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ABSTRACT

We study the emergence of braided magnetic fields from the top of
the solar interior through to the corona. It is widely believed that
emerging regions smaller than active regions are formed in the upper
convection zone near the photosphere. Here, bundles of braided,
rather than twisted, magnetic field can be formed, which then rise
upward to emerge into the atmosphere. To test this theory, we
investigate the behaviour of braided magnetic fields as they emerge
into the solar atmosphere. We compare and contrast our models to
previous studies of twisted flux tube emergence and discuss results
that can be tested observationally. Although this is just an initial study,
our results suggest that the underlying magnetic field structure of
small emerging regions need not be twisted and that braided field,
formed in the convection zone, could suffice.
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1. Introduction

The Sun’s toroidal magnetic field is revealed by the presence of emerging flux at its surface,
the photosphere. Concentrations of magnetic field that appear at the photosphere can
vary in complexity but are generally bipolar, with two fairly distinct areas of opposite
polarity (Schrijver and Zwaan 2000). This pattern appears across a range of scales, from
the ‘salt and pepper’ fields of the quiet Sun (e.g. Meyer et al. 2013) to full active regions
that can be hundreds of megametres in length. Despite a certain amount of self-similarity
across the length scales, including the eruptive capabilities of smaller ephemeral regions
(Schrijver 2010), it is generally believed that the processes which create large active regions
are different to those of smaller regions. For smaller regions, it is widely accepted that
magnetic field in the turbulent convection zone near the photosphere is deformed into
‘tangled bundles’ which can rise and emerge into the atmosphere (e.g. Stein et al. 2011,
Stein 2012). For larger regions, there remains some debate as towhether themagnetic fields
form at the base of the convection zone or within it (e.g. Fan 2001, Barker et al. 2012).

As mentioned above, emerging regions take the form of ‘tangled bundles’ of magnetic
field. In modelling, it is generally assumed that such bundles of magnetic field are twisted
flux tubes. This is because, without twist, flux tubes break up into magnetic vortices (in
a similar way to a Von Kármán vortex street) and lose their structure (e.g. Emonet and
Moreno-Insertis 1998, Fan et al. 1998). However, even with twist, flux tubes can suffer
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2 C. PRIOR AND D. MACTAGGART

substantial deformation in the highly turbulent convection zone near the photosphere (e.g.
Bushby and Archontis 2012) unless their magnetic pressure is strong enough to dominate
the pressure of the plasma outwith the flux tube, i.e. that of the surrounding convection
zone. Although achieving strong field strengths may be possible for large active regions,
this is less certain for smaller regions.Magnetoconvectionmodels (Stein 2012) have shown
that tangled bundles of magnetic field can form close to the photosphere. These bundles
are not necessarily twisted and suggest that twisted flux tubes may not be the best model
for smaller regions. In this paper, we investigate the emergence of braided, as opposed to
twisted, magnetic fields. Such fields could be created in the convection zone as suggested
by simulations (e.g. Stein and Nordlund 2012). Note that, by braided, we mean entangled
in a manner more complex than simple twisting, rather than any precise mathematical
definition. The emergence behaviour of such regions in the solar atmosphere has not been
previously investigated. If their behaviour in the atmosphere, once they have emerged, is
consistent with observations, this could imply that the property of twist in the underlying
magnetic fields is not particularly important for smaller regions.

The paper is outlined as follows. First, we will describe the model, including the main
equations and an account of how to construct braided magnetic fields. This is followed by
a description of the diagnostic tools that we use to analyze the simulations and the analysis
itself. The paper concludes with a discussion of possible observational signatures from the
model and some general conclusions.

2. Model setup

2.1. Theoretical framework

In this study, we shall consider small active regions of O(10) Mm across. This ties in with
the theoretical considerations discussed in the Introduction and allows us to make com-
parisons with twisted flux tube models that are of a similar size (Hood et al. 2012, Cheung
and Isobe 2014). As our focus is on the dynamics of the magnetic field, we shall consider
an idealized description of the solar atmosphere. The bulk properties of the plasma and
magnetic field dynamics are described by compressible magnetohydrodynamics (MHD).
The 3D resistive and compressible MHD equations are solved using a Lagrangian remap
scheme (Arber et al. 2001). In dimensionless form, the MHD equations are

Dρ

Dt
= −ρ∇ · u, (1)

Du
Dt

= − 1
ρ

∇p + 1
ρ

(∇ × B) × B + 1
ρ

∇ · σ + g, (2)

DB
Dt

= (B · ∇)u − (∇ · u)B + η∇2B, (3)

Dε

Dt
= − p

ρ
∇ · u + 1

ρ
η| j |2 + 1

ρ
Qvisc, (4)
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GEOPHYSICAL AND ASTROPHYSICAL FLUID DYNAMICS 3

∇ · B = 0, (5)

with specific energy density

ε = p
(γ − 1)ρ

. (6)

The basic variables are the density ρ, the pressure p, the magnetic induction B (referred to
as the magnetic field) and the velocity u. j is the current density, g is gravity (uniform in
the z-direction) and γ = 5/3 is the ratio of specific heats. The dimensionless temperature
T can be found from

T = (γ − 1)ε. (7)

We make the variables dimensionless against photospheric values, namely pressure pph =
1.4 × 104 Pa; density ρph = 2× 10−4 kg m−3; scale heightHph = 170 km; surface gravity
gph = 2.7 × 102 m s−2; speed uph = 6.8 km s−1; time tph = 25 s; magnetic field strength
Bph = 1.3× 103 G and temperature Tph = 5.6× 103 K. In the non-dimensionalization of
the temperature we use a gas constant R = 8.3 × 103 m2 s−2 K−1 and a mean molecular
weight μ̃ = 1. η is the resistivity and we take its value to be 10−3. This value is close to the
lowest physical resistivity that can be chosen before numerical resistivity dominates (see
Arber et al. 2007, Leake et al. 2013). The fluid viscosity tensor and the viscous contribution
to the energy equation are respectively

σ = 2μ
[

D − 1
3 (trD)I

]
(8)

and

Qvisc = σ : ∇u, (9)

where

D = 1
2

(
∇u + ∇uT

)
(10)

is the symmetric part of the rate of strain tensor and I is the identity tensor. We take
μ = 10−5 and use this form of viscosity primarily to aid stability. The code accurately
resolves shocks by using a combination of shock viscosity (Wilkins 1980) and Van Leer
flux limiters (van Leer 1979), which add heating terms to the energy equation. Values will
be expressed in non-dimensional form unless explicitly stated otherwise.

The equations are solved in a Cartesian computational box of (non-dimensional) sizes
[−45, 45] × [−45, 45] × [0, 135] in the x, y and z directions respectively. The boundary
conditions are closed on the top and base of the box and periodic on the sides. Damping
layers are included at the side and top boundaries to reduce the reflection/transmission of
waves. The computational mesh contains 288×288×432 points.
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4 C. PRIOR AND D. MACTAGGART

(a) (b) (c)

Figure 1. Illustrations of the curvilinear geometry used in this study. Panel (a) depicts the curvilinear
coordinate system T(s, ρ, θ); also shown in green is an example curve as well as the orthonormal basis
(d1, d2, d3). Panel (b) depicts a domain T filled with field lines created by parallel transport, while (c)
depicts a domain T filled with twisted field lines.

2.2. Initial background atmosphere

The idealized initial equilibriumatmosphere is given by prescribing the temperature profile

T(z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 − [(γ − 1)/γ ]z, z < zph,
1, zph ≤ z ≤ ztr,

T
[(z−ztr)/(ztr−zph)]
cor , ztr < z < zcor,

Tcor, z ≥ zcor,

(11)

where Tcor = 150 is the initial coronal temperature, zph is the base of the photosphere,
ztr = zph + 10 is transition and zcor = zph + 20 is the base of the corona. In this paper,
zph = 30. The solar interior is defined by z < zph and is convectively stable in order to
focus on the dynamics of the emerging magnetic braid. The other state variables, pressure
and density, are found by solving the hydrostatic equation in conjunction with the ideal
equation of state

dp
dz

= −ρg , p = ρT . (12a,b)

For simplicity and since this is the first study of emerging magnetic braids, we assume
that there is no ambient magnetic field. This choice also helps us to facilitate comparisons
with other flux emergence models (e.g. Murray et al. 2006, Fan 2008, Hood et al. 2009,
MacTaggart and Hood 2009b). To study emergence, we must place a particular form for
the magnetic field in the solar interior and apply a perturbation to allow it to emerge.
Before presenting the models that we will consider in this study, we now briefly review
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GEOPHYSICAL AND ASTROPHYSICAL FLUID DYNAMICS 5

the technique for creating magnetic flux tubes with arbitrary axial geometry introduced in
Prior and Yeates (2016a).

2.3. Creating the flux tubes

We consider flux tubes embedded in a Cartesian coordinate system (x, y, z). The ultimate
aim is to define a tube (of possibly varying radius) whose interior is filled with a specified
set of curves; that is to say, we specify its precise topology. A divergence-free field B whose
field lines have this exact topology is then created.

The tube’s axis is specified by a curve r(s) : [0, L] → R
3. A right-handed moving

orthonormal basis (d1, d2, d3) is defined for r with d3 = r ′(s)/|r ′(s)| being the unit
tangent vector of d3, d1 a vector field always normal to d3 (d1 · d3 = 0) and d2 = d3 × d1.
The use of such moving frames is standard in thin rod and polymer elasticity (Antman
2005). This basis can then be extended to form a curvilinear coordinate system by defining
a map T(s, ρ, θ) : [0, L] × [0, 1] × S

1 → R
3 as

T(s, ρ, θ) = r(s) + ρ(s)R(s)
{

d1(s) cos[θ(s)] + d2(s) sin[θ(s)]}. (13)

This coordinate system is shown in figure 1(a). The evolution of this basis with s, the
arclength of r(s), is determined by the linear ODEs

⎛
⎝ d ′

1
d ′
2

d ′
3

⎞
⎠ =

⎛
⎝ 0 0 −u2

0 0 u1
u2 −u1 0

⎞
⎠
⎛
⎝ d1

d2
d3

⎞
⎠ , (14)

where u1 and u2 are functions determining the curvature of r1 about the two orthogonal
directions d1 and d2. Readers familiar with the differential geometry of tubes will recognise
that in this choice of basis the vector field d1 is parallel-transported along r (Bishop 1975).
This means that the curves of fixed coordinates R = const. and θ = const. will follow the
shape of the tube (figure 1(b)), i.e. it is the simplest possibly topology given the tube’s shape.
We can then impart more complex topology on the tube by specifying functions ρ(s) and
θ(s) for each curve of the field, a simple example being ρ(s) = const. and θ(s) = 2πsTw/L
for all curves, which will generate a twisted tube with total twist Tw (figure 1(c)).

2.4. Generating themagnetic field

A set of curves determined by the functions ρ(s) and θ(s) and the map (13) determine a
unit tangent field N at all points in the domain T . We turn this field into a divergence-free
field B by writing B = φN and solving the PDE

∇ · B = ∇φ · N + φ∇ · N = 0, (15)

whose solution via the method of characteristics (integrating along field lines f (s)) is

B(f (s)) = Nφ0 exp
(

−
∫ s

0
∇ · N dl

)
, (16)
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6 C. PRIOR AND D. MACTAGGART

where φ0 is the distribution of φ on the surface s = 0. So, in order to define the flux tube
magnetic field we have to specify

(i) The internal topology, through functions ρ(s) and θ(s) determining the paths of
curves in the domain.

(ii) The magnetic flux distribution φ0 on one end of the tube.

We then integrate (16) to determine the full field. A further embellishment of this process is
to select a finite number of curves r i from the original tube T and to create smaller tubular
fields surrounding each curve r i. In this way, a pigtail braided field with a sigmoidal axis
was created in Prior and Yeates (2016a) (an example is shown later in figure 3). A second
approach to increasing the complexity of the field is to define fields which partly overlap,
creating a composite field with more complex internal topology. This is used in what
follows to develop a version of the braided field used in Yeates et al. (2010), Wilmot-Smith
et al. (2011), Yeates et al. (2015). The technical details of the process by which this field is
interpolated onto a Cartesian grid are discussed in Prior and Yeates (2016a).

2.5. Braidmodels

Now that we have described how to form flux tubes, we will now present the fields of
interest to this study. In what follows we choose the axis curve r to be a half circle with
radius Rm, i.e.

r(s) = [
Rm cos

(
s/Rm

)
, 0, Rm sin

(
s/Rm

)]
, (17)

where s ∈ [0,πRm].

2.5.1. Uniform twist
As mentioned above, the choices R = const. (constant tube width) and θ(s) = 2πsTw/L
define a field with uniform twist and a total rotation of 2πTw radians. We constructed
fields with Tw = 2 and Tw = 5. These values are below and above, respectively, the kink
instability threshold for toroidal magnetic flux ropes (e.g. Török and Kliem 2005). The
major radius is Rm = 17.5 and the tube radius R = 3.75. These magnetic fields were used
for test runs to make sure that their emergence properties behaved in accordance with
other twisted flux tube models (e.g. Hood et al. 2009, MacTaggart and Hood 2009a,b). We
will not discuss the emergence of these twisted fields, which has been treated at length in
existing literature, and instead focus entirely on the braided fields described below.

2.5.2. B4 braid
This field is based on the numerical experiments of Wilmot-Smith et al. (2009, 2011) and
Russell et al. (2015), where a family of braided magnetic fields were created using series
of n opposing pairs of rotations through an angle π rad at staggered distances along the
tube’s length. In this case we use four pairs of opposing twist (hence B(braided)4). We
impose this twisted structure on a half circle of major radius Rm = 17.5. We then define
two curves r i, i = 1, 2 as

r i = r + ρin cos (θi), θi = 0,π. (18)
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GEOPHYSICAL AND ASTROPHYSICAL FLUID DYNAMICS 7

Figure 2. Sample field lines of the B4 field depicting its internal complexity.

These curves are then used to define two tubes Ti, i ∈ 1, 2. The values of ρi = 0.15 and
the tube radii Ri = 2.8 are chosen so that the tubes have significant overlap (increasing the
field’s complexity). We then define the fields within the tubes with the following topology
functions:

ρ1/2 = const., (19a)

θ1(s) =
4∑

k=1

π

1 − exp ( − a(s − b1k))
, θ2(s) =

4∑
k=1

σπ

1 − exp ( − a(s − b2k))
, (19b,c)

with σ = −1 and b11 < b21 < b12 < b22 < b13 < b23 < b14 < b24. This creates a series
of staggered twists of the field, with the twist occurring sequentially in tube T1 then T2
then T1 again, etc. The choice σ = −1 means that the rotations have opposing chirality.
In practice the values of b1i, b2i and a are chosen so that there is no overlap (when one
tube has twisted field lines, the field lines of tube 2 are created by parallel transport). These
two prescriptions of θ1/2 can be used to make fields B1 and B2; the B4 field is their sum
BB4 = B1 + B2. Field lines of this composite field are shown in figure 2. It is difficult to
see in this curved geometry but sets of the field lines can be shown to form pigtail braids
(Wilmot-Smith et al. 2011). For this model, the average field strength at t = 0 is B ∼ 20.
This value results in an initial average plasma beta for the tube of β = 2p/B2 ∼ 10. This
means that the field is dynamically dominated by the flow in the solar interior. The initially
high value of B is chosen to ensure sensible values (i.e. those in line with twisted tube
models) of the field strength when the tube reaches the photosphere and emerges into
the atmosphere. Since we are not modelling convection, the model solar interior acts like
an extended boundary condition, allowing flux emergence at the photosphere to occur
without imposing any motions there. The average magnetic field strength in the model
solar interior decays in time and by t = 40 it is about 10% of its value at t = 0.
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8 C. PRIOR AND D. MACTAGGART

Figure 3. Current contours of the pigtail field used in this study. Current contours rather than field lines
are shown for clarity.

InWilmot-Smith et al. (2011) it was found that the diffuse small scale current structure
of this braid leads to rapid and efficient reconnection, causing the field to separate into two
twisted flux ropes of opposing chirality. These results were recreated using flux ropes with
realistic coronal morphology in Prior and Yeates (2016b). Since the Alfvén travel time in
our model solar interior is much longer than the typical coronal value, we will pay close
attention to whether the entanglement survives the emergence process.

2.5.3. Pigtail braid
The pigtail braid, shown in figure 3, is made up of three flux ropes r i which interlink within
a toroidal tube T of major radius Rm = 17.5. The axes of the three sub-tubes are defined
by the functions

ρi(s) = 0.5
√
sin (2πs/L + di)2 + cos (4πs/L + di)2,

θi(s) = arctan
[
cos (4πs/L + di)
sin (2πs/L + di)

]
,

⎧⎪⎨
⎪⎩
d1 = 0,
d2 = 1/3,
d3 = 2/3.

We then create tubular fields Bi in tubes Ti of fixed radius R = 1.2 around each of these
axes. In this study, for simplicity, we choose the fields to have no internal twisting. The
average field strength at t = 0 is B ∼ 10. The plasma beta then has the value β ∼ 20.
This means that in the solar interior, as for the B4 braid, the magnetic field is dominated
dynamically by flows. In contrast to the B4 braid, however, the only significant current
structure will be between the tubes rather than in the interior. In Prior and Yeates (2016b)
it was found that this meant the disentanglement of the field through reconnection is far
less efficient. Once again we will pay attention to how well the pigtail structure survives the
emergence process in what follows.

D
ow

nl
oa

de
d 

by
 [

D
av

id
 M

ac
T

ag
ga

rt
] 

at
 1

3:
37

 2
9 

Ju
ly

 2
01

6 



GEOPHYSICAL AND ASTROPHYSICAL FLUID DYNAMICS 9

2.6. Perturbing the braids

Themodels described above are placed in the solar interior (zph < 0). In order to cause these
tubes to rise towards the photosphere and emerge into the atmosphere, some perturbation
of the field must be induced. This perturbation normally takes the form of introducing a
density deficit into the tube (MacTaggart andHood 2009a,b, Hood et al. 2012,MacTaggart
et al. 2015) or the application of a small velocity perturbation (e.g. Magara and Longcope
2001, Magara and Longcope 2003, An andMagara 2013). In this study we opt for the latter
and apply a perturbation to the velocity, at the initial tube position, of the form

vp = V0 exp

(
−x2

x20

)
exp

(
−y2

y20

)
exp

(
− (z − Rm)2

z20

)
sin
(
t
t0

π

)
.

After some experimentation, we chose the parameter values V0 = 0.05, x0 = 5, y0 = 3,
z0 = 5 and t0 = 6. The effect of using these parameters results in a field evolution in the
model solar interior similar to that described in Hood et al. (2012). If the parameters are
too large, the entire tube is dragged up into the atmosphere, producing unrealistic results.
With the chosen set of parameters, the field rises to the photosphere in a similar time scale
to other studies. At the photosphere, the majority of the magnetic flux becomes trapped
and cannot rise via buoyancy, due to the change in temperature gradient. To push into
the atmosphere, the magnetic field strength must build up until the magnetic pressure
can defeat the plasma pressure, and a buoyancy instability occurs. As the initial onset of
emergence in this study is very similar to that described extensively in other works, we
shall focus on the emergence behaviour as the field pushes into the atmosphere.

3. Simulations

Even in idealizedmodels, such as those presented in this paper, the coronal magnetic fields
that develop from flux emergence can become very complicated. Before presenting the
results of our simulations we describe some the diagnostic tools that we use to study the
magnetic fields.

3.1. Diagnostics

3.1.1. Current contours
Weplot contours of constant currentmagnitude ‖ j‖ in order to track the field’s expansion
through the photosphere, transition region and the corona. For the majority of plots we
choose a value of ‖ j‖ = 0.1 in the interior/photosphere and a lower value ‖ j‖ = 0.001
when the field is in the transition region/corona. Both values are chosen in order to reliably
observe the key features of the current distribution. For similar plots that do not use the
above values, appropriate details will be given in captions.

3.1.2. Current and density slices in the corona
As the magnetic field expands into the corona, dense plasma can be carried upwards from
the photosphere. If this field expands so that it becomes too weak to support the dense
photospheric plasma, the field lines can buckle and dips containing dense plasma can
form. This is effectively themagnetic Rayleigh Taylor instability, where the dense overlying
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10 C. PRIOR AND D. MACTAGGART

plasma can no longer be supported and begins to sink. This process continues until the
magnetic tension of the dipped field (μ−1

0 B · ∇B) can balance the gravitational force of
the collected dense plasma. In order to find these dipped locations in our models, where
magnetic geometries are highly complex, a simple and effectivemethod is to compare slices
of the current densitymagnitude ‖ j‖ and density ρ distributions across the same z-planes.

3.1.3. Synthetic magnetograms
We create predicted magnetograms by plotting the value of Bz at the photosphere zph.
These maps can be used for qualitative comparisons to observations, i.e. the shape and
evolution of the large scale features of Bz .

3.1.4. Local twist distributions
A quantitative measure of the field’s internal geometry which we measure is the average
local twisting of each field line. For a field line f (l) of arclength L whose footpoint
coordinates are (xf , yf ), we define the integrated quantity

Lf (f (l)) = 1
L

∫ L

0

j · B
B · B

dl = 1
L

∫ L

0

B · ∇ × B
B · B

dl, (20)

which represents the mean rotation of the local field lines around f (l). For a linear force-
free field, j · B = αB · B and Lf is just the linear force-free parameter α, which would
be constant throughout the domain. This quantity was used to evaluate the internal struc-
ture of relaxing braided and twisted cylindrical fields inWilmot-Smith et al. (2011), Yeates
et al. (2015) and for flux ropes with more realistic coronal geometries in Prior and Yeates
(2016a,b). It was found that braided fields, even with significantly reduced Lorentz forces,
can often exhibit significantly mixed Lf distributions (both positive and negative twisting),
indicative of field with complex internal structure. In this study we create distributions
of Lf across the photospheric plane zph and the coronal plane zcor = zph + 20, in order
to evaluate what structures from the initial field has risen into both domains. In addition
we draw subsets of field lines on specific domains of these Lf plots to try to give some
perspective on the implication of these distributions.

3.1.5. Sigmoid analysis
For a bipolar region, the simplest model for its magnetic field is a potential field. In such a
field, the field lines do not kink as they travel from one footpoint to the other. The simplest
step up in complexity for the magnetic field is a linear force-free field. For this case, there is
now a non-zero current density and the bipolar region has a sigmoidal geometry. Sigmoids
are, therefore, signatures of current (or twist) in a magnetic field. A clear way to visualize
sigmoids in simulations is to calculate a proxy of the emission which might be viewed
by line-of-sight imaging in extreme-ultraviolet or X-ray wavelengths (e.g. Archontis et al.
2009, Hood et al. 2012). We average ‖ j‖2 (proportional to the ohmic dissipation) along
field lines starting at all points in thedomain.The averaging is performedon the assumption
that thermal conduction along the field lines occurs much faster than the field evolves. We
then integrate this quantity vertically, from zcor, tomimic the line-of-sight view. This proxy
has been used in a number of previous studies (e.g. Cheung and DeRosa 2012, Prior and
Yeates 2016b).
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GEOPHYSICAL AND ASTROPHYSICAL FLUID DYNAMICS 11

Figure 4. Contours of constant current of the B4 field at various times during its evolution. (a) t = 0, the
initial half torus tube is evident. (b) t = 20, the tube has risen into the photosphere/transition region and
expanded with a central dip. (c) t = 30, further expansion has lead to the emerging field penetrating
the corona. (d) t = 90, a series of undulations have developed in the coronal field. Grey slice: zph, green
slice: zcor .

3.2. B4 field

The field evolves for t ∈ [0, 90] during which it expands significantly into the corona.
This time scale, for the size of region considered, is comparable to other models using
twisted flux tubes (e.g. MacTaggart and Hood 2009b). Exact rise times are dependent on
the choice of the initial perturbation and the initial position of the flux tube relative to
zph. Figure 4 displays contours of current density at different times in the evolution of the
emerging region. The two semi-transparent slices indicate the positions of zph (grey) and
zcor (green).

Figure 4(a) shows the initial state of the half torus at t = 0. Later, in figures 4(b)–(d),
the effect of a magnetic buoyancy instability causes a large expansion of the field into the
atmosphere. In figure 4(d), there is significant penetration into the corona. Much of this
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12 C. PRIOR AND D. MACTAGGART

Figure 5. Slices of the current magnitude and density distributions at z = 87.5 for t = 90. (a) the
current magnitude (darker colours are higher in magnitude). The ridge structure shown in figure 4(d)
is evident. (b) the (logged) density magnitude, the morphology of the distribution matches that of the
current distribution in (a).

evolutionmirrors what has been found in twisted tubemodels, including the fact that some
magnetic flux remains trapped at the photosphere, shownmost clearly in figure 4(d) by the
spread of the contour at zph (cf. figure 2 of Hood et al. (2012)). The magnetic ‘bubbles’ in
figures 4(b)–(d) display distinct undulations. These are caused by the expanding magnetic
field bringing up dense plasma which it can no longer fully support. Some of this dense
plasma drains back down to the lower atmosphere and some remains trapped in magnetic
dips. To show this more clearly, consider the slices displayed in figure 5.

The two slices, taken at z = 87.5 for t = 90, show (a) ‖ j‖ and (b) log ρ. What
is immediately obvious from these two slices is that morphology of the current density
matches that of the (logged) density. This shows that it is presence of dense plasma that
is deforming the magnetic field and producing regions of increased current density. The
raising of dense plasma occurs also in twisted flux tube models (MacTaggart and Haynes
2014, MacTaggart et al. 2015). This process has important implications for what kind of
eruptions can take place in emerging solar regions. As this study, however, is an initial
foray into the behaviour of braided tube emergence, we shall leave questions related to
eruptions and coronal interactions to future work.

Figure 6 displays synthetic magnetograms at four different times throughout the period
of emergence. The classic bipolar configuration, described in the Introduction, grows in
time. Although the magnetic field expands, the centres of the two main polarities move
apart until they are approximately 2Rm apart (the diameter of the half torus anchored at the
base of the computational domain). Themagnetograms reveal two interesting features that
can be tested observationally. The first is that the angle of the polarity inversion line (PIL)
changes by a small amount (∼14◦ difference in figures 6(b)–(d) compared to (a)) as the
region grows in size. Emerging twisted tubes show amore substantial rotation of theirmain
polarities (e.g. Hood et al. 2009). The second is that the polarities exhibit a tadpole-like
structure. This property is similar to twisted models and has been used as an observational
indicator for twist in an emerging region (Luoni et al. 2011, MacTaggart 2011). Thirdly,
there is a developing complex pattern at the PIL. To investigate this property in more
detail, we can consider the twist profiles of the region.

D
ow

nl
oa

de
d 

by
 [

D
av

id
 M

ac
T

ag
ga

rt
] 

at
 1

3:
37

 2
9 

Ju
ly

 2
01

6 



GEOPHYSICAL AND ASTROPHYSICAL FLUID DYNAMICS 13

Figure 6. Synthetic magnetograms ofBz at the photospheric boundary z = 0 for the B4 field. (a) t = 10,
initial emergence into photosphere, producing a classic bipolar structure. (b) t = 30, slight rotation of
PIL. (c) t = 50, similar to (b) but with a growing ‘banded’ structure at the centre. (d) t = 90, little change
from (c).

Figure 7 displays maps of the field line twist Lf at zph for four different times. Figure
7(a) shows the twist profile at t = 10. The PIL can be seen in white and matches the
shape in figure 6(a). At this stage, the majority of the twist is of one sense (negative, blue)
except in a thin strip crossing the centre of the PIL (positive, red). As the region evolves,
positive twist aligns with the PIL and becomes stronger in magnitude. There remains a
complex banded (blue and red) strip that cuts across the centre of the PIL. Away from the
PIL, a complex mixed pattern of both positive and negative twist develops. These features
convey that the magnetic field remains strongly twisted at the PIL. This is analagous to the
twisted tube case, where shear is concentrated at the PIL (Hood et al. 2012). The banded
structure, however, is generally not seen as an emerging structure in twisted models. That
feature and the complex mixing pattern away from the PIL are due to the complexity of
the original B4 braid. Figure 8 shows plots of Lf at the coronal boundary zcor. In figure
8(a), the profile is shown at t = 30 and reveals two distinct regions of emergence of
relatively weak twist. The boundary between these regions matches the banded structure
from figure 7 and can also be seen in figure 4(c). Later, at t = 90, the twist profile exhibits
a complex pattern due, in part, to the undulations caused by dense plasma, cf. figure
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14 C. PRIOR AND D. MACTAGGART

Figure 7. Distributions of Lf at the photospheric boundary for the B4 field. (a) t = 10, the (white) PIL
is clear, cf. figure 6(a). (b) t = 30, there is now a positive twist in the core with a negative outer ring.
Additionally there is a banded structure of opposing twist at the centre of the field, distorting the PIL
here. (c) t = 50, the basic features of (b) are present but there is far more mixing. (d) t = 90, the mixing
pattern has increased with strong twist concentrated at the PIL.

4(d). This pattern, with mixed regions of positive and negative twist on various scales,
is similar to twisting patterns found from nonlinear force-free field extrapolations from
magnetograms of emerging bipolar regions (e.g. Liu et al. 2016). Some coronal field line
subsets at t = 90 are shown in figure 9 anchored at various sections of the final coronal
Lf distribution shown in figure 8(b). Figure 9(a) displays field lines traced from a complex
mixing region of the Lf map. These field lines connect across the region and exhibit a
complex and twisted geometry. Dipped field lines can be identified and these correspond
to the previous discussion on undulations. The field lines that connect across the region
also appear to exhibit a sigmoidal geometry. This will be confirmed later when calculating
the emission proxy. Figure 9(b) shows field lines that are lower in the corona and have
much weaker twist. On either side of the PIL, the plotted arcades are close to potential.
This plot shows that even at different heights in the corona, the magnetic field geometry
can change drastically.

Figure 10 shows the emission proxy for the emerged B4 field at t = 90. There are two
clear features revealed by this plot. The first is the intense line crossing (0,0) diagonally
downwards. This represents the main undulation in the emerging magnetic bubble which,
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GEOPHYSICAL AND ASTROPHYSICAL FLUID DYNAMICS 15

Figure 8. Distributions of Lf at the coronal boundary for the B4 field. (a) t = 30, the field has emerged
relatively recently into the corona and we see some evidence of the complex internal structure of the
field with several islands of positive and negative twist. There is a clear inversion line except at the centre
of the field where it becomes significantly distorted. (b) t = 90, the complex mixed structure observed
in figure 7 is evident.

(a) (b)

Figure 9. Clusters of field lines drawn on regions of the zcor Lf plots for the B4 field at t = 90. (a) displays
a set of field lines plotted from the region of mixing on the right hand side of the distribution. The seeds
of the field lines are shown as spheres. (b) shows field lines traced in the two distinct regions of weak
twist near the centre, the field lines are shown in black and yellow.

as shown in the ‖ j‖ contours and the Lf maps, is caused by the emergence of the two-
bubble region described above. The second feature is a sigmoid which passes horizontally
through y = 0. Weakly twisted emerging flux tubes also produce weak sigmoids similar
to that shown in figure 10. Tubes with stronger twist produce more pronounced sigmoids
(Archontis et al. 2009). Hence, distinguishing between emergence from a weakly twisted
tube and a B4-like braid may prove difficult from studying the emission.

3.3. Pigtail field

The pigtail field evolves for t ∈ [0, 100], during which the field expands into the corona, as
shown in the current contour plots of figure 11. The general evolution of a rising magnetic
bubblewith some flux trapped in the photosphere is similar to the B4 case and other twisted
models (Hood et al. 2012).
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16 C. PRIOR AND D. MACTAGGART

Figure 10. Emission proxy for the emerged B4 field in the corona at t = 90.

As for the B4 case, undulations form, as can clearly be seen in figure 11(d). The
morphology differs from the B4 case, however, with the undulations taking a more linear
profile. This effect is shown again in figure 12, with plots of ‖ j‖ and log ρ taken at z = 82.5.
The linear profile of the undulations is suggestive of a weakly twisted magnetic field. This
will be confirmed later when examining the twist plots for the pigtail. Figure 13 displays
the synthetic magnetograms at zph at four different times during emergence.

The pigtail does not produce the general bipolar structure of the B4 field. Instead, an
asymmetric pattern forms, as in figure 13(a), which then develops into a banded structure
alternating between positive and negative polarities. Although the internal structure of
the B4 field is more complex than the pigtail, the magnetograms of the pigtail emergence
are much more complex than those of the B4 field. To see where this banded structure
comes from, it is helpful to examine the pigtail field before it emerges. This is displayed in
figure 14.

Taking a slice close to the apex of the pigtail field at t = 0, as displayed in figure 14(a),
the resulting synthetic magnetogram is shown in figure 14(b). The pigtail in our model
consists of three independent flux tubes. In the magnetogram of 14(b), the image of these
flux tubes can be seen as a banded structure. This structure persists to the photosphere and,
hence, the photospheric magnetograms reveal the internal structure of the pigtail braid. As
mentioned above, the B4 field has a more complex internal structure than the pigtail but a
simpler magnetogram. The internal structure of the B4 field consists of flux tubes braided
at much finer scales compared to the pigtail. Hence, the B4 field rises to the photosphere
as, essentially, one tube. The internal structure of the pigtail, however, consists of three
individual flux tubes that remain, to a significant extent, distinct.

Figure 15 displays the distribution of Lf at zph for four different times. At t = 20,
figure 15(a) shows that the emerging field is initially dominated by positive twist. At later
times, this simple picture breaks down into a highly complex pattern. These maps show
that although the initial pigtail flux tube has a relatively simple structure, upon emergence
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GEOPHYSICAL AND ASTROPHYSICAL FLUID DYNAMICS 17

Figure 11. Contours of constant current for the pigtail field. (a) t = 0, the initial pigtail structure. (b)
t = 30, the field has expanded into the photosphere. (c) t = 50, the field expands significantly. (d)
t = 100, the field has penetrated the coronal region, undulations in the current structure are evident.
Grey slice: zph, green slice: zcor .

it develops many fine scales in the photosphere. Unlike the B4 map, there is no clearly
discernable PIL.

Figure 16 shows the Lf profiles at zcor for four different times. The coronal field is much
simpler than that at the photosphere. The PIL is clearly identifiable at all times and is not
subject to substantial deformation. The twist is mainly positive and its magnitude within
the emerging region is weak. These results are in agreement with the linear morphology
of undulations considered earlier, which implied a weakly twisted field. The lack of twist
appears to indicate only one of the flux elements composing the initial pigtail has emerged
into the corona. This picture, however, is a slight simplification as areas develop in the
maps where the twist becomes stronger, e.g. the centre of figure 16(d).

One interesting feature of these maps is appearance of a region of negative twist on
the right of the domain, as shown in figures 16(c) and (d). This ‘new’ region is initially
of strong negative twist. However, the magnitude of negative twist decays within the new
region. Figure 17 shows magnetic field lines plotted within the main emerging region and
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18 C. PRIOR AND D. MACTAGGART

Figure 12. Slices of the current magnitude and density distributions of the pigtail field at z = 82.5 for
t = 100. (a) the current magnitude (darker colours are higher in magnitude), the ridge structure shown
in figure 11(d) is clear. (b) the (logged) density magnitude, the morphology of the distribution matches
that of the current distribution in (a).

Figure 13. Synthetic magnetograms of Bz at the photospheric boundary z = 0 for the pigtail field. (a)
t = 20, the initial emergence has two dominant bipoles. (b–d) (t =, 40, 70, 100 respectively) the simple
bipolar structure is absent and there is a banded structure of positive and negative polarities.
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GEOPHYSICAL AND ASTROPHYSICAL FLUID DYNAMICS 19

(a) (b)

Figure 14. An indication of the banded magnetic structure of the pigtail braid at t = 0. (a) indicates the
slice taken near the apex of the braid. (b) shows the magnetogram from the slice in (a).

Figure 15. Distributions of Lf at the photospheric boundary for the pigtail field. (a) t = 20, upon the
initial entry into the photosphere the plot is dominated by positive twist. By comparison in (b), (c) and
(d) (t =, 50, 70, 100 respectively) the picture is far more complex with numerous interspersed islands of
both positive and negative twist. There is no coherent inversion line.
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20 C. PRIOR AND D. MACTAGGART

Figure 16. Distributions of Lf at the coronal boundary for the pigtail field. (a)–(b) (t =, 50, 70
respectively) the plots are dominated by weak positive values. (c) t = 80, a small negative region
emerges in the upper corner of the distribution, the inversion line remains continuous within this
section of the field. (d) t = 100, the twist of the negative region observed in (c) appears to diminish in
magnitude, though some new internal structure forms.

the new region at t = 100. The Lf distribution from 16(d) is included to help provide a
context. The green field lines are traced over a region of increased positive twist and take
the form of a sheared arcade. The black field lines of the new region are, by comparison,
much closer to potential. This two-region formation in the corona is due to the staggered
emergence of elements of the initial individual pigtail, which, as the magnetograms (figure
13) suggest, remain significantly distinct. When the three tubes that comprise the pigtail
reach the photosphere and emerge, one of these tubes forms the main part of the coronal
field. The others can also emerge and interact to create the complex twisting pattern in the
photosphere. The smaller region in the corona is the result of another of the pigtail tubes
emerging.

Figure 18 displays a contour of jx = 0.07 and highlights that the pigtail field can launch
multiple emergence regions. As well as the two regions that reach the corona, indicated in
figures 16(c),(d), figure 18 also reveals a third emerging region that has not yet reached the
corona.

Figure 19 shows the emission proxy for the emerged pigtail field in the corona at
t = 100. The first observation is that the emission proxy does not exhibit any clear
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GEOPHYSICAL AND ASTROPHYSICAL FLUID DYNAMICS 21

(a) (b)

Figure 17. Curves characterising the regions of the coronal Lf plots at t = 100 for the pigtail braid as
seen form the side (a) and above (b). The green curves depict the weakly twisted structure of the bulk of
the field which penetrates the corona. The black curves, in the top right of the distribution, depict the
structure of the additional emerging island seen in (c) and (d) of figures 16(c) and (d).

Figure 18. Contour of jx at t = 100 showing the two emerging regions that have reached the corona
plus a new emerging region lower in the atmosphere. Grey slice is at zph.

sigmoidal structure. This is perhaps not surprising as the total emerging field consists of
multiple emerging regions, formed from the tubes of the original pigtail, that are very
weakly twisted. The overall shape of the emission proxy is asymmetric, again due to the
emergence and interaction of multiple magnetic bubbles. Intense regions highlight the
main undulations of the emerging field and the regions of stronger twist.

4. Discussion

In this paper, we have modelled the emergence of braided magnetic fields into the solar
atmosphere. Our purpose is to test if the behaviour of such fields, once in the atmosphere,
produces dynamics that are consistent with observations. If this is the case, then our results
add weight to the theory that small emerging regions can be formed bymagnetic flux tubes
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22 C. PRIOR AND D. MACTAGGART

Figure 19. Emission proxy for the emerged pigtail field in the corona at t = 100.

braided in the upper convection zone. We have considered two types of braided field. The
first, the B4 field, is the result of a series of staggered twists and has a complex internal
structure that varies over length scales shorter than radius of the tube. The second is a
pigtail braid that has a simpler (and easily visualized) internal structure which varies on a
length scale of the order of the tube radius. Both models have similarities and differences
compared to twisted tube models and these have been noted throughout the paper. We
shall now highlight some of the observational consequences of our results.

4.1. Magnetograms

The two braid models produce very different magnetograms. Starting with the B4 field,
the classic bipolar structure is found. Although this pattern is also found for twisted tube
models, there are some differences which are detectable in observations. For the B4model,
the PIL exhibits a small rotation of ∼14◦ during emergence. In twisted tube models, this
rotation is much larger and can be ∼90◦. This small variation of the PIL angle could be an
observational indicator that the underlying field is either braided (in a similar way to B4)
or is weakly twisted.

Another feature of the B4magnetograms, that has consequences for observations, is the
tadpole structure of the twomain polarities. Asmentioned previously, this feature has been
used as an observational signature of underlying twist in emerging bipolar regions (Luoni
et al. 2011). The azimuthal component of a twisted magnetic flux tube can produce the
tails of the tadpole structure, which would not exist for a potential field. Our results show,
however, that a complex braided structure that is not twisted, such as the B4 field, can
reproduce the same signature. Hence, other signatures, such as the PIL rotation described
above, are required in combination with the tadpole structure in order to better establish
whether or not this underlying field is twisted.

Themagnetograms of the pigtail field are considerablymore complex compared to those
of the B4 field. It was described earlier that the banded pattern of the pigtail magnetograms
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GEOPHYSICAL AND ASTROPHYSICAL FLUID DYNAMICS 23

is due to the internal structure of the emerging flux tube. Unlike the B4 field, which can be
thought of as a braid of many fine flux tubes, the pigtail is a braid of three thick tubes.The
magnetograms that the pigtail produces have many similarities to regions known as δ-
spots. The form of δ-spot that we are considering here is a complex collection of bipoles
emerging together, rather than the collisionof two separate active regions (Zirin andLiggett
1987). Almost all models of such regions have been based on emerging twisted flux tubes,
either kink unstable (Fan et al. 1999, Linton et al. 1999, Takasao et al. 2015) or exhibiting
multiple regions of emergence (Fang and Fan 2015). Our results suggest that δ-spots could
be due to non-twisted, coarsely braided flux tubes, such as the pigtail. Further work would
be required to determine how the atmospheric field in the pigtail model compares with
observations of δ-spots.

4.2. Sigmoids

There is a clear difference between the emission proxies of the two braid models. The B4
field has a sigmoidal shape, suggesting a twisted field. The pigtail field has a structure closer
to a potential field with no sigmoidal shape. If an observation produced an image similar
to the pigtail emission proxy, then it could be said with confidence that the emerging field
is not twisted. For the B4 case, however, this is not so clear as its features are similar to
those of twisted tube models. This observational signature, including the others discussed
throughout the paper, suggest that it would be difficult to distinguish a B4-type emerging
flux tube from a (weakly) twisted tube.

4.3. Conclusions

Our results imply the following for the two models considered:

(1) B4 – the result of braiding many fine flux tubes, leading to a complex internal
structure.
(a) The field behaves like a weakly twisted tube during emergence.
(b) It has observational signatures that correspond to twisted models a tadpole

structure in bipolar magnetograms, twist concentration at the PIL and a sig-
moidal structure in the atmosphere.

(c) The emerging B4 field may be difficult to distinguish, observationally, from an
emerging (weakly) twisted tube.

(d) Emergence of the B4 field produces local twisting distributions qualitatively
similar to thoses generated fromnonlinear force free extrapolations of emerging
bipolar regions.

(e) The twist maps of the field (figure 9) indicate that the field which enters the
corona maintains a significantly complex internal topology. This result is an
indication that the complex field topologies found in the coronal region could
be injected through the photosphere.

(2) Pigtail – the result of thick flux tubes braided together.
(a) Emergence of the pigtail field produces complex magnetograms reminiscent of

multipolar emerging regions (δ-spots).
(b) Individual tubes of the pigtail emerge to form the coronal field.
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24 C. PRIOR AND D. MACTAGGART

(c) Several parts of the tubes can emerge together and interact in the atmosphere.
(d) The emerging region is weakly twisted and does not exhibit any obvious sig-

moidal structure.

Both models produce dynamics in the atmosphere that can be identified with existing
observations and have implications for the interpretation of these observations. The
different topologies of the two models are injected into the atmosphere, resulting in
different evolutions of the corresponding magnetic fields. Our results show that the
emergence of braided fields leads to quantifiable atmospheric dynamics and, hence, adds
weight to the theory that small active regions can form from magnetic flux tubes braided
in the convection zone.

Our results could have important implications for larger active regions also. The B4 field
produces many signatures that are found observationally and are generally attributed to
twisted emerging tubes. If the convection zone can braid, in the manner of B4, many small
flux tubes into a tube that is larger than the ones considered in this study, it may be the case
that active region fields are, therefore, also the result of braided tubes. This would have
important implications for the solar dynamo and should be the subject of future work.
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