quotient stack as in Example 5.19 are satisfied.

Using the equivalence Mg ' [H̄g,ν/G] exhibits Mg as a DM stack of finite type
over SpecZ. It is smooth since H̄g,ν is.

Hg,ν being a dense open in H̄g,ν implies the same forMg inMg. (In fact, knowing
that the complement of Hg,ν is a divisor with normal crossings, the same holds for
the stacks.)

Proposition 7.4. Mg is separated.

Proof. Use Proposition B.3 and the stacky valuative criterion for separation.

Proposition 7.5. Mg is proper.

Proof. Use the Stable Reduction Theorem (Proposition B.4) and the stacky valua-
tive criterion for properness.
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We can now put everything together and prove the promised irreducibility result.

Proposition 7.6. The geometric fibres of Mg and Mg are irreducible.

Proof. Mg is a dense open in Mg, it remains to show irreducibility for the latter.
First, note that the fibres are smooth over their corresponding algebraically closed
field, hence normal. From the previous chapter, Lemma 6.22, we conclude that it is
enough to show the fibres are connected.

But by Proposition 6.33, all geometric fibres have the same number of connected
components. The proposition follows now after proving irreducibility ofMg×SpecC
by Teichmüller theory arguments over C, which were already known before [DM69]28.

Remark 7.7. A step omitted in any sources the author has seen is to remark why irre-
ducibility of the geometric fibres ofMg implies the originally intended irreducibility
of M̄g, the coarse moduli space of stable curves over an algebraically closed field k.

The argument is easy: There is a morphismMg ×SpecC→ M̄g sending a family

to its moduli map into Mg. The induced map |Mg × SpecC| → |M̄g| is bijective
and continuous, so its image, |M̄g|, is irreducible.

Of course, one may argue that the irreducibility of the stack fibres is the more
interesting result in the end.

Remark 7.8. Finally, let’s emphasise again how crucial the use of stacks was in this
proof. Indeed, trying to formulate the same with the coarse moduli spaces goes
blatantly wrong. This is not because the geometric framework does not exist but
because elementary assumptions to apply theorems do not hold: Even Mg(C) is not
smooth in general (see [HM98], p.53). Only after passing to the better-behaving
stacks and developing the algebro-geometric framework for them, the proof works.

28Deligne and Mumford work out a more general theory, the statement we need is the special case
of Theorem (5.13) setting G = 1.
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A. Grothendieck topologies

The notion of presheaves is not restricted to topological spaces, it exists for any
category, in fact presheaf is just another term for contravariant functor. (As the
reader will know, this coincides with presheaves on a topological space, if we take
the category of open sets with inclusions as morphisms.)

Alexandre Grothendieck’s main insight leading to so-called Grothendieck topolo-
gies was that in order to get a theory of sheaves, only one piece of data is missing.
One has to specify what the covers of an object in the category are for which the
sheaf axioms shall hold:

Definition A.1. Let S be a category which admits all fibre products we need in
what follows. A Grothendieck topology on S is a class C of coverings, i.e. families
of morphisms (Ui → U)i∈I s.t.

(i). If (Ui → U)i∈I is in C and V → U a morphism, then (Ui ×U V → V )i∈I is in
C.

(ii). If (Ui → U)i∈I and for all i ∈ I (Vij → Ui)j∈J are in C, so is (Vij → Ui →
U)i∈I,j∈J .

(iii). If φ is an isomorphism, then the single elements family (φ) is in C.

S together with a chosen Grothendieck topology is called a site and sometimes also
denoted by S. If C and C ′ are two topologies in S and C ′ ⊃ C, we say C ′ is finer
than C.

These properties are directly inspired by coverings of a topological space by open
immersions. The first base change axiom corresponds to intersecting an open cover
with an open subset V to get a cover of V , while the second axiom corresponds to
locally refining a cover.

Definition A.2. Let U = (Ui → U)i∈I , V = (Vj → V )j∈J be families of morphisms
(with fixed target) in S. A morphism of families with fixed target is a morphism
U → V , and a map α : I → J with morphisms Ui → Vα(i) for all i such that

Ui Vα(i)

U V

commutes. If U → V is an identity morphism, U is called a refinement of V.

Definition A.3. A morphism of sites is a functor f : S → S′ of the underlying
categories together such that

(i). If (Ui → U)i∈I is a covering in S, then (f(Ui) → f(U))i∈I (f applied to the
morphisms) is a covering in S′.

58



(ii). If (Ui → U)i∈I is a covering and V → U a morphism in S, then

f(Ui ×U V )→ f(Ui)×f(U) f(V )

is an isomorphism.

Definition A.4. Let S be a site and C a category with products.

(i). The category of C-valued presheaves on S is the category of contravariant
functors F : S→ C (with natural transformations between them).

(ii). A C-valued sheaf on S is a C-valued presheaves F such that for all coverings
(Ui → U)i∈I

F (U)
∏
i F (Ui)

∏
i,j F (Ui ×U Uj)

is exact, i.e. an equaliser diagram. The category of such sheaves is the full
subcategory of presheaves that are sheaves and is called the topos of the site.

We mention that for any Grothendieck topology, one can define a cohomology
theories of sheaves by deriving the sections functor or by Čech cohomology.

A.1. Examples

In any category, hS is a presheaf for all objects S, the presheaf represented by S.
There is a canonical topology on S which is the finest topology such that all repre-
sentable presheaves are sheaves. It is constructed by taking all so-called families of
universally effective epimorphisms as coverings which yield a Grothendieck topology
as one can easily check.

Definition A.5. (i). A family of epimorphisms is a family (Ui → U)i∈I of mor-
phisms such that Hom(U, S)→

∏
i Hom(Ui, S) is injective for all objects S.

(ii). A family of epimorphisms is effective if all representable presheaves satisfy the
sheaf conditions with respect to it.

(iii). A family of epimorphisms (Ui → U)i∈I is universally effective if for all V → U ,
(Ui ×U V → V )i∈I is effective.

Any topology in which representable presheaves are sheaves, i.e. is coarser than
the canonical topology, is called subcanonical. Unfortunately, apart from some ex-
amples like (continuous) G-sets for a (profinite) group G, the canonical topology
is difficult to characterise. However, in the case of schemes the subcanonical fpqc
topology will be a good replacement, fine enough for most purposes.

From now on, fix a category S=Sch/Λ. We can define several Grothendieck
topologies. The general procedure is always the same. Fix a property P of mor-
phisms in S. Then the corresponding big site on S has as its covers all families
(Ui → U)i∈I of morphisms satisfying P such that their (always) open images cover
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U . We can also define a small site by restricting the category to objects with a fixed
morphism to Λ satisfying P , or an affine site by restricting to affine schemes. Here
is a list of properties giving important Grothendieck topologies:

(i). open immersion, for the big Zariski site Zar/Λ.

(ii). étale29, for the big étale site Ét/Λ. The étale topology imitates phenomenons
from the classical topology over C like cohomology with coefficients, for which
the Zariski topology is too coarse.

(iii). smooth, for the big smooth site Smooth/Λ.

(iv). flat and locally of finite presentation (fidèlement plate de présentation finie =
faithfully flat and of finite presentation), for the big fppf site Fppf/Λ. The
term “faithfully” comes from the fact that for morphisms of ring spectra flat
and surjective is equivalent to faithfully flat.

Each topology in this list is finer than the preceding one. For any covering (Ui →
U)i∈I we can take the disjoint union of the Ui and the maps and get a covering
consisting of one single map.

There is an even finer topology, the subcanonical fpqc topology (fidèlement plate
quasi-compacte), which like the fppf topology arises in the theory of descent. The
naive definition, going by the name, as “

∐
i Ui → U is faithfully(=surjective) flat

and quasi-compact” works for descent theory but is problematic because it does
not even include all Zariski covers. It is better to require

∐
i Ui → U to be flat

and satisfy the subtle condition: Every quasi-compact open in U is the image of a
quasi-compact open.

A.2. Descent results for fpqc morphisms

The basic question of descent theory is: Given local objects defined on a cover
and data describing how to patch each two of these objects on the intersection of
the domains for which they are defined, can we patch the local objects to a global
objects?

Of course, the answer must be no, as long as the identifications on the intersec-
tions are not compatible with each other. The resulting condition is called cocycle
condition and explained in the motivational section as well as defined in the general
context of fibred categories in Section 4.2.

We now state the classical results of descent theory for fpqc morphisms that we
need. The proofs can be found in [Vis05], Chapter 4, or [Sta15, Tag 0238].

Proposition A.6. QCoh/Λ is a stack for the fpqc topology.

29smooth of relative dimension 0 or equivalently flat and unramified
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The proof idea is to reduce to the affine case of a cover given by a faithfully flat ring
map A → B. Now translating what it means to have descent data in the opposite
category of quasi-coherent modules, we get a category ModA→B and have to show
that the functor associating to each A-module its descent datum in ModA→B is an
equivalence. In this algebraic context, the inverse can be constructed explicitly.

For fibre products we denote by pn the projection to the n-th component and by
pnm the projection to the product of the n-th and m-th component etc. Also write
fibre products Ui ×U Uj as Uij etc. For the reader who is not well-acquainted with
stacks, we spell out what descent on objects means in this case without using the
language of stacks.

Corollary A.7. Let there be given a quasi-coherent OUi-sheaf Fi for each Ui. Fur-
thermore assume we have isomorphisms φij : p∗1Fi → p∗2Fj of quasi-coherent OUij -
modules satisfying the cocycle condition

p∗12p
∗
1Fi p∗12p

∗
2Fj p∗23p

∗
2Fj

p∗13p
∗
1Fi p∗13p

∗
3Fk p∗23p

∗
3Fk

∼=

p∗12φij ∼=

p∗23φjk

p∗13φik ∼=

Then there exists a quasi-coherent OU -sheaf F and isomorphisms λi : f∗i F → Fi
such that

p∗2λj = φij ◦ p∗1λi

Moreover, the pair (F , λ) is unique up to canonical isomorphism.

From the prototypical example of quasi-coherent sheaves of modules, most other
examples of fpqc descent are deduced. For example, we can add additional structure
defined by commutativity of sheaf diagrams. Descent on quasi-coherent sheaves
respects this structure because if morphisms agree locally, they must agree globally
by the prestack condition.

Proposition A.8. QCohComm/Λ is a stack for the fpqc topology.

Using the relative Spec construction to get an equivalence between quasi-coherent
sheaves of commutative algebras and affine morphisms over Λ, one finds:

Proposition A.9. Aff/Λ is a stack for the fpqc topology.

Finally, this can be extended to quasi-affine morphisms.

Proposition A.10. QAff/Λ is a stack for the fpqc topology.

Spelling out descent for the last two without using stack terminology gives:
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Corollary A.11. Let there be given a (quasi-)affine morphism Xi → Ui for each
Ui. Furthermore assume we have isomorphisms φij : Xi×U Uj → Ui×U Xj over Uij
satisfying the cocycle condition

Xi ×U Uj ×U Uk Ui ×U Uj ×U Xk

Ui ×U Xj ×U Uk

p∗13φik

p∗12φij p∗23φjk

Then there exists a (quasi-)affine morphism X → U and isomorphisms λi : Ui ×U
X → Xi such that for all i, j

1Ui ×U λj = φij ◦ (λi ×U 1Uj )

Moreover, the pair (X,λ) is unique up to canonical isomorphism.

B. Stable curves

Remember the definition of stable n-pointed curves in Example 3.17. The intuition
behind this definition could be as follows: We want to construct a compactification
of the moduli space of smooth curves of genus g. It is expected that as limit cases,
we have to allow nodal degeneracies as in Figure B.1 for Riemann surfaces. It is
reassuring to know that these degenerations do not change the genus: If g1, . . . , gn
are the genera of the irreducible components meeting in δ nodes, then it is shown
in [HM98, 3.2] that

g =

n∑
i=1

gi + δ − n+ 1

However, one should not take all nodal curves because this would result in “too
many” limit points, so the moduli spaces would have to be highly non-separated. In-
deed, to compactify we do only need the stable curves while for non-stable examples
like the third one in Figure B.1 (which corresponds to adding a P1 by blowing up at
a point) the degeneracy can be “collapsed”, as the reader may be able to imagine.
The only way a P1 component can be essential to taking a limit and cannot be
collapsed is when it intersects three other components. This explains the additional
condition of the definition.

To understand the n-pointed version, note that if there are less than two chosen
points on a Riemann sphere intersecting one other component, the sphere may be
collapsed, the same for a sphere with no chosen point intersecting two components.

Another way to motivate the definition is to say that we still want to have a finite
automorphism group for genus g > 1 and the condition of the definition to have
three marked points on each P1 is exactly the one ensuring this. (For genus g > 1
components, the automorphism groups are finite, genus 1 components have to meet
at least another component, eliminating degrees of freedom, and rational components
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Figure B.1: Degenerations of stable curves.

can only permute their three or more marked points which defines finitely many
elements in PGL(2).) For the n-pointed version, we see that we can include the
cases g = 1, n ≥ 1 and g = 0, n ≥ 3, which amounts to requiring 2g − 2 + n > 0.

Lemma B.1. A stable curve C over an algebraically closed field has no non-trivial
vector fields.

Proof. The proof in [DM69, 1.4] is combinatorial. After remarking that vector fields
on C correspond to vector fields on its normalisation C̃30 that vanish on the points
lying over double points, one can exclude all irreducible components E of genus
greater 1. The remaining five cases E non-singular, Ẽ rational and E one double
point, Ẽ rational and E ≥ 2 double points, E non-singular elliptic, Ẽ elliptic and
E ≥ 1 double points, have in common: On rational Ẽ the vector field has at least
three zeros and on elliptic Ẽ at least one. These are too many to be cancelled out
by 2 · 0− 2 respectively 2 · 1− 2 poles, the degree of the canonical sheaf.

Finiteness and reducedness of the automorphism group are needed to establish
that the diagonal of the moduli stack of curves is unramified.

30This is the disjoint union of the normalised irreducible components.
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The dualising sheaf ωC/S has the following description for a nodal curve over
algebraically closed S = Spec k. If z1, . . . , zn are the double points of C and
x1, y1, . . . , xn, yn the points in C̃ lying over, then ωC/S is the sheaf of 1-forms on

C̃ regular everywhere except for the xi, yi’s where they may have poles of order 1
such that the residues at each pair (xi, yi) sum up to 0. For a demonstration that
this is dualising at least for invertible sheaves over C and further literature, see
[HM98, 3.6-8].

Using this explicit description and applying duality to the well-known separation
of points and tangent vectors conditions, one can show

Lemma B.2. For a stable n-pointed curve π : C → S of genus g > 1, ω⊗νC/S is

relatively very ample on C/S if ν ≥ 3 and π∗(ω
⊗ν
C/S) is locally free of rank

h0(ω⊗νC/S ⊗OCs)

Proof. see [DM69, Corollary of 1.2] or [arb11, 10.6.1].

The rank in the theorem computes as N = (2ν−1)(g−1)+νn by Riemann-Roch,
thus we have an embedding of C into PNS . Also by Riemann-Roch and the fact
that higher cohomology vanishes for high enough powers, we see that the Hilbert
polynomial of the embedding is

Pν(t) = (2νt− 1)(g − 1) + νnt

The moduli problem of (proper31) flat families over S that are subschemes of PNS
has a fine moduli space solution, the Hilbert scheme. This Hilbert scheme has to
decompose as a disjoint union of HilbPN , parametrising subschemes with Hilbert
polynomial P , since flatness implies locally constant Hilbert polynomials of fibres.

Following [arb11, 11.5.2], there exists a subscheme H̄g,n,ν of HilbPνN representing
the functor of ν-canonically embedded stable n-pointed curves, i.e.

Hom(S, H̄g,n,ν) = {stable curves C/S together with P(π∗(ω
⊗ν
C/S)) ∼= PNS }/ ∼=

H̄g,n,ν is smooth over SpecZ ([DM69, 1.7]). The subscheme Hg,n,ν ⊂ H̄g,n,ν para-
metrising smooth curves is open and dense because its complement is a divisor with
normal crossings ([DM69, 1.9]).

Via Geometric Invariant Theory as in [Edi00, 4.2], it is possible to construct
quotient schemes Hg,n,ν/PGL(N + 1) and H̄g,n,ν/PGL(N + 1) which automatically
are coarse moduli spaces for smooth/stable n-pointed curves.

Finally, we need two propositions used as valuative criteria for the separateness
and properness of the moduli stack of stable curves. Especially the second one is
highly non-trivial.

31holds automatically
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Proposition B.3. If C,C ′ are stable curves over a discrete valuation ring with
algebraically closed residue field with smooth generic fibres, then any isomorphism
between their generic fibres extends to an isomorphism C ∼= C ′.

Proof. see [DM69, 1.12].

Proposition B.4 (Stable reduction theorem). Take a discrete valuation ring R
with quotient field K and a smooth, geometrically irreducible curve C of genus g > 1
defined over K. We can find a finite extension K ′/K and a curve C ′ defined over
the algebraic closure R′ of R in K ′ such that the generic fibre of C ′ is isomorphic
to C ×SpecK SpecK ′.

Proof. see [DM69, 2.7].
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given genus. Publications Mathématiques de l’Institut des Hautes Scien-
tifiques, 36(1):75–109, 1969.

[Edi00] Dan Edidin. Notes on the construction of the moduli space of curves. In
Recent progress in intersection theory, pages 85–113. Springer, 2000.
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