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Practical information

Prerequisites: This course will build on the Year 2 course ‘Algebra II: Groups and Rings’.
We will assume familiarity with groups but will develop the basic theory of rings from scratch.
Whilst it is not essential to have covered rings before but we will go quite quickly over the basics
of rings so be prepared to work hard in the first two weeks if you haven’t seen them before.

Purpose of the Course: The main goal of this course is to develop mathematical maturity in
algebra and expose you to topics which come up in various areas of pure mathematics. Specific
courses which this course will serve as good preparation for are: Algebra IV, Algebraic Number
Theory, Group Representation Theory, Galois Theory, Algebraic Topology, Algebraic Geometry
and Commutative Algebra.

Assessments: This course will be assessed by an end-of-year exam (90%) and two in-class
tests (each 5%). Each in-class test will last one hour. The first test is on Friday 11th November
3-4pm (i.e. Week 6) and will be based on material from Weeks 1-4. The second test is on Friday
9th December 3-4pm (i.e. Week 10) and will be based on material from Weeks 5-8.

Office Hour: My office hour will be on Thursdays 2-3pm. You are all welcome to come along
as often as you like. I would be happy to discuss any aspects of the course you find confusing
and discuss any problems you have been working on.

Problem Sheets: There will be four problem sheets based on Weeks 1-2, Weeks 3-4, Weeks
5-6 and Weeks 7-8. You are encouraged to work on these problems in groups. The problems are
intended to be challenging and many will be more difficult than what you will be expected to
solve under exam conditions. Whilst this work will not be assessed, I strongly advise writing up
your solutions carefully (and by yourself) and bringing them with you to the problems classes.
This should serve an excellent preparation for the in-class tests.

Challenge Problems: Each problem sheet ends with a problem marked ‘+’. These problems
are intended to be extremely difficult and are for students who have completed the other ques-
tions and are looking for something challenging to work on. Anyone working on these problems
is welcome to attend my office hour to discuss any partial progress. However, note that solutions
and (major) hints will not be provided. If you have a solution to any one of the problems, at
any time during the course, then please let me know and I will happily mark your work.

Problem Classes: Each problem sheet will have a corresponding problems class which will
last roughly one hour. They will take place during the Friday lectures in Weeks 3, 5, 8 and 9.

Lecture Notes: Lecture notes will be posted on Blackboard each week on Friday evening. If
you encounter any typos in these notes or something you find confusing, please let me know.

Mastery Material: For fourth-years and masters students there will be an additional ‘mas-
tery’ question on the exam. This question will be a question that requires you to make more
sophisticated use of some of the core concepts in the course. I do not currently plan for there to
be any specific ‘mastery material’ that you are required to learn but this might change towards
the end of the course if I have a lecture or two worth of material leftover when the course ends.

Textbooks: This course will not follow any textbook in particular. However a useful refer-
ence which will cover the first half of the course is Michael Artin’s Algebra, second edition.
(Particularly Chapters 11, 12, 14, and 15.)

Acknowledgements: These notes are based on previous lecture notes from the same course
due to David Helm and Travis Schedler as well as lecture notes for the course Groups, Rings
and Modules at the University of Cambridge (particularly Dexter Chua’s lecture notes for the
course given by Oscar Randal-Williams).
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1 Rings

1.1 Basic definitions and examples

There are multiple definitions of rings in the literature. Our definition seems, to us, to be the
most standard: it requires a multiplicative identity (an element 1 such that 1 · x = x = x · 1 for
all x) and does not require the ring to be commutative (in a commutative ring, we would also
assume x · y = y · x).

First, we need to define a monoid, which is essentially a group except that we do not assume
the existence of inverses:

Definition 1.1. A monoid (M, ·) is a set M together with a binary operation · : M ×M → M
and an element 1M ∈ M (called the multiplicative identity) satisfying the axioms:

• m · 1M = m = 1M ·m for all m ∈ M

• The operation is associative: x · (y · z) = (x · y) · z (for all x, y, z ∈ M).

Example 1.2. The natural numbers N = {1, 2, 3, · · · } is a monoid under usual multiplication
with identity 1N := 1.

Example 1.3. The set N∪{∞} is a monoid under usual multiplication on N as well as n·∞ := ∞
and ∞ · n := ∞ for all n ∈ N ∪ {∞}.

Definition 1.4. A ring is a set R together with functions + : R×R → R and · : R×R → R,
and given elements 0R, 1R ∈ R, such that the following holds:

• (R,+) is an abelian group with identity 0R

• (R, ·) is a monoid with identity 1R

• The distributivity property holds: a(b+ c) = ab+ ac and (b+ c)a = ba+ ca.

We refer to + as addition and write x+ y to denote +(x, y). Similarly we refer to · as multipli-
cation and write x · y to denote ·(x, y).

Notation 1.5. If R is a ring and r ∈ R, we write −r for the inverse to r in (R,+). This
satisfies r + (−r) = 0R. We write r − s to mean r + (−s) etc. Since we can add and multiply
two elements, by induction, we can add and multiply any finite number of elements.

We will often write 1R as 1 and 0R as 0 when it is clear from the context which elements we
are referring to.

Definition 1.6. We say a ring R is commutative if a · b = b · a for all a, b ∈ R.

Definition 1.7. Let R be a ring, and S ⊆ R be a subset. We say S is a subring of R if
0R, 1R ∈ S, and the operations +, · make S into a ring with identities 0R and 1R. In this case
we write S ≤ R.

Example 1.8. The usual number systems are all rings Z ≤ Q ≤ R ≤ C under the usual
0, 1,+, ·.

Example 1.9. The set Z[i] = {a+ ib : a, b ∈ Z} ≤ C is the Gaussian integers, which is a ring.
We also have the ring Q[

√
2] = {a+ b

√
2 : a, b ∈ Q} ≤ R.

Example 1.10. The trivial ring is ring R = {0} with 0 · 0 := 0 and 0+ 0 := 0. It is the unique
ring with a single element.
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Example 1.11. The natural numbers N is not a ring (no additive inverses).

Proposition 1.12. Let R be a ring. Then 1R = 0R if and only if R = {0} is the trivial ring.

Proof. If R = {0}, then 0R, 1R ∈ R implies that 1R = 0R.
Conversely, suppose that 1R = 0R. If r ∈ R, then

r = r · 1R = r · 0R.

It now suffices to show that r · 0R = 0R for all r ∈ R. If so, then we can conclude that r = 0R
for all r ∈ R and so R = {0R} is the trivial ring.

Note that 0R+0R = 0R, since this is true in the group (R,+). Then for any r ∈ R, we have:

r · (0R + 0R) = r · 0R.

Since multiplication distributes over addition, we have:

r · 0R + r · 0R = r · 0R.

Adding (−r · 0R) to both sides gives that r · 0R = 0R, as required.

Definition 1.13. An element u ∈ R is a unit if there is another element v ∈ R such that
u · v = v · u = 1R. We will let R× ⊆ R denote the set of units in R.

Definition 1.14. A division ring is a non-trivial ring where every u ∕= 0R ∈ R is a unit, i.e.
R× = R \ {0}. A field is a commutative division ring.

Example 1.15. Z is not a field, but Q,R,C are all fields. We have Z× = {±1}.
Similarly, Z[i] is not a field, while Q[

√
2] is. We have Z[i]× = {±1,±i}.

Example 1.16. Define the quaternions H to be the abelian group R4. Let 1 = (1, 0, 0, 0),
i = (0, 1, 0, 0), j = (0, 0, 1, 0) and k = (0, 0, 0, 1), i.e. the standard basis for R4. Let R :=
R · 1 ⊆ H. Then H is a ring with multiplication determined by asking that, if r ∈ R ⊆ H, then
r · (a, b, c, d) = (r ·R a, r ·R b, r ·R c, r ·R d) and furthermore that the basis elements are related
by 1 · i = i · 1 = i, 1 · j = j · 1 = j, 1 · k = k · 1 = k, ij = l = −ji and i2 = j2 = −1 (this
determines all other products of basis elements such as jk = i and k2 = −1). The identities are
1 = (1, 0, 0, 0) and 0 = (0, 0, 0, 0). We write (a, b, c, d) as a+ bi+ cj + dk.

This is not commutative since ij ∕= ji. However it is a division ring since

(a+ bi+ cj + dk)(a− bi− cj − dk) = a2 + b2 + c2 + d2.

In particular, if (a, b, c, d) ∕= 0, then a+ bi+ cj + dk ∈ H has inverse

1

a2 + b2 + c2 + d2
· (a− bi− cj − dk) ∈ H.

Proposition 1.17. The subset R× ⊆ R is a group under multiplication.

Proof. First we have to show that R× is actually closed under multiplication. If a, b ∈ R×, let
c, d ∈ R× be such that ac = ca = 1 = bd = db. Then (ab)(dc) = a(bd)c = a(1)c = ac = 1, and
similarly (dc)(ab) = d(ca)b = d(1)b = db = 1. Therefore ab ∈ R×. Next, we show that R× is a
group: the element 1 ∈ R is a unit since 1 · 1 = 1, and every element of R× has a multiplicative
inverse by definition.
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1.2 Constructions of rings

Example 1.18. Let R,S be rings. Then the product R× S is a ring via

(r, s) + (r′, s′) = (r + r′, s+ s′), (r, s) · (r′, s′) = (r · r′, s · s′).

The zero is (0R, 0S) and the one is (1R, 1S). We can check that this is a ring.

Example 1.19. Let R be a ring. Then a polynomial with coefficients in R is an infinite sequence
f = (a0, a1, a2, · · · ) in R which is eventually zero, i.e. ai = 0 for all i sufficiently large. The
degree of a polynomial f = (a0, a1, a2, · · · ) is defined as the maximal n for which an ∕= 0R, or
−∞ if ai = 0 for all i ≥ 1. We will write this as deg(f).

If ai = 0 for all i ≥ n + 1, then we will often write a polynomial (a0, a1, a2, · · · ) using the
notation:

f = a0 + a1X + a2X
2 + · · ·+ anX

n,

Note that, with this notation, f is the same polynomial as a0+a1X+a2X
2+· · ·+anX

n+0RX
n+1.

Example 1.20. Let f have degree n ≥ 0. If an = 1, then f is called monic.

Example 1.21. If R is a ring, then the polynomial ring R[X] consists of the set of all polynomi-
als with coefficients in R. For f = a0+a1X+· · ·+anX

n ∈ R[X] and g = b0+b1X+· · ·+bkX
k ∈

R[X], the operations are defined by:

f + g :=

max{n,k}!

r=0

(ai + bi)X
i,

and

f · g :=

n+k!

i=0

"

#
i!

j=0

ajbi−j

$

%Xi,

We identify R with the constant polynomials, i.e. polynomials
&

aiX
i with ai = 0 for i > 0. In

particular, 0R ∈ R and 1R ∈ R are the zero and one of R[X].
We can check that this is a ring. This fits out notation before since the element a0 + a1X ∈

R[X] coincides with the element a0 +R[X] a1X ∈ R[X] formed by adding a0, a1X ∈ R[X].

Remark 1.22. Note that a polynomial is just a sequence of numbers, interpreted as the coef-
ficients of some formal symbols. While it does indeed induce a function in the obvious way, we
shall not identify the polynomial with the function given by it, since different polynomials can
give rise to the same function.

For example, in Z/2Z[X], f = X2 +X is not the zero polynomial, since its coefficients are
not zero. However, f(0) = 0 and f(1) = 0. As a function, this is identically zero. So f ∕= 0 as
a polynomial but f = 0 as a function.

Example 1.23. The Laurent polynomials on R is the set R[X,X−1], i.e. each element is of the
form

f =
!

i∈Z
aiX

i

where ai ∈ R and only finitely many ai are non-zero. The operations are defined similarly to
R[X].

In this case, the set of monomials {Xi : i ∈ Z} forms a group under multiplication. It turns
out that Laurent polynomials are a special case of a much more general construction:
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Example 1.24. Let G be a group, and let R be a ring. The group ring R[G] is the set of
expressions of the form: !

g∈G
agg

where λg is an element of R for all g ∈ G and {g ∈ G : ag ∕= 0} is finite. Define addition and
multiplication by the formulas:

"

#
!

g∈G
ag

$

%+

"

#
!

g∈G
bgg

$

% =
!

g∈G
(ag +R bg)g

"

#
!

g∈G
agg

$

% ·

"

#
!

g∈G
bgg

$

% =
!

g∈G

'
!

h∈G
ah ·R bh−1g

(
g

We can check that R[G] is a ring.
We have R[X,X−1] ∼= R[C∞] where C∞ = (Z,+) denotes the infinite cyclic group.
If R is a commutative ring, then R[G] is commutative if and only if G is abelian.

Example 1.25. If R is a ring and n ≥ 1, then the set of n × n matrices Mn(R) forms a ring
under the usual addition and multiplication.

Note that Mn(R) is not commutative for all n ≥ 2 whenever R is non-trivial. In particular,

for n = 2, we have

"

#0 0

1 0

$

%

"

#0 1

0 0

$

% =

"

#0 0

0 1

$

% ∕=

"

#0 1

0 0

$

%

"

#0 0

1 0

$

%. By placing these matrices

in the top left corner of an n × n matrix for n ≥ 2 (with all other entries being zero), these
elements also show that Mn(R) is non-commutative.

Example 1.26. For an abelian groupA, let End(A) = {f : A → A | f is a group homomorphism}.
This is a ring with addition f +End(A) g for f, g ∈ End(A) defined by (f +End(A) g)(x) :=
f(x)+A g(x) for x ∈ A, and multiplication given by composition of functions f ·End(A) g := f ◦g.
We can check that this is a ring.

A group homomorphism f : A → A from an abelian group to itself is an endomorphism,
and End(A) is the endomorphism ring of an abelian group A.

The group of units of End(A) is the automorphism group of A and is denote by Aut(A).

1.3 Homomorphisms, ideals and quotients

Definition 1.27. Let R,S be rings. A function ϕ : R → S is a ring homomorphism if:

1. ϕ(r1 + r2) = ϕ(r1) + ϕ(r2),

2. ϕ(0R) = 0S ,

3. ϕ(r1 · r2) = ϕ(r1) · ϕ(r2),

4. ϕ(1R) = 1S .

Definition 1.28. If a homomorphism ϕ : R → S is a bijection, we call it an isomorphism.

Definition 1.29. The kernel of a homomorphism ϕ : R → S is

ker(ϕ) = {r ∈ R : ϕ(r) = 0S}.
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Definition 1.30. The image of ϕ : R → S is

im(ϕ) = {s ∈ S : s = ϕ(r) for some r ∈ R}.

Lemma 1.31. A homomorphism ϕ : R → S is injective if and only if kerϕ = {0R}.

Proof. A ring homomorphism is in particular a group homomorphism ϕ : (R,+, 0R) → (S,+, 0S)
of abelian groups. So this follows from the case of groups.

Definition 1.32. A left ideal I ⊆ R is an abelian subgroup satisfying the property that, for
every i ∈ I and r ∈ R, ri ∈ I. Similarly, a right ideal is an abelian subgroup I ⊆ R such that,
for every i ∈ I and r ∈ R, ir ∈ I. A two-sided ideal (or bi-ideal) is a subset which is both a left
and right ideal.

For each type of ideal, the property that ri ∈ I (and/or ir ∈ I) is often referred to as the
strong closure property.

We will use the word ideal to denote a left ideal and, when we write I ⊆ R, this is what we
are referring to. However note that, in a commutative ring, all the types of ideals are the same
and so “ideal” means any type of ideal defined above.

Note that the multiplicative closure is stronger than what we require for subrings: for
subrings, it has to be closed under multiplication by its own elements; for ideals, it has to be
closed under multiplication by everything in R. This is similar to how normal subgroups not
only have to be closed under internal multiplication, but also conjugation by external elements.

Lemma 1.33. If ϕ : R → S is a homomorphism, then ker(ϕ) ⊆ R is a two-sided ideal.

Proof. Since ϕ : (R,+, 0R) → (S,+, 0S) is a group homomorphism, the kernel is a subgroup of
(R,+, 0R).

For the second part, let a ∈ ker(ϕ), r ∈ R. We have

ϕ(a · r) = ϕ(a) · ϕ(r) = 0 · ϕ(r) = 0.

So a · r ∈ ker(ϕ). Similarly, we have r · a ∈ ker(ϕ).

Example 1.34. Suppose I ⊆ R is an ideal, and 1R ∈ I. Then for any r ∈ R, the axioms entail
1R · r ∈ I. But 1R · r = r. So if 1R ∈ I, then I = R.

Definition 1.35. A proper ideal of a ring R is an ideal which is not equal to R.

In other words, every proper ideal does not contain 1. In particular, every proper ideal is
not a subring, since a subring must contain 1.

We are starting to diverge from groups. In groups, a normal subgroup is a subgroup, but
here an ideal is not a subring.

Example 1.36. We can generalise the above. Suppose I ⊆ R and u ∈ I is a unit, i.e. there is
some v ∈ R such that u · v = 1R. Then 1R = u · v ∈ I. So I = R.

Hence proper ideals are not allowed to contain any unit at all, not just 1R. That is, if I ∕= R,
then I ⊆ R \R×.

Example 1.37. Consider the ring Z of integers. We claim that every ideal of Z is of the form

nZ = {· · · ,−2n,−n, 0, n, 2n, · · · } ⊆ Z.

It is easy to see this is indeed an ideal.
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To show these are all the ideals, let I ⊆ Z. If I = {0}, then I = 0Z. Otherwise, let n ∈ N
be the smallest positive element of I. We want to show in fact I = nZ. Certainly nZ ⊆ I by
strong closure.

Now let m ∈ I. By the Euclidean algorithm, we can write

m = q · n+ r

with 0 ≤ r < n. Now n,m ∈ I. So by strong closure, m, q · n ∈ I. So r = m − q · n ∈ I. As n
is the smallest positive element of I, and r < n, we must have r = 0. So m = q · n ∈ nZ. So
I ⊆ nZ. So I = nZ.

The key to proving this was that we can perform the Euclidean algorithm on Z. Thus, for any
ringR in which we can run a “Euclidean algorithm”, every ideal is of the form aR = {a·r : r ∈ R}
for some a ∈ R. We will make this notion precise later.

Definition 1.38. For an element a ∈ R, we write

(a) = Ra = {r · a | r ∈ R} ⊆ R.

This is the ideal generated by a.
In general, let a1, a2, · · · , ak ∈ R, we write

(a1, a2, · · · , ak) = {r1a1 + · · ·+ rkak | r1, · · · , rk ∈ R}.

This is the ideal generated by a1, · · · , ak.
We can also have ideals generated by infinitely many objects, but we have to be careful,

since we cannot have infinite sums.

Definition 1.39. For A ⊆ R a subset, the ideal generated by A is

(A) = R ·A =

)
!

a∈A
ra · a | ra ∈ R, only finitely-many non-zero

*
.

These ideals are rather nice ideals, since they are easy to describe, and often have some nice
properties.

Definition 1.40. An ideal I is a principal ideal if I = (a) for some a ∈ R.

So what we have just shown for Z is that all ideals are principal. Not all rings are like this.
These are special types of rings, which we will study more in depth later.

Example 1.41. Consider the following subset:

{f ∈ R[X] : the constant coefficient of f is 0}.

This is an ideal, as we can check manually (alternatively, it is the kernel of the “evaluate at 0”
homomorphism). It turns out this is a principal ideal. In fact, it is (X).

We have said two-sided ideals are like normal subgroups. In particular, we have a notion of
quotienting by a two-sided ideal:

Definition 1.42. Let I ⊆ R be a two-sided ideal. The quotient ring R/I consists of the
(additive) cosets r + I with the zero and one as 0R + I and 1R + I, and operations

(r1 + I) + (r2 + I) = (r1 + r2) + I

(r1 + I) · (r2 + I) = r1r2 + I.
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Proposition 1.43. The quotient ring is a ring, and the function

R → R/I

r .→ r + I

is a ring homomorphism.

This is true, because we defined ideals to be those things that can be quotiented by. So we
just have to check we made the right definition.

Just as we could have come up with the definition of a normal subgroup by requiring
operations on the cosets to be well-defined, we could have come up with the definition of an
ideal by requiring the multiplication of cosets to be well-defined, and we would end up with the
strong closure property.

Proof. We know the group (R/I,+, 0R/I) is well-defined, since I is a (normal) subgroup of R.
So we only have to check multiplication is well-defined.

Suppose r1+ I = r′1+ I and r2+ I = r′2+ I. Then r′1− r1 = a1 ∈ I and r′2− r2 = a2 ∈ I. So

r′1r
′
2 = (r1 + a1)(r2 + a2) = r1r2 + r1a2 + a1r2 + a1a2.

By the strong closure property, the last three objects are in I. So r′1r
′
2 + I = r1r2 + I.

It is easy to check that 0R + I and 1R + I are indeed the zero and one, and the function
given is clearly a homomorphism.

Example 1.44. We have the ideals nZ ⊆ Z. So we have the quotient rings Z/nZ. The elements
are of the form m+ nZ, so they are just

0 + nZ, 1 + nZ, 2 + nZ, · · · , (n− 1) + nZ.

Addition and multiplication are just what we are used to — addition and multiplication modulo
n.

Note that it is easier to come up with ideals than normal subgroups — we can just pick up
random elements, and then take the ideal generated by them.

Let’s now consider a more explicit link to normal subgroups and group quotients via the
group ring.

Example 1.45. Let R be a ring and let f : G → H be a surjective group homomorphism.
Then f induces a surjective ring homomorphism f∗ : R[G] → R[H],

&
g∈G agg .→

&
g∈G agf(g).

What is I = ker(f)? We know that I ⊆ R[G] is a two-sided ideal. Let N = ker(f). This
is a normal subgroup of G such that G/N ∼= H. Let N − 1 = {n − 1 : n ∈ N} ⊆ R[G]. Since
f∗(n− 1) = f∗(n)− 1 = f(n)− 1 = 1− 1 = 0, we must have N − 1 ⊆ I. Since I is an ideal, we
also have (N − 1) = R[G] ·N ⊆ I.

In fact, we can show that (N −1) is a two-sided ideal. If g ∈ G and n ∈ N , then g−1ng = n′

for some n′ ∈ N sinceN ⊆ G is a normal subgroup. In particular, (n−1)·g = g·(n′−1) ∈ (N−1).
It follows from this that, if r ∈ R[G] and λ ∈ (N − 1), then λ · r ∈ (N − 1). Hence (N − 1) is a
two-sided ideal.

It is an exercise on Problem Sheet 1 to show that ker(f∗) = (N − 1). In particular, we have
that R[G]/(N − 1) ∼= R[H] is an isomorphism of rings.

Example 1.46. Consider (X) ⊆ C[X]. What is C[X]/(X)? Elements are represented by

a0 + a1X + a2X
2 + · · ·+ anX

n + (X).
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But everything but the first term is in (X). So every such thing is equivalent to a0 + (X). It
is not hard to convince yourself that this representation is unique. So in fact C[X]/(X) ∼= C,
with the bijection a0 + (X) ↔ a0.

If we want to prove things like this, we have to convince ourselves this representation is
unique. We can do that by hand here, but in general, we want to be able to do this properly.

Proposition 1.47 (Euclidean algorithm for polynomials). Let F be a field and f, g ∈ F [X].
Then there is some r, q ∈ F [X] such that

f = gq + r,

with deg r < deg g.

This is like the usual Euclidean algorithm, except that instead of the absolute value, we use
the degree to measure how “big” the polynomial is.

Proof. See Problem Sheet 1.

Now that we have a Euclidean algorithm for polynomials, we should be able to show that
every ideal of F [X] is generated by one polynomial. We will not prove it specifically here, but
later show that in general, in every ring where the Euclidean algorithm is possible, all ideals
are principal.

We now look at some applications of the Euclidean algorithm.

Example 1.48. Consider R[X], and consider the principal ideal (X2 + 1) ⊆ R[X]. We let
R = R[X]/(X2 + 1).

Elements of R are polynomials

a0 + a1X + a2X
2 + · · ·+ anX

n

+ ,- .
f

+(X2 + 1).

By the Euclidean algorithm, we have

f = q(X2 + 1) + r,

with deg(r) < 2, i.e. r = b0 + b1X. Thus f + (X2 + 1) = r + (X2 + 1). So every element of
R[X]/(X2 + 1) is representable as a+ bX for some a, b ∈ R.

Is this representation unique? If a+bX+(X2+1) = a′+b′X+(X2+1), then the difference
(a−a′)+(b− b′)X ∈ (X2+1). So it is (X2+1)q for some q. This is possible only if q = 0, since
for non-zero q, we know (X2+1)q has degree at least 2. So we must have (a−a′)+(b−b′)X = 0.
So a+ bX = a′ + b′X. So the representation is unique.

What we’ve got is that every element in R is of the form a + bX, and X2 + 1 = 0, i.e.
X2 = −1. This sounds like the complex numbers, just that we are calling it X instead of i.

To show this formally, we define the function

ϕ : R[X]/(X2 + 1) → C
a+ bX + (X2 + 1) .→ a+ bi.

This is well-defined and a bijection. It is also clearly additive. So to prove this is an isomorphism,

10



we have to show it is multiplicative. We check this manually. We have

ϕ((a+ bX + (X2 + 1))(c+ dX + (X2 + 1)))

= ϕ(ac+ (ad+ bc)X + bdX2 + (X2 + 1))

= ϕ((ac− bd) + (ad+ bc)X + (X2 + 1))

= (ac− bd) + (ad+ bc)i

= (a+ bi)(c+ di)

= ϕ(a+ bX + (X2 + 1))ϕ(c+ dX + (X2 + 1)).

So this is indeed an isomorphism.

This is pretty tedious. Fortunately, we have some helpful results we can use, namely the
isomorphism theorems. These are exactly analogous to those for groups.

Theorem 1.49 (First isomorphism theorem). Let ϕ : R → S be a ring homomorphism. Then
ker(ϕ) ⊆ R is a two-sided ideal and

R

ker(ϕ)
∼= im(ϕ) ≤ S.

Proof. We have already seen ker(ϕ) ⊆ R. Now define

ϕ : R/ ker(ϕ) → im(ϕ)

r + ker(ϕ) .→ ϕ(r).

This well-defined, since if r + ker(ϕ) = r′ + ker(ϕ), then r − r′ ∈ ker(ϕ). So ϕ(r − r′) = 0. So
ϕ(r) = ϕ(r′).

We don’t have to check this is bijective and additive, since that comes for free from the
(proof of the) isomorphism theorem of groups. So we just have to check it is multiplicative. To
show ϕ is multiplicative, we have

ϕ((r + ker(ϕ))(t+ ker(ϕ))) = ϕ(rt+ ker(ϕ))

= ϕ(rt)

= ϕ(r)ϕ(t)

= ϕ(r + ker(ϕ))ϕ(t+ ker(ϕ)).

This is more-or-less the same proof as the one for groups, just that we had a few more things
to check. In the example above, showing that R[X]/(X2 + 1) ∼= C now just requires showing
that the ring homomorphism ϕ : R[X]/(X2 + 1) → C is surjective with ker(ϕ) = (X2 + 1).

Theorem 1.50 (Second isomorphism theorem). Let R ≤ S be subrings and let J ⊆ S be a
two-sided ideal. Then

(i) R+ J = {r + j : r ∈ R, j ∈ J} ≤ S is a subring.

(ii) J ⊆ R+ J and J ∩R ⊆ R are each two-sided ideals.

(iii)
R+ J

J
= {r + J : r ∈ R} ≤ S

J
is a subring, and

R

R ∩ J
∼=

R+ J

J
.

11



Proof. Define the function

ϕ : R → S/J

r .→ r + J.

Since this is the quotient map, it is a ring homomorphism. The kernel is

ker(ϕ) = {r ∈ R : r + J = 0, i.e. r ∈ J} = R ∩ J.

Then the image is

im(ϕ) = {r + J : r ∈ R} =
R+ J

J
.

Then by the first isomorphism theorem, we know R ∩ J ⊆ R, and R+J
J ≤ S, and

R

R ∩ J
∼=

R+ J

J
.

Theorem 1.51 (Third isomorphism theorem). Let R be a ring and let I, J ⊆ R be two-sided
ideals such that I ⊆ J . Then J/I ⊆ R/I is a two-sided ideal and

/
R

I

01/J

I

0
∼=

R

J
.

Proof. We define the map

ϕ : R/I → R/J

r + I .→ r + J.

This is well-defined and surjective by the groups case. Also it is a ring homomorphism since
multiplication in R/I and R/J are “the same”. The kernel is

ker(ϕ) = {r + I : r + J = 0, i.e. r ∈ J} =
J

I
.

So the result follows from the first isomorphism theorem.
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2 Integral domains

From now on, we will assume that all rings are commutative (unless we explicitly say ‘let R be
a ring’).

2.1 Integral domains, maximal and prime ideals

Many rings can be nothing like Z. For example, in Z, we know that if a, b ∕= 0, then ab ∕= 0.
However, in, say, Z/6Z, we get 2, 3 ∕= 0, but 2 · 3 = 0. Also, Z has some nice properties such
as every ideal is principal, and every integer has an (essentially) unique factorisation. We will
now classify rings according to which properties they have.

Definition 2.1. Let R be a commutative ring. An element x ∈ R is a zero divisor if x ∕= 0 and
there is a y ∕= 0 such that x · y = 0 ∈ R.

Definition 2.2. An integral domain (ID) is a non-trivial commutative ring with no zero divisors,
i.e. a ring in which ab = 0 implies a = 0 or b = 0.

Example 2.3. All fields are integral domains, since if a·b = 0, and b ∕= 0, then a = a·(b·b−1) = 0.
Similarly, if a ∕= 0, then b = 0.

Example 2.4. A subring of an integral domain is an integral domain, since a zero divisor in
the small ring would also be a zero divisor in the big ring.

Example 2.5. Immediately, we know Z,Q,R,C are integral domains, since C is a field, and
the others are subrings of it. Also, Z[i] ≤ C is also an integral domain.

These are the nice rings we like in number theory, since there we can sensibly talk about
things like factorisation.

It turns out there are no interesting finite integral domains.

Lemma 2.6. Let R be a finite ring which is an integral domain. Then R is a field.

Proof. See Problem Sheet 1.

So far, we know fields are integral domains, and subrings of integral domains are integral
domains. We have another good source of integral domain as follows:

Lemma 2.7. Let R be an integral domain. Then R[X] is also an integral domain.

Proof. We need to show that the product of two non-zero elements is non-zero. Let f, g ∈ R[X]
be non-zero, say

f = a0 + a1X + · · ·+ anX
n ∈ R[X]

g = b0 + b1X + · · ·+ bmXm ∈ R[X],

with an, bm ∕= 0. Then the coefficient of Xn+m in fg is anbm. This is non-zero since R is an
integral domain. So fg is non-zero. So R[X] is an integral domain.

So, for instance, Z[X] is an integral domain.

Notation 2.8. Write R[X,Y ] for (R[X])[Y ], the polynomial ring of R in two variables. In
general, write R[X1, · · · , Xn] = (· · · ((R[X1])[X2]) · · · )[Xn].

13



Then if R is an integral domain, so is R[X1, · · · , Xn].
To some people, it is a shame to think of rings as having elements. Instead, we should think

of a ring as a god-like object, and the only things we should ever mention are its ideals. We
should also not think of the ideals as containing elements, but just some abstract objects, and
all we know is how ideals relate to one another, e.g. if one contains the other.

Under this philosophy, we can think of a field as follows:

Lemma 2.9. A non-trivial commutative ring R is a field if and only if its only ideals are {0}
and R.

Note that we don’t need elements to define the ideals {0} and R. {0} can be defined as the
ideal that all other ideals contain, and R is the ideal that contains all other ideals. Alternatively,
we can reword this as “R is a field if and only if it has only two ideals” to avoid mentioning
explicit ideals.

Proof. (⇒) Let I ⊆ R and R be a field. Suppose x ∕= 0 ∈ I. Then as x is a unit, I = R.
(⇐) Suppose x ∕= 0 ∈ R. Then (x) is an ideal of R. It is not {0} since it contains x. So

(x) = R. In other words 1R ∈ (x). But (x) is defined to be {x · y : y ∈ R}. So there is some
u ∈ R such that x · u = 1R. So x is a unit. Since x was arbitrary, R is a field.

This is another reason why fields are special. They have the simplest possible ideal structure.
This motivates the following definition:

Definition 2.10. An ideal I of a ring R ismaximal if I ∕= R and for any ideal J with I ≤ J ≤ R,
either J = I or J = R.

The relation with what we’ve done above is quite simple. There is an easy way to recognize
if an ideal is maximal.

Lemma 2.11. Let R be a commutative ring. An ideal I ⊆ R is maximal if and only if R/I is
a field.

Proof. Note that R/I is a field if and only if {0} and R/I are the only ideals of R/I.
(⇐) If there exists I ⊊ J ⊊ R, then consider J/I = {r + I : r ∈ J} ⊆ R/I. This is an ideal

and satisfies {0} ⊊ J/I ⊊ R/I.
(⇒) If there exists an ideal {0} ⊆ S ⊆ R/I, then define J = {r ∈ R : r + I ∈ S}. We can

check that this is an ideal and that I ⊊ J ⊆ R.

Remark 2.12. The proof actually shows something else, namely that we have a one-to-one
correspondence:

{ideals of R/I} ←→ {ideals of R which contain I}

S ≤ R

I
−→ F = {x ∈ R : x+ I ∈ S}

J

I
≤ R

I
←− J ⊆ S ≤ R.

This is a nice result. This makes a correspondence between properties of ideals I and
properties of the quotient R/I. Here is another one:

Definition 2.13. An ideal I of a ring R is prime if I ∕= R and whenever a, b ∈ R are such that
a · b ∈ I, then a ∈ I or b ∈ I.

14



Example 2.14. A non-zero ideal nZ ⊆ Z is prime if and only if n is a prime.
To show this, first suppose n = p is a prime, and a · b ∈ pZ. So p | a · b. So p | a or p | b, i.e.

a ∈ pZ or b ∈ pZ.
For the other direction, suppose n = pq is a composite number (p, q ∕= 1). Then n ∈ nZ but

p ∕∈ nZ and q ∕∈ nZ, since 0 < p, q < n.

So instead of talking about prime numbers, we can talk about prime ideals instead, because
ideals are better than elements.

Example 2.15. Let R be an integral domain. Then (X) ⊆ F [X] is a prime ideal.

Note that the trivial ideal {0} ⊆ R is prime if and only if R is an integral domain. This
generalises to the following:

Lemma 2.16. Let R be a commutative ring. An ideal I ⊆ R is prime if and only if R/I is an
integral domain.

Proof. See Problem Sheet 1.

Prime ideals and maximal ideals are the main types of ideals we care about. Note that every
field is an integral domain. So we immediately have the following result:

Corollary 2.17. Let R be a commutative ring. Then every maximal ideal is a prime ideal.

Proof. I ⊆ R is maximal implies R/I is a field implies R/I is an integral domain implies I is
prime.

The converse is not true. For example, {0} ⊆ Z is prime but not maximal. Less stupidly,
(X) ∈ Z[X] is prime but not maximal (since Z[X]/(X) ∼= Z and Z is an integral domain but
not a field).

We can provide a more explicit proof of this, which is essentially the same.

Alternative proof. Let I be a maximal ideal, and suppose a, b ∕∈ I but ab ∈ I. Then by max-
imality, I + (a) = I + (b) = R = (1). So we can find some p, q ∈ R and n,m ∈ I such that
n+ ap = m+ bq = 1. Then

1 = (n+ ap)(m+ bq) = nm+ apm+ bqn+ abpq ∈ I,

since n,m, ab ∈ I. This is a contradiction.

Note that for any ring R, there is a unique ring homomorphism Z → R, given by

ι : Z → R

n ≥ 0 .→ 1R + 1R + · · ·+ 1R+ ,- .
n times

n ≤ 0 .→ −(1R + 1R + · · ·+ 1R+ ,- .
−n times

)

Any homomorphism Z → R must be given by this formula, since it must send the unit to the
unit, and we can show this is indeed a homomorphism by distributivity. So the ring homomor-
phism is unique. We then know ker(ι) ⊆ Z. Thus ker(ι) = nZ for some n.

Definition 2.18. Let R be a ring, and ι : Z → R be the unique such map. The characteristic
of R is the unique non-negative n such that ker(ι) = nZ.
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Example 2.19. The rings Z,Q,R,C all have characteristic 0. The ring Z/nZ has characteristic
n. In particular, all natural numbers can be characteristics.

Lemma 2.20. Let R be an integral domain. Then its characteristic is either 0 or a prime
number.

Proof. Consider the unique map ϕ : Z → R, and ker(ϕ) = nZ. Then n is the characteristic of
R by definition.

By the first isomorphism theorem, Z/nZ = im(ϕ) ≤ R. So Z/nZ is an integral domain. So
nZ ⊆ Z is a prime. So n = 0 or a prime number.

2.2 Factorisation in integral domains

We now move on to tackle the problem of factorisation in rings. For sanity, we suppose through-
out this section that R is an integral domain. We start with some key definitions.

Definition 2.21. Let R be a ring. For elements a, b ∈ R, we say a divides b, written a | b, if
there is a c ∈ R such that b = ac. Equivalently, if (b) ⊆ (a).

Definition 2.22. Let R be a ring. We say a, b ∈ R are associates if a = bc for some unit c.
Equivalently, if (a) = (b). Equivalently, if a | b and b | a.

In the integers, this can only happen if a and b differ by a sign but, in other rings, more
interesting things can happen.

When considering division in rings, we often consider two associates to be “the same”. For
example, in Z, we can factorize 6 as

6 = 2 · 3 = (−2) · (−3),

but this does not violate unique factorisation, since 2 and −2 are associates (and so are 3 and
−3), and we consider these two factorisations to be “the same”.

Definition 2.23. Let R be a ring. We say a ∈ R is irreducible if a ∕= 0, a is not a unit, and if
a = xy, then x or y is a unit.

For integers, being irreducible is the same as being a prime number. However, “prime”
means something different in general rings.

Definition 2.24. Let R be a ring. We say a ∈ R is prime if a ∕= 0, a is not a unit, and whenever
a | xy, either a | x or a | y.

It is important to note all these properties depend on the ring, not just the element itself.

Example 2.25. 2 ∈ Z is a prime, but 2 ∈ Q is not (since it is a unit).
Similarly, the polynomial 2X ∈ Q[X] is irreducible (since 2 is a unit), but 2X ∈ Z[X] not

irreducible.

Lemma 2.26. A principal ideal (r) is a prime ideal in R if and only if r = 0 or r is prime.

Proof. (⇒) Let (r) be a prime ideal. If r = 0, then done. Otherwise, as prime ideals are proper,
i.e. not the whole ring, r is not a unit. Now suppose r | a · b. Then a · b ∈ (r). But (r) is prime.
So a ∈ (r) or b ∈ (r). So r | a or r | b. So r is prime.

(⇐) If r = 0, then (0) = {0} ⊆ R, which is prime since R is an integral domain. Otherwise,
let r ∕= 0 be prime. Suppose a · b ∈ (r). This means r | a · b. So r | a or r | b. So a ∈ (r) and
b ∈ (r). So (r) is prime.
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Lemma 2.27. If r ∈ R is prime, then it is irreducible.

Proof. Let r ∈ R be prime, and suppose r = ab. Since r | r = ab, and r is prime, we must have
r | a or r | b. wlog, r | a. So a = rc for some c ∈ R. So r = ab = rcb. Since we are in an integral
domain, we must have 1 = cb. So b is a unit.

In Z, all irreducibles are prime. We now give an example to show that this fails in general.

Example 2.28. Let
R = Z[

√
−5] = {a+ b

√
−5 : a, b ∈ Z} ≤ C.

By definition, it is a subring of a field. So it is an integral domain. What are the units of the
ring? There is a nice trick we can use, when things are lying inside C. Consider the function

N : R → Z≥0

given by
N(a+ b

√
−5) .→ a2 + 5b2.

It is convenient to think of this as z .→ zz̄ = |z|2. This satisfies N(z · w) = N(z)N(w). This
is a desirable thing to have for a ring, since it immediately implies all units have norm 1 — if
r · s = 1, then 1 = N(1) = N(rs) = N(r)N(s). So N(r) = N(s) = 1.

So to find the units, we need to solve a2 +5b2 = 1, for a and b units. The only solutions are
±1. So only ±1 ∈ R can be units, and these obviously are units. Hence R× = {±1}.

Next, we claim 2 ∈ R is irreducible. We again use the norm. Suppose 2 = ab. Then
4 = N(2) = N(a)N(b). Now note that nothing has norm 2. a2+5b2 can never be 2 for integers
a, b ∈ Z. So we must have, wlog, N(a) = 4, N(b) = 1. So b must be a unit. Similarly, we see
that 3, 1 +

√
−5, 1−

√
−5 are irreducible (since there is also no element of norm 3).

We have four irreducible elements in this ring. We claim that they are not prime. Note that

(1 +
√
−5)(1−

√
−5) = 6 = 2 · 3.

We now claim 2 does not divide 1 +
√
−5 or 1−

√
−5. So 2 is not prime.

To show this, suppose 2 | 1 +
√
−5. Then N(2) | N(1 +

√
−5). But N(2) = 4 and

N(1 +
√
−5) = 6, and 4 ∤ 6. Similarly, N(1−

√
−5) = 6 as well. So 2 ∤ 1±

√
−5.

There are several things to be learnt here. First is that primes and irreducibles are not
the same thing in general. The second is that factorisation into irreducibles is not necessarily
unique, since 2 · 3 = (1 +

√
−5)(1−

√
−5) are two factorisations into irreducibles.

However, there is one situation when unique factorisations holds. This is when we have a
Euclidean algorithm available.

Definition 2.29 (Euclidean domain). An integral domain R is a Euclidean domain (ED) if
there is a Euclidean function φ : R \ {0} → Z≥0 such that

1. φ(a · b) ≥ φ(b) for all a, b ∕= 0

2. If a, b ∈ R, with b ∕= 0, then there are q, r ∈ R such that

a = b · q + r,

and either r = 0 or φ(r) < φ(b).

Every time we said we have a “Euclidean algorithm”, we have an example of a Euclidean
domain.
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Example 2.30. Z is a Euclidean domain with φ(n) = |n|.

Example 2.31. For any field F , F [X] is a Euclidean domain with

φ(f) = deg(f).

Division is always possible in fields, even with no remainders:

Example 2.32. If F is a field, then F is a Euclidean domain with φ(x) = 0 for all x ∈ F× =
F \ {0}. Note that we can always take r = 0 in condition (2).

Example 2.33. The Gaussian integers R = Z[i] ≤ C is a Euclidean domain with φ(z) =
N(z) = |z|2. We now check this:

1. We have φ(zw) = φ(z)φ(w) ≥ φ(z), since φ(w) is a positive integer.

2. Given a, b ∈ Z[i], b ∕= 0. We consider the complex number

a

b
∈ C.

Consider the following complex plane, where the red dots are points in Z[i].

ℜ

ℑ

a
b

By looking at the picture, we know that there is some q ∈ Z[i] such that
22a
b − q

22 < 1. So
we can write

a

b
= q + c

with |c| < 1. Then we have
a = b · q + b · c+,-.

r

.

We know r = a− bq ∈ Z[i], and φ(r) = N(bc) = N(b)N(c) < N(b) = φ(b). So done.

This is not just true for the Gaussian integers. All we really needed was that R ≤ C, and for
any x ∈ C, there is some point in R that is not more than 1 away from x. If we draw some
more pictures, we will see this is not true for Z[

√
−5].

Before we move on to prove unique factorisation, we first derive something we’ve previously
mentioned. Recall we showed that every ideal in Z is principal, and we proved this by the
Euclidean algorithm. So we might expect this to be true in an arbitrary Euclidean domain.
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Definition 2.34 (Principal ideal domain). A ring R is a principal ideal domain (PID) if it is
an integral domain, and every ideal is a principal ideal, i.e. for all I ⊆ R, there is some a such
that I = (a).

Example 2.35. Z is a principal ideal domain.

Proposition 2.36. Let R be a Euclidean domain. Then R is a principal ideal domain.

We have already proved this, just that we did it for a particular Euclidean domain Z.
Nonetheless, we shall do it again.

Proof. Let R have a Euclidean function φ : R \ {0} → Z≥0. We let I ⊆ R be a non-zero ideal,
and let b ∈ I \ {0} be an element with φ(b) minimal. Then for any a ∈ I, we write

a = bq + r,

with r = 0 or φ(r) < φ(b). However, any such r must be in I since r = a− bq ∈ I. So we cannot
have φ(r) < φ(b). So we must have r = 0. So a = bq. So a ∈ (b). Since this is true for all a ∈ I,
we must have I ⊆ (b). On the other hand, since b ∈ I, we must have (b) ⊆ I. So we must have
I = (b).

This is exactly, word by word, the same proof as we gave for the integers, except we replaced
the absolute value with φ.

Example 2.37. Z is a Euclidean domain, and hence a principal ideal domain. Also, for any
field F, F[X] is a Euclidean domain, hence a principal ideal domain.

Also, Z[i] is a Euclidean domain, and hence a principal ideal domain.

Example 2.38. Is Z[X] a Euclidean domain? If so, then it must be a principal ideal domain.
This is easier to work with, so let’s consider this instead.

We claim that the ideal (2, X) ⊆ Z[X] is not a principal ideal. Suppose it were. Then
(2, X) = (f). Since 2 ∈ (2, X) = (f), we know 2 ∈ (f), i.e. 2 = f · g for some g. So f has degree
zero, and hence constant. So f = ±1 or ±2.

If f = ±1, since ±1 are units, then (f) = Z[X]. But (2, X) ∕= Z[X], since, say, 1 ∕∈ (2, X). If
f = ±2, then since X ∈ (2, X) = (f), we must have ±2 | X, but this is clearly false. So (2, X)
cannot be a principal ideal. Hence Z[X] is not principal ideal domain or a Euclidean domain.

Remark 2.39 (Tangential). At first sight, you might expect a proof that Z[X] is a Euclidean
domain to start by saying “Suppose φ is a Euclidean function...” and then proceed to a contra-
diction. Here we instead use that, if Z[X] is a Euclidean domain, then it is also a principal ideal
domain, which is a property that is easier to work with. In fact, it is quite difficult to come up
with a ring which is a Euclidean domain but not a principal ideal domain.

This is a typical style of proof in algebra and is worth remembering. For example, in
algebraic topology, we might ask whether two spaces X and Y are homeomorphic (‘topologically
equivalent’). We almost never argue by saying “Let f : X → Y be a homeomorphism between
them...”. If X and Y are homeomorphic, then two associated rings H∗(X) and H∗(Y ) must be
isomorphic as rings. If we can show that these rings are not isomorphic, then we deduce that
X and Y are not homeomorphic. This is the approach of invariants.

Example 2.40. Let A ∈ Mn×n(F ) be an n×n matrix over a field F . We consider the following
set

I = {f ∈ F [X] : f(A) = 0}.
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This is an ideal — if f, g ∈ I, then (f + g)(A) = f(A) + g(A) = 0. Similarly, if f ∈ I and
h ∈ F [X], then (fg)(A) = f(A)g(A) = 0.

But we know F [X] is a principal ideal domain. So there must be some m ∈ F [X] such that
I = (m) for some m.

Suppose f ∈ F [X] such that f(A) = 0, i.e. f ∈ I. Then m | f . So m is a polynomial that
divides all polynomials that kill A, i.e. m is the minimal polynomial of A.

We have just proved that all matrices have minimal polynomials, and that the minimal
polynomial divides all other polynomials that kill A. Also, the minimal polynomial is unique
up to multiplication of units.

For a general ring, we cannot factorize things into irreducibles uniquely. We say this in the
example Z[

√
−5]. However, in some rings, this is possible.

Definition 2.41 (Unique factorisation domain). An integral domain R is a unique factorisation
domain (UFD) if

1. Every non-unit may be written as a product of irreducibles (Existence).

2. If p1 · · · pn = q1 · · · qm with pi, qj irreducibles, then n = m, and they can be reordered such
that pi is an associate of qi (Uniqueness).

This is a really nice property, and here we can do things we are familiar with in number
theory. So how do we know if something is a unique factorisation domain? Our goal is to show
the following:

Theorem 2.42 (PID⇒ UFD). If R be a principal ideal domain, then R is a unique factorisation
domain.

Sketch proof. Uniqueness: In Z, irreducibles are primes so suppose this is true here. If p1 · · · pn =
q1 · · · qm for pi, qi irreducible (hence prime). Then pn | q1 · · · qm implies pn | qi for some i. Wlog
i = m. So qm = pnr for some r ∈ R. Since qm is irreducible, r is a unit hence qm and pn
are associates. Since R is an integral domain, this implies that p1 · · · pn−1 = q1 · · · q′m−1 where
q′m−1 = qm−1r which is still irreducible. This process eventually terminates and implies n = m.

Existence: Let r be a non-unit. If r is irreducible, then done. If not then we can write
r = r1s1 for some r1, s1 ∈ R non-units. If r1, s1 are irreducible then done so assume not. Wlog
assume that r1 is not irreducible. Then we can write r1 = r2s2. If this process never terminates,
then we have a sequence {ri}i≥1 in R such that ri+1 | ri but ri and ri+1 are not associates. If
we take Ii = (ri), this implies we have a chain of ideals I1 ⊊ I2 ⊊ · · · which never terminates.
This never happens in Z so assume this never happens in R. If so, then this process terminates.
Hence it terminates for all ‘paths’ through the ri, si (e.g. picking s1 instead of r1 at the first
step). This gives the required factorisation.

The aim of the rest of this section is to fill in the details of the sketch proof and, along the
way, to establish basic properties of principal ideal domains.

Firstly recall that, for a commutative ring R, a principal ideal (r) is prime if and only if
r ∈ R is prime or r = 0. In the special situation of principal ideal domains, we also have the
following relation between maximal ideals and irreducible elements:

Lemma 2.43. Let R be a principal ideal domain. Then a principal ideal (r) is maximal if and
only if r is irreducible or, if R is a field, r = 0.
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Proof. (⇒) If r is not irreducible, then r = xy for x, y ∈ R non-units. Then (r) ⊆ (x) ⊆ R.
Since x is not a unit, we have (x) ∕= R. Since (r) is maximal, (r) = (x). This implies that
x = rz for some non-unit z. So r = xy = ryz and r(1− yz) = 0. Since R is an integral domain,
we have yz = 1 or r = 0. The former cannot hold since y is a non-unit, so we deduce that r = 0.
This is a contradiction unless R is a field since (0) maximal would imply that R ∼= R/(0) is a
field.

(⇐) Note that, if R is a field, then (0) is maximal. Now suppose r ∈ R is irreducible. If (r)
is non-maximal, then there exists an ideal I such that (r) ⊊ I ⊊ R. Since R is a principal ideal
domain, we have I = (x) for some x ∈ R. Since (x) ∕= R, x is a non-unit. Since (r) ⊆ (x), we
have r = xy for y a non-unit. This is a contradiction. Hence (r) is maximal.

Proposition 2.44. Let R be a principal ideal domain. If r ∈ R is irreducible, then it is prime.

We already know that, if r ∈ R is prime, then it is irreducible. Hence it follows that, in a
principal ideal domain, irreducible elements and prime elements coincide.

Proof. If r ∈ R is irreducible, then the above implies that (r) is maximal ideal. Every maximal
ideal is prime so (r) is a prime ideal. Since (r) is prime and r ∕= 0, it follows from a previous
lemma that r is prime.

Alternative proof. Let p ∈ R be irreducible, and suppose p | a · b. Also, suppose p ∤ a. We need
to show p | b.

Consider the ideal (p, a) ⊆ R. Since R is a principal ideal domain, there is some d ∈ R such
that (p, a) = (d). So d | p and d | a.

Since d | p, there is some q1 such that p = q1d. As p is irreducible, either q1 or d is a unit.
If q1 is a unit, then d = q−1

1 p, and this divides a. So a = q−1
1 px for some x. This is a

contradiction, since p ∤ a.
Therefore d is a unit. So (p, a) = (d) = R. In particular, 1R ∈ (p, a). So suppose 1R =

rp+ sa, for some r, s ∈ R. We now take the whole thing and multiply by b. Then we get

b = rpb+ sab.

We observe that ab is divisible by p, and so is p. So b is divisible by p. So done.

Corollary 2.45. Let R be a principal ideal domain. Then every non-zero prime ideal is
maximal.

We already know that every maximal ideal is prime. Hence it follows that, prime ideals and
maximal ideals coincide with the exception of {0} which is alway prime and which is maximal
if and only if R is a field.

Proof. If I is a non-zero prime ideal, then I = (r) for r ∈ R a prime by a previous lemma. In
general, primes are irreducible so r is irreducible. The proposition above then shows that (r) is
maximal.

We will now consider another nice property of principal ideal domains.

Definition 2.46. A commutative ring satisfies the ascending chain condition (ACC) if there is
no infinite strictly increasing chain of ideals. That is, if I1 ⊆ I2 ⊆ I3 ⊆ · · · be a chain of ideals,
then there is some N ∈ N such that In = In+1 for some n ≥ N .

Definition 2.47. A commutative ring that satisfies the ascending chain condition is known as
a Noetherian ring.
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Proposition 2.48. If R is a principal ideal domain, then R is Noetherian.

Proof. The obvious thing to do when we have an infinite chain of ideals is to take the union of
them. We let

I =

∞3

n≥1

In,

which is again an ideal. Since R is a principal ideal domain, I = (a) for some a ∈ R. We know
a ∈ I =

4∞
n=0 In. So a ∈ IN for some N . Then we have

(a) ⊆ IN ⊆ I = (a)

So we must have IN = I. So In = IN = I for all n ≥ N .

Notice it is not important that I is generated by one element. If, for some reason, we know
I is generated by finitely many elements, then the same argument works. So if every ideal is
finitely generated, then the ring must be Noetherian. In fact, a ring is Noetherian if and only
if every ideal is finitely generated.

Finally, we have done the setup, and we can prove the theorem.

Proof of “PID ⇒ UFD”. Uniqueness: Let p1p2 · · · pn = q1q2 · · · qm, with pi, qi irreducible. So
in particular p1 | q1 · · · qm. Since p1 is irreducible, it is prime. So p1 divides some qi. We reorder
and suppose p1 | q1. So q1 = p1 · a for some a. But since q1 is irreducible, a must be a unit. So
p1, q1 are associates. Since R is a principal ideal domain, hence integral domain, we can cancel
p1 to obtain

p2p3 · · · pn = (aq2)q3 · · · qm.

We now rename aq2 as q2, so that we in fact have

p2p3 · · · pn = q2q3 · · · qm.

We can then continue to show that pi and qi are associates for all i. This also shows that n = m,
or else if n = m+ k, saw, then pk+1 · · · pn = 1, which is a contradiction.

Existence: Suppose r ∈ R is a non-unit which cannot be factored as a product of irreducibles.
Then it is certainly not irreducible. So we can write r = r1s1, with r1, s1 both non-units. Since
r cannot be factored as a product of irreducibles, wlog r1 cannot be factored as a product of
irreducibles (if both can, then r would be a product of irreducibles). So we can write r1 = r2s2,
with r2, s2 not units. Again, wlog r2 cannot be factored as a product of irreducibles. We
continue this way.

By assumption, the process does not end, and then we have the following chain of ideals:

(r) ⊆ (r1) ⊆ (r2) ⊆ · · · ⊆ (rn) ⊆ · · ·

But then we have an ascending chain of ideals. By the ascending chain condition, these are all
eventually equal, i.e. there is some n such that (rn) = (rn+1) = (rn+2) = · · · . In particular,
since (rn) = (rn+1), and rn = rn+1sn+1, then sn+1 is a unit. But this is a contradiction, since
sn+1 is not a unit. So r must be a product of irreducibles.

Example 2.49. Since Z[i] is a Euclidean domain, it must be a principal ideal domain and the
above implies that it is a unique factorisation domain. This was proven by Gauss in 1832 and
provided a lot of motivation for the theory that was later developed.

We can now use this to define other familiar notions from number theory.
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Definition 2.50. In a ring R, d is a greatest common divisor (gcd) of a1, a2, · · · , an if d | ai for
all i, and if any other d′ satisfies d′ | ai for all i, then d′ | d.

Note that the gcd of a set of numbers, if it exists, is not unique. It is only well-defined up
to multiplication by units.

This is a definition that says what it means to be a greatest common divisor. However, it
does not always have to exist.

Lemma 2.51. Let R be a unique factorisation domain. Then greatest common divisors exists,
and is unique up to associates, i.e. if d and d′ are greatest common divisors of a1, a2, · · · , an,
then d and d′ are associates.

Proof. Let p1, p2, · · · , pm be a list of all irreducible factors of ai such that no two of these are
associates of each other. We now write

ai = ui

m5

j=1

p
nij

j ,

where nij ∈ N and ui are units. We let

mj = min
i
{nij},

and choose

d =

m5

j=1

p
mj

j .

As, by definition, mj ≤ nij for all i, we know d | ai for all i.
Finally, if d′ | ai for all i, then we let

d′ = v

m5

j=1

p
tj
j .

Then we must have tj ≤ nij for all i, j. So we must have tj ≤ mj for all j. So d′ | d.
Uniqueness is immediate since any two greatest common divisors have to divide each other.

Note that, if d and d′ are associates, then they generate the same ideal (d) = (d′). Therefore
the greatest common divisor is, in some sense, better thought of as an ideal in a ring rather
than an actual element.

We have now completed the first major goal of this course, namely to establish the following
chain of implications:

(Z) ⇒ ED ⇒ PID ⇒ UFD ⇒ ID ⇒ Commutative Ring ⇒ Ring

where (Z) just denotes the property of being isomorphic to Z. For each ring R, we can classify
how similar it is to Z by seeing how many properties it satisfies, i.e. how far left it sits in the
chain of implications. To show that these all make sense as separate definitions, we also need
to find examples showing that each implication cannot be reversed:

(Z) ∕⇐+,-.
Q,Z[i]

ED ∕⇐+,-.
Z[ 1+

√
−19
2

]

PID ∕⇐+,-.
Z[X]

UFD ∕⇐+,-.
Z[
√
−5]

ID ∕⇐+,-.
Z/6Z

Commutative Ring ∕⇐+,-.
M2(Z)

Ring.

23



We have not seen two of these examples yet: Z[1+
√
−19
2 ] and Z[X]. The first is the challenge

problem on Problem Sheet 1.
We already know that Z[X] is not principal ideal domain, e.g. consider (2, X). We will see

later that Z[X] is a unique factorisation domain.

Remark 2.52 (Tangential). The above discussion is an example of a ‘classification hierarchy’;
something which is central to many classification problems in pure mathematics. Take a simple
mathematical object (e.g. Z) and a wider class of mathematical object of which this is an
example (e.g. Rings). Then find general properties which are satisfied by the object in question
(e.g. ED, PID) and relate them to each other (e.g. ED ⇒ PID, PID ∕⇒ ED). The end result is
a broad understanding of our simple mathematical object and what characterises it.

In topology, a simple object is an n-dimensional sphere Sn and a class of objects is n-
dimensional manifolds. There are many equivalence relations on manifolds: diffeomorphism
(∼=Diff), which implies homeomorphism (∼=), which implies homotopy equivalent (≃). So we
have:

(M ∼=Diff Sn) ⇒ (M ∼= Sn) ⇒ (M ≃ Sn).

Which of these implications can be reversed? This is a separate question for each n. This
program is known as the Generalised Poincaré Conjecture. Milnor won a Fields medal for finding
an example to show that (M ∼= Sn) ∕⇒ (M ∼=Diff Sn) in the case n = 7 (an ‘exotic sphere’).
Three more Fields Medals were awarded to Smale, Freedman and Perelman for showing that
(M ∼= Sn)⇔ (M ≃ Sn) for all n. Currently just one case remains open and is in four dimensions:
does M ∼= S4 implies M ∼=Diff S4?

Remark 2.53. A (not necessarily commutative) ring with no zero divisors is a domain and
many of the nice properties of integral domains also hold for domains. The quaternions H is
a domain, as is any division ring. An important open problem is: if G is a torsion-free group
(i.e. every non-zero element has infinite order) and F is a field, then is F [G] a domain? This is
Kaplansky’s zero divisor problem and dates back to at least the 1940s.

2.3 Localisation

Let R be a commutative ring. Our goal is to define a ring of fractions “a
s” for all a ∈ R and

only certain s ∈ R (not necessarily all).
Here are the prototypical examples:

• R is an integral domain and we consider all fractions a
b where b ∕= 0: this is a field, called

the field of fractions of R (we will define this carefully below).

Examples: the field of fractions of Z is Q, the field of fractions of Z[
√
d] is Q(

√
d), the field

of fractions of F [X] (for a field F ) is F (X) (which means all fractions f
g with f, g ∈ F [X]

and g ∕= 0).

• R is an integral domain and we invert elements with certain prime factors only. For
example, Z[1p ] is the ring consisting of elements a

pm for m ≥ 0 and a ∈ Z.

Definition 2.54. Let R be an integral domain and S ⊆ (R, ·) a submonoid not containing 0.
The localisation S−1R is defined as the set of equivalence classes of pairs (r, s) with r ∈ R and
s ∈ S, under the equivalence relation (r, s) ∼ (r′, s′) if rs′ = r′s. The pair (r, s) is denoted r

s .
This is a ring with operations (r, s) · (r′, s′) := (rr′, ss′) and (r, s)+ (r′, s′) := (rs′ + r′s, ss′).

Check this is an equivalence relation: reflexivity and symmetry are immediate; for tran-
sitivity if (r, s) ∼ (r′, s′) and (r′, s′) ∼ (r′′, s′′), then rs′ = sr′ and r′s′′ = s′r′′, so we get
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rs′s′′ = sr′s′′ = ss′r′′, so s′(rs′′ − sr′′) = 0. In an integral domain this implies that rs′′ = sr′′

or else s′ = 0, but the latter we assumed was not the case.
We can also check that this is a ring with the given operations.

Definition 2.55. Let R = Z and let S = R \ {0}. Then the rational numbers Q is defined as
the ring S−1R.

Example 2.56. Let R = Z and let S = {pi : i ≥ 0} for a prime p. Then S−1R ⊆ Q is the
subset of rational numbers { a

pm : m ≥ 0}. We often denote this by Z[1p ].
Note that we could take S = 〈p〉 to be the multiplicative submonoid generated by p, i.e. the

smallest multiplicative submonoid of Z which contains p.

Observe there is an obvious map ι : R → S−1R sending a to (a, 1).

Proposition 2.57. Let R be an integral domain and let S be a multiplicative submonoid such
that 0 /∈ S. Then the map ι : R → S−1R is injective.

Proof. We need to show that (r, 1) ∼ (r′, 1) implies r = r′. This is immediate from the definition
of the equivalence relation.

Remark 2.58. If R and S are rings and f : R → S is injective ring homomorphism, then R
is isomorphic to a subring of S, namely the subring Im(f) ≤ S. In general, we view a ring as
an equivalence class of rings up to ring isomorphism, i.e. we say that two rings are the same if
they are isomorphic. We therefore often say that R is a subring of S.

In the above proposition, we could therefore say that R is a subring S−1R.

For general commutative rings the definition looks almost the same:

Definition 2.59. For R a commutative ring and S ⊆ R a submonoid, the localisation S−1R
is defined as the equivalence classes of pairs (r, s), r ∈ R, s ∈ S subject to the relation (r, s) ∼
(r′, s′) if there exists t ∈ S such that t(rs′ − r′s) = 0. As before, (r, s) can be denoted r

s .
This is a ring with operations (r, s) · (r′, s′) := (rr′, ss′) and (r, s)+ (r′, s′) := (rs′ + r′s, ss′).

The presence of the t is the difference between the two definitions. In an integral domain,
we assume 0 ∕∈ S and so t ∕= 0 and t(rs′ − r′s) = 0 implies rs′ − r′s = 0.

Exercise 2.60. Show that ∼ is an equivalence relation in the definition.

Note that in the definition of localisation for an integral domain we require that the sub-
monoid S ⊆ R does not include zero. Indeed, if we apply the equivalence relation for integral
domains and 0 ∈ S, then we get (r, s) ∼ (0, 0) for all r, s and hence S−1R = 0. Applying the
more general equivalence relation ((r, s) ∼ (r′, s′) if there exists t ∈ S such that t(rs′− r′s) = 0)
also yields that (r, s) ∼ (0, 0) for all r, s when 0 ∈ S, so we get:

Example 2.61. If S contains zero, then S−1R ∼= {0} is the zero ring.

There is still a map ι : R → S−1R in general, but the following shows that this is not
injective when 0 ∈ S unless R = {0}.

Remark 2.62. This is why we assumed that, for R an integral domain, the multiplicative
submonoid S does not contain 0. We needed this to be true to get that the map ι : R → S−1R
is injective, i.e. that R can be viewed as a subring of S−1R.

In fact, this is still often the case when 0 ∕∈ S:
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Example 2.63. Consider {1, 2, 4, 5}−1Z/6. In here (0, 2) ∼ (3, 1) so 3 = 0. We get therefore a
map {2, 4}−1Z/6 → Z/3 sending (a, b) to b−1 · a (as 2 and 4 are invertible in Z/3). This map is
clearly surjective and the kernel consists only of (a, b) for a ∈ {0, 3} and b ∈ {1, 2, 4, 5}. All of
these elements are equivalent to (0, 1). Thus the map is injective and we get {1, 2, 4, 5}1Z/6 ∼=
Z/3. So here the induced map Z/6 → Z/3 is not injective.

Definition 2.64. If R is an integral domain and S = R\{0}, then S−1R is a field: a
b
b
a = ab

ab = 1.
We refer to S−1R as the field of fractions of R. We will denote this by Frac(R).

Remark 2.65. The integral domain hypothesis is needed here, otherwise R \ {0} is not a
multiplicative submonoid. Indeed for some nonzero a, b, we have ab = 0.

Example 2.66. The field of fractions of Z is Q; of Z[
√
d] it is Q(

√
d); of F [x1, . . . , xn] it is

F (x1, . . . , xn).

Note that S ⊆ (S−1R)× is a submonoid of the unit group of S−1R. The following says that
S−1R is “the smallest thing obtained from R by ensuring that everything in S becomes a unit”.

Proposition 2.67 (Universal property of localisation). If A is any commutative ring and ϕ :
R → A a ring homomorphism such that ϕ(S) ⊆ A×, then ϕ factors through the homomorphism
ι : R → S−1R: i.e., there exists a unique 6ϕ : S−1R → A such that ϕ = 6ϕ ◦ ι.

Proof. Let 6ϕ(ab ) = ϕ(a)ϕ(b)−1 for a ∈ R and b ∈ S. One must check this map is well-defined: if
a
b = c

d , then ϕ(a)ϕ(b)−1 = ϕ(c)ϕ(d)−1. The latter equality is equivalent to ϕ(a)ϕ(d) = ϕ(b)ϕ(c).
Now by assumption, there exists t ∈ S such that t(ad− bc) = 0. Therefore ϕ(t)ϕ(ad− bc) = 0.
Multiplying by ϕ(t)−1, we obtain ϕ(ad− bc) = 0, hence ϕ(a)ϕ(d) = ϕ(b)ϕ(c) as desired.

It is straightforward to check that, since ϕ is a ring homomorphism, so is 6ϕ (one just checks
that fractions have to add and multiply in the usual way in A). Finally, for uniqueness, note
that 6ϕ(1b ) must be an inverse of ϕ(b), and inverses are unique. By the homomorphism property,
we get 6ϕ(ab ) = ϕ(a)ϕ(b)−1.

We can use this to give the following alternate, much more abstract, definition of localisation:

Definition 2.68. Let R be a commutative ring and let S ⊆ R be a multiplicative submonoid.
Then the localisation, written S−1R, is the unique ringR′ such that there exists a map ι : R → R′

with the following two properties:

(i) ι(S) ⊆ (R′)×, i.e. everything in S gets mapped to a unit in R′.

(ii) For all commutative rings A and maps ϕ : R → A with ϕ(S) ⊆ A×, there exists a unique
6ϕ : R′ → A such that ϕ = 6ϕ ◦ ι.

Exercise 2.69. Prove that this definition is well defined, i.e. that a ring R′ satisfying those
properties exists and is unique. Deduce that it is equivalent to the previous definition of
localisation.

Note that the existence of such a ring follows from the proposition above, i.e. take R′ :=
S−1R and ι : R → S−1R using the old definition. Uniqueness is more difficult.

In the case R is an integral domain so that R ⊆ S−1R, the proposition says that every
ϕ : R → A sending S to A× must extend to 6ϕ : S−1R → A.

Corollary 2.70. If R is an integral domain, F a field, and ϕ : R → F an injective ring
homomorphism, then ϕ must factor through the map from R to its field of fractions: ϕ = ι ◦ 6ϕ
for ι : R ↩→ Frac(R) the canonical map. Moreover, the resulting 6ϕ : Frac(R) → F is injective.
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Proof. Just apply the proposition with S = R\{0}: Since ϕ is injective, ϕ(S) ⊆ Frac(R)\{0} =
Frac(R)×, so the proposition applies. Then the map 6ϕ : Frac(R) → F is a homomorphism from
a field to a nonzero ring, hence injective (the kernel of 6ϕ cannot be Frac(R) since 1 ∕= 0 in F ,
hence it must be {0} as Frac(R) is a field).

Corollary 2.71. If F is a field of characteristic zero, it contains a subfield isomorphic to Q. If
F is a field of characteristic p, it contains a subfield isomorphic to Fp.

Proof. The characteristic of a field F is zero if and only if the unique ring homomorphism
Z → F is injective. But then it factors through Z ↩→ Q, i.e., Q ⊆ F .

If the characteristic of a field is p > 0, it contains Fp = Z/pZ (indeed, this holds for any
ring by definition of characteristic).

For this reason Fp and Q are called the prime fields.

Lemma 2.72. If F is a field and F is a subring of R, then R is a vector space over F .

Proof. Just observe that R is an abelian group equipped with the scalar multiplication by F
coming from the multiplication in R. Check the axioms!

Corollary 2.73. Every field is a vector space over Fp or Q (for the field having characteristic
p > 0 or 0 respectively).

There is a nice multiplicative submonoid associated to any integral domain R, namely R\{0}.
This leads to the field of fractions Frac(R). Are there other nice multiplicative submonoids which
can be defined for all integral domains, or even all commutative rings?

Example 2.74. Let R be a commutative ring. If I ⊆ R is a prime ideal, then S = R \ I is also
a multiplicative submonoid. Then the localisation S−1R is also denoted RI .

Observe that, for an integral domain R, {0} is a prime ideal and the field of fractions Frac(R)
is just the localisation R{0}. Then it is a field, but in general RI is not a field:

Example 2.75. If R = Z and I = (p), then Z(p) is the subring of Q of fractions whose
denominator is not a multiple of p, i.e. {a

b : p ∤ b} ⊆ Q.

Example 2.76. Let R be an integral domain. Then, as before, (X) ⊆ R[X] is a prime ideal.
R[X](X) = the collection of fractions whose denominator has nonzero constant term.

It is worth emphasising that Z(p) is not the same as Z[1p ] = { a
pm : m ≥ 0} ⊆ Q. In Z(p) we

invert infinitely many primes (everything except p), whereas in Z[1p ] we invert a single prime

(only p). For p ∕= q primes, we have Z ≤ Z[1q ] ≤ Z(p) ≤ Q.

Proposition 2.77. Let R be a commutative ring and let I ⊆ R be a prime ideal. Then RI has
a unique maximal ideal given by Ī = {(r, s) : r ∈ I, s ∈ R \ I}.

Proof. First of all, if a /∈ Ī, then a = (r, s) for r ∕∈ I and so is invertible in RI . Hence the ideal
generated by a in RI is all of RI . Therefore Ī contains every proper (= not all of R) ideal of
RI . Thus it is maximal and the unique maximal ideal.

Definition 2.78. A local ring is a ring which has a unique maximal ideal.

Remark 2.79. If R is not an integral domain then {0} is not a prime ideal, so one cannot take
R{0} (i.e., R \ {0} is not multiplicative as in Remark 2.65). One can instead take a different
prime ideal (one could replace {0} by a minimal prime ideal). For example, in Z/6Z there are
two minimal prime ideals, 3Z/6Z and 2Z/6Z, and the corresponding localisations are Z/3Z and
Z/2Z, respectively (cf. Example 2.63).
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Let R be a commutative ring, I ⊆ R an ideal, and S ⊆ R a multiplicative submonoid. What
are the ideals in S−1R?

Definition 2.80. The set S−1I := { i
s | s ∈ S, i ∈ I} is an ideal in S−1R. The ideal S−1I is

called the image of I under the localisation.

Proposition 2.81. Every ideal I ⊆ S−1R is of the form S−1J for some ideal J ⊆ R.

Proof. For r ∈ R and s ∈ S, note that r
s ∈ I if and only if r

1 ∈ I (i.e. 1
s ∈ (S−1R)×). Let

J = {r ∈ R : r
1 ∈ I}. Then J ⊆ R is an ideal and S−1J = I as ideals inside R.

Remark 2.82. Note that S−1I is not the image of I under the map R → S−1R. Remember
that the image of an ideal in this sense is not an ideal in general. In this case it won’t be (unless
S ⊆ R×, i.e., R → S−1R is an isomorphism by an exercise on Problem Sheet 2).

Later, we will learn about modules over a ring R, or R-modules. An ideal in R is an example
of an R-module. We can localise ideals and similarly we can localise R-modules.
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3 Polynomial rings

3.1 Factorisation in polynomial rings and Gauss’ lemma

We say previously that, if R is an integral domain, then R[X] is an integral domain. Such poly-
nomial rings form an important class of integral domains which enjoy many special properties.
This section will be devoted to the study of these properties.

Recall that for F a field, we know F [X] is a Euclidean domain, hence a principal ideal
domain, hence a unique factorisation domain. Therefore we know

1. If I ⊆ F [X], then I = (f) for some f ∈ F [X] and I is maximal if and only if I is prime.

2. If f ∈ F [X], then f is irreducible if and only if f is prime.

In particular, the following four things are equivalent: f is irreducible, f is prime, F [X]/(f) is
a field and F [X]/(f) is an integral domain. The most interesting point to take away from all
this, and the one which we shall use the most, is that f irreducible implies that F [X]/(f) is a
field. We can use this to construct many interesting fields.

So we want to understand reducibility, i.e. we want to know whether we can factorize a
polynomial f . Firstly, we want to get rid of the trivial case where we just factor out a scalar,
e.g. 2X2 + 2 = 2(X2 + 1) ∈ Z[X].

Definition 3.1. Let R be a UFD and f = a0 + a1X + · · · + anX
n ∈ R[X]. The content c(f)

of f is
c(f) = gcd(a0, a1, · · · , an) ∈ R.

Again, since the gcd is only defined up to a unit, so is the content. We can equivalently
define c(f) as the ideal (gcd(a0, · · · , an)).

Definition 3.2. A polynomial is primitive if c(f) is a unit, i.e. the ai are coprime. In other
words, viewing c(f) as an ideal, we have c(f) = R[X].

We have the following basic properties.

Lemma 3.3. Let R be a UFD. If f ∈ R[X], then f = c(f) · f1 for some f1 ∈ R[X] primitive.

Proof. Let f = a0 + a1X + · · · + anX
n. Let d = c(f) = gcd(a0, · · · , an). By the defini-

tion of greatest common divisor we have that, for all i, ai = bid for some bi ∈ R such that
gcd(b0, · · · , bn) = 1. Then f = d · f1 for f1 = b0 + b1X + · · ·+ bnX

n with f1 primitive.

Lemma 3.4. Let R be a UFD. If f, g ∈ R[X] are primitive, then so is fg.

Proof. We let

f = a0 + a1X + · · ·+ anX
n,

g = b0 + b1X + · · ·+ bmXm,

where an, bm ∕= 0, and f, g are primitive. We want to show that the content of fg is a unit.
Now suppose fg is not primitive. Then c(fg) is not a unit. Since R is a UFD, we can find

an irreducible p which divides c(fg).
By assumption, c(f) and c(g) are units. So p ∤ c(f) and p ∤ c(g). So suppose p | a0, p | a1,

. . . , p | ak−1 but p ∤ ak. Note it is possible that k = 0. Similarly, suppose p | b0, p | b1, · · · , p |
bℓ−1, p ∤ bℓ.
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We look at the coefficient of Xk+ℓ in fg. It is given by

!

i+j=k+ℓ

aibj = ak+ℓb0 + · · ·+ ak+1bℓ−1 + akbℓ + ak−1bℓ+1 + · · ·+ a0bℓ+k.

By assumption, this is divisible by p. So

p |
!

i+j=k+ℓ

aibj .

However, the terms ak+ℓb0 + · · · + ak+1bℓ−1, is divisible by p, as p | bj for j < ℓ. Similarly,
ak−1bℓ+1+ · · ·+a0bℓ+k is divisible by p. So we must have p | akbℓ. As p is irreducible, and hence
prime, we must have p | ak or p | bℓ. This is a contradiction. So c(fg) must be a unit.

Corollary 3.5. Let R be a UFD. Then for f, g ∈ R[X], we have that c(fg) is an associate of
c(f)c(g).

Again, we cannot say they are equal, since content is only well-defined up to a unit.

Proof. We can write f = c(f)f1 and g = c(g)g1, with f1 and g1 primitive. Then

fg = c(f)c(g)f1g1.

Since f1g1 is primitive, so c(f)c(g) is a gcd of the coefficients of fg, and so is c(fg), by definition.
So they are associates.

We now want to prove the following important lemma:

Lemma 3.6 (Gauss’ lemma). Let R be a UFD, and f ∈ R[X] be a primitive polynomial. Then
f is irreducible in R[X] if and only if f is irreducible F [X], where F = Frac(R) is the field of
fractions of R.

One direction is straightforward: if f is reducible in R[X], then clearly f is reducible in
F [X]. To see this, let f = gh be a product in R[X] with g, h not units. As f is primitive, so
are g and h. So both have degree > 0. So g, h are not units in F [X]. So f is reducible in F [X].

The converse is more difficult: if f is irreducible in R[X], why must it be irreducible in F [X]?
This is useful since characterising irreducibles in F [X] is a priori harder than characterising
irreducibles in R[X]. We can see this through the following example.

Example 3.7. Consider X3 +X + 1 ∈ Z[X]. This has content 1 so is primitive.
Suppose f is reducible in Q[X]. Then by Gauss’ lemma, this is reducible in Z[X]. So we

can write
X3 +X + 1 = gh,

for some polynomials g, h ∈ Z[X], with g, h not units. But if g and h are not units, then they
cannot be constant, since the coefficients of X3 +X + 1 are all 1 or 0. So they have degree at
least 1. Since the degrees add up to 3, we wlog suppose g has degree 1 and h has degree 2. So
let

g = b0 + b1X, h = c0 + c1X + c2X
2.

Multiplying out and equating coefficients, we get

b0c0 = 1

c2b1 = 1
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Since we are working over Z, b0 and b1 must be ±1. This implies that g is either 1 + X, 1 −
X,−1 +X or −1−X, and hence has ±1 as a root. But this is a contradiction, since ±1 is not
a root of X3 +X + 1. Hence f is irreducible in Q[X]. In particular, f has no root in Q.

From this, we can see the utility of using Gauss’ lemma: if we worked in Q instead, we could
have gotten to the step b0c0 = 1, and then we can do nothing, since there are many solutions
for b0 and c0.

Proof of Gauss’ lemma. We will show that a primitive f ∈ R[X] is reducible in R[X] if and
only if f is reducible in F [X].

One direction is straightforward. Let f = gh be a product in R[X] with g, h not units. As
f is primitive, so are g and h. So both have degree > 0. So g, h are not units in F [X]. So f is
reducible in F [X].

We will now prove the converse. Let f = gh in F [X], with g, h not units. So g and h have
degree > 0, since F is a field. So we can clear denominators by finding a, b ∈ R \ {0} such that
(ag), (bh) ∈ R[X] (e.g. let a be the product of denominators of coefficients of g). Then we get

abf = g′h′,

where g′ = ag, h′ = bh and this is a factorisation in R[X]. Note that g′ = ag is not a factorisation
in R[X] since we only know g ∈ F [X]. Now write

g′ = c(g′)g1,

h′ = c(h′)h1,

where g1, h1 are primitive. Since f is primitive, we have

ab = c(abf) = c(g′h′) = u · c(g′)c(h′),

where u ∈ R is a unit, by the previous corollary. But also we have

abf = g′h′ = c(g′)c(h′)g1h1 = u−1abg1h1.

Since R is an integral domain ab ∕= 0 and, since R[X] is an integral domain, we can therefore
cancel ab to get:

f = u−1g1h1 ∈ R[X].

Hence f is reducible in R[X].

This might seem like a difficult proof. A useful exercise is to trace through the argument
explicitly in the case where R = Z and F = Q.

From this we can get ourselves a large class of UFDs.

Theorem 3.8 (Polynomial rings over UFDs). If R is a UFD, then R[X] is a UFD.

In particular, if R is a UFD, then R[X1, · · · , Xn] is also a UFD.

Proof. We know R[X] has a notion of degree. So we will combine this with the fact that R is
a UFD.

Existence: Let f ∈ R[X]. We can write f = c(f)f1, with f1 primitive. Firstly, as R is a
UFD, we may factor

c(f) = p1p2 · · · pn,

for pi ∈ R irreducible (and also irreducible in R[X]). Now we want to deal with f1.
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Assume for contradiction that f1 is not the product of irreducibles. Then f1 is not irre-
ducible, so we can write

f1 = f2g2,

with f2, g2 both not units. Since f1 is primitive, f2, g2 also cannot be constants. So we must have
deg f2, deg g2 > 0. Also, since deg f2 + deg g2 = deg f1, we must have deg f2, deg g2 < deg f1. If
f2, f3 are both products of irreducibles, we have a contradiction since then f1 would be. Wlog
we may assume that f1 is not the product of irreducibles. Continuing like this gives a sequence
f1, f2, · · · where deg(f1) > deg(f2) > · · · . This is a contradiction since the fi are non-constant
and so deg(fi) > 0 (but, for example, monotonic bounded sequences converge). Hence

f1 = q1 · · · qm,

with qi irreducible. So we can write

f = p1p2 · · · pnq1q2 · · · qm,

a product of irreducibles where pi ∈ R ⊆ R[X] are constant polynomials and the qi are non-
constant, i.e. deg(qi) > 0.

Uniqueness: We will first deal with the pis. Note that

c(f) = p1p2 · · · pn

is a unique factorisation of the content, up to reordering and associates, as R is a UFD. So
cancelling the content, we only have to show that primitives can be factored uniquely.

Suppose we have two factorisations

f1 = q1q2 · · · qm = r1r2 · · · rℓ.

Note that each qi and each ri is a factor of the primitive polynomial f1, so are also primitive.
This follows from that fact that c(q1 · · · qm) is an associate of c(q1) · · · c(qm) by one of the
Corollary’s above, and similarly for the ri.

Now let F be the field of fractions of R, and consider qi, ri ∈ F [X]. Since F is a field, F [X]
is a Euclidean domain, hence principal ideal domain, hence unique factorisation domain.

By Gauss’ lemma, since the qi and ri are irreducible in R[X], they are also irreducible in
F [X]. As F [X] is a UFD, we find that ℓ = m, and after reordering, ri and qi are associates, say

ri = uiqi,

with ui ∈ F [X] a unit. What we want to say is that ri is a unit times qi in R[X]. Firstly, note
that ui ∈ F as it is a unit. Clearing denominators, we can write

airi = biqi ∈ R[X].

Taking contents, since ri, qi are primitives, we know ai and bi are associates, say

bi = viai,

with vi ∈ R a unit. Cancelling ai on both sides, we know ri = viqi as required.

The key idea is to use Gauss’ lemma to say the reducibility in R[X] is the same as reducibility
in F [X], as long as we are primitive. The first part about contents is just to turn everything
into primitives.
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Example 3.9. We know Z[X] is a UFD, and if R is a UFD, then R[X1, · · · , Xn] is also a UFD.
This gives us examples of UFDs that are not PIDs, thus completing our classification of

properties laid out in the previous section.

In such rings, we would also like to have an easy to determine whether something is reducible.
Fortunately, we have the following criterion:

Proposition 3.10 (Eisenstein’s criterion). Let R be a UFD, and let

f = a0 + a1X + · · ·+ anX
n ∈ R[X]

be primitive with an ∕= 0. Let p ∈ R be irreducible (hence prime) be such that

1. p ∤ an;

2. p | ai for all 0 ≤ i < n;

3. p2 ∤ a0.

Then f is irreducible in R[X], and hence in F [X] where F = Frac(R).

Proof. See Problem Sheet 2.

Example 3.11. Consider the polynomial Xn − p ∈ Z[X] for p a prime. Apply Eisenstein’s
criterion with p, and observe all the conditions hold. This is certainly primitive, since this is
monic. So Xn − p is irreducible in Z[X], hence in Q[X]. In particular, Xn − p has no rational
roots, i.e. n

√
p is irrational (for n > 1).

Example 3.12. Consider a polynomial

f = Xp−1 +Xp−2 + · · ·+X2 +X + 1 ∈ Z[X],

where p is a prime number. If we look at this, we notice Eisenstein’s criteria does not apply.
What should we do? We observe that

f =
Xp − 1

X − 1
.

So it might be a good idea to let Y = X − 1. Then we get a new polynomial

f̂ = f̂(Y ) =
(Y + 1)p − 1

Y
= Y p−1 +

/
p

1

0
Y p−2 +

/
p

2

0
Y p−3 + · · ·+

/
p

p− 1

0
.

When we look at it hard enough, we notice Eisenstein’s criteria can be applied — we know
p |

7
p
i

8
for 1 ≤ i ≤ p− 1, but p2 ∤

7
p

p−1

8
= p. So f̂ is irreducible in Z[Y ].

Now if we had a factorisation

f(X) = g(X)h(X) ∈ Z[X],

then we get
f̂(Y ) = g(Y + 1)h(Y + 1)

in Z[Y ]. So f is irreducible.
Note that this implies that none of the roots of f are rational (but we knew that already as

the roots ζip are not even real).
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3.2 Algebraic integers

Previously we defined rings like Z[i] and Z[
√
−5] as the explicit subrings {a + bi : a ∈ Z} and

{a + b
√
−5 : a, b ∈ Z} of C. How should we define Z[ζn] for ζn = e2πi/n ∈ C a root of unity?

How should we define Z[2i]? The aim of this section will be to systematise this notion through
the concept of algebraic integers.

Definition 3.13. An α ∈ C is called an algebraic integer if it is a root of a monic polynomial
in Z[X], i.e. there is a monic f ∈ Z[X] such that f(α) = 0.

We can immediately check that this is a sensible definition: not all complex numbers are
algebraic integers, since there are only countably many polynomials with integer coefficients,
hence only countably many algebraic integers, but there are uncountably many complex num-
bers.

Definition 3.14. For α an algebraic integer, we write Z[α] ≤ C for the smallest subring
containing α.

We can also construct Z[α] by taking it as the image of the map φ : Z[X] → C given by
g .→ g(α). In particular, φ induces an isomorphism

Z[X]/I ∼= Z[α], I = kerφ.

Note that I is non-empty since there exists a (monic) f ∈ I since α is an algebraic integer.

Proposition 3.15. Let α ∈ C be an algebraic integer and let φ : Z[X] → C be the ring
homomorphism given by f .→ f(α). Then the ideal

I = ker(φ)

is principal, and equal to (fα) for some irreducible monic fα.

Definition 3.16. Let α ∈ C be an algebraic integer. Then the minimal polynomial is a
polynomial fα is the irreducible monic such that I = ker(φ) = (fα).

Note that defining the minimal polynomial over Q[X] is straightforward since Q[X] is a
principal ideal domain. Since Z[X] is not a principal ideal domain, there is no immediate
guarantee that I is generated by one polynomial. What we are proving here is therefore much
more powerful than the merely the existence of a minimal polynomial over Q[X].

Proof of Proposition 3.15. By definition, there is a monic f ∈ Z[X] such that f(a) = 0. So
f ∈ I. So I ∕= 0. Now let fα ∈ I be such a polynomial of minimal degree. We may suppose
that fα is primitive. We want to show that I = (fα), and that fα is irreducible.

Let h ∈ I. We pretend we are living in Q[X]. Then we have the Euclidean algorithm. So
we can write

h = fαq + r,

with r = 0 or deg r < deg fα. This was done over Q[X], not Z[X]. We now clear denominators.
We multiply by some a ∈ Z to get

ah = fα(aq) + (ar),

where now (aq), (ar) ∈ Z[X]. We now evaluate these polynomials at α. Then we have

ah(α) = fα(α)aq(α) + ar(α).
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We know fα(α) = h(α) = 0, since fα and h are both in I. So ar(α) = 0. So (ar) ∈ I. As fα ∈ I
has minimal degree, we cannot have deg(r) = deg(ar) < deg(fa). So we must have r = 0.

Hence we know
ah = fα · (aq)

is a factorization in Z[X]. This is almost right, but we want to factor h, not ah. Again, taking
contents of everything, we get

ac(h) = c(ah) = c(fα(aq)) = c(aq),

as fα is primitive. In particular, a | c(aq). This, by definition of content, means (aq) can be
written as aq̄, where q̄ ∈ Z[X]. Cancelling, we get q = q̄ ∈ Z[X]. So we know

h = fαq ∈ (fα).

So we know I = (fα).
To show fα is irreducible, note that

Z[X]

(fα)
∼=

Z[X]

kerφ
∼= im(φ) = Z[α] ≤ C.

Since C is an integral domain, so is im(φ). So we know Z[X]/(fα) is an integral domain. So
(fα) is prime. So fα is prime, hence irreducible.

If this final line looks magical, we can unravel this proof as follows: suppose fα = pq for
some non-units pq. Then since fα(α) = 0, we know p(α)q(α) = 0. Since p(α), q(α) ∈ C, which
is an integral domain, we must have, say, p(α) = 0. But then deg p < deg fα, so p ∕∈ I = (fα).
Contradiction.

Example 3.17.

1. We know α = i is an algebraic integer with fα = X2 + 1.

2. Also, α =
√
2 is an algebraic integer with fα = X2 − 2.

3. More interestingly, α = 1
2(1 +

√
−3) is an algebraic integer with fα = X2 −X − 1.

4. The polynomial X5−X+d ∈ Z[X] with d ∈ Z≥0 has precisely one real root α, which is an
algebraic integer. It is a theorem from Galois Theory that this α cannot be constructed
from integers via +,−,×,÷, n

√
·. It is also a theorem that degree 5 polynomials are the

smallest degree for which this can happen (the prove involves writing down formulas
analogous to the quadratic formula for degree 3 and 4 polynomials).

Lemma 3.18. Let α ∈ Q be an algebraic integer. Then α ∈ Z.

Proof. Let fα ∈ Z[X] be the minimal polynomial, which is irreducible. In Q[X], the polynomial
X − α must divide fα. However, by Gauss’ lemma, we know f ∈ Q[X] is irreducible. So we
must have fα = X − α ∈ Z[X]. So α is an integer.

Remark 3.19. It turns out the collection of all algebraic integers form a subring of C. This is
not at all obvious: given f, g ∈ Z[X] monic such that f(α) = g(α) = 0, there is no easy way to
find a new monic h such that h(α+ β) = 0.

35



3.3 Noetherian rings and Hilbert’s basis theorem

We now revisit the idea of Noetherian rings, something we have briefly mentioned when proving
that PIDs are UFDs.

Definition 3.20. A commutative ring is Noetherian if for any chain of ideals

I1 ⊆ I2 ⊆ I3 ⊆ · · · ,

there is some N such that IN = IN+1 = IN+2 = · · · .
This condition is known as the ascending chain condition.

Example 3.21. Every finite ring is Noetherian. This is since there are only finitely many
possible ideals.

Example 3.22. Every field is Noetherian. This is since there are only two possible ideals.

Example 3.23. The ring Z[X1, X2, X3, · · · ] is not Noetherian. This has the chain of strictly
increasing ideals

(X1) ⊆ (X1, X2) ⊆ (X1, X2, X3) ⊆ · · · .

We previously showed that principal ideal domains are Noetherian. This can be generalised
as follows.

Definition 3.24. An ideal I is finitely generated if it can be written as I = (r1, · · · , rn) for
some r1, · · · , rn ∈ R.

Proposition 3.25. A commutative ring is Noetherian if and only if every ideal is finitely
generated.

Every PID trivially satisfies this condition. So we know every PID is Noetherian.

Proof. See Problem Sheet 3.

When we have developed some properties or notions, a natural thing to ask is whether it
passes on to subrings and quotients.

If R is Noetherian, does every subring of R have to be Noetherian? The answer is no. For
example, since Z[X1, X2, · · · ] is an integral domain, we can take its field of fractions, which is
a field, hence Noetherian, but Z[X1, X2, · · · ] is a subring of its field of fractions. However, the
property of being Noetherian is closed under quotients.

Proposition 3.26. Let R be a Noetherian ring and I ⊆ R an ideal. Then R/I is Noetherian.

Proof. Consider the quotient map

π : R → R/I

x .→ x+ I.

We can prove this result by finitely generated or ascending chain condition. We go for the former.
Let J ⊆ R/I be an ideal. We want to show that J is finitely generated. Consider the inverse
image π−1(J). This is an ideal of R, and is hence finitely generated, since R is Noetherian. So
π−1(J) = (r1, · · · , rn) for some r1, · · · , rn ∈ R. Then J is generated by π(r1), · · · ,π(rn).

This gives us many examples of Noetherian rings. But there is one important case we have
not tackled yet: polynomial rings. We know Z[X] is not a PID, since (2, X) is not principal.
However, (2, X) is at least finitely generated. We might try to construct some non-finitely
generated ideal, but we are bound to fail since Z[X] is Noetherian by the following theorem.
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Theorem 3.27 (Hilbert basis theorem). Let R be a Noetherian ring. Then so is R[X].

Proof. In the proof, we will use both the ascending chain condition and the fact that all ideals
are finitely generated.

Let I ⊆ R[X] be an ideal. We want to show it is finitely generated. Since we know R is
Noetherian, we want to generate some ideals of R from I. How can we do this? One idea is to
take all constants of I, i.e. I ∩R. But we can do better. We can consider all linear polynomials,
and take their leading coefficients. Thinking for a while, this is indeed an ideal.

In general, for n = 0, 1, 2, · · · , we let

In = {r ∈ R : there is some f ∈ I such that f = rXn + · · · } ∪ {0}.

Then it is easy to see, using the strong closure property, that each ideal In is an ideal of R.
Moreover, they form a chain, since if f ∈ I, then Xf ∈ I, by strong closure. So In ⊆ In+1 for
all n.

By the ascending chain condition of R, we know there is some N such that IN = IN+1 = · · · .
Now for each 0 ≤ n ≤ N , since R is Noetherian, we can write

In = (r
(n)
1 , r

(n)
2 , · · · , r(n)k(n)).

Now for each r
(n)
i , we choose some f

(n)
i ∈ I with f

(n)
i = r

(n)
i Xn + · · · .

We now claim the polynomials f
(n)
i for 0 ≤ n ≤ N and 1 ≤ i ≤ k(n) generate I.

Suppose not. We pick g ∈ I of minimal degree not generated by the f
(n)
i .

There are two possible cases. If deg g = n ≤ N , suppose

g = rXn + · · · .

We know r ∈ In. So we can write
r =

!

i

λir
(n)
i

for some λi ∈ R, since that’s what generating an ideal means. Then we know

!

i

λif
(n)
i = rXn + · · · ∈ I.

But if g is not in the span of the f
(j)
i , then g −

&
i λif

(n)
i isn’t either. But this has a lower

degree than g. This is a contradiction.
Now suppose deg g = n > N . Since In = IN , the same proof works. We write

g = rXn + · · · .

But we know r ∈ In = IN . So we know

r =
!

I

λir
(N)
i .

Then we know
Xn−N

!

i

λif
(n)
i = rXN + · · · ∈ I.

Hence g −Xn−N
&

λif
(N)
i has smaller degree than g, but is not in the span of f

(j)
i .
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As an aside, let F be a field and let E ⊆ F [X1, · · · , Xn] be any set of polynomials. We view
this as a set of equations f = 0 for each f ∈ E . The claim is that to solve the potentially infinite
set of equations E , we actually only have to solve finitely many equations.

Consider the ideal (E) ⊆ F [X1, · · · , Xn]. By the Hilbert basis theorem, there is a finite list
f1, · · · , fk such that

(f1, · · · , fk) = (E).

We want to show that we only have to solve fi(x) = 0 for these fi. Given (α1, · · · ,αn) ∈ Fn,
consider the homomorphism

φα : F [X1, · · · , Xn] → F

Xi .→ αi.

Then we know (α1, · · · ,αn) ∈ Fn is a solution to the equations E if and only if (E) ⊆ ker(ϕα).
By our choice of fi, this is true if and only if (f1, · · · , fk) ⊆ ker(ϕα). By inspection, this is true
if and only if (α1, · · · ,αn) is a solution to all of f1, · · · , fk. So solving E is the same as solving
f1, · · · , fk. This is useful in, say, algebraic geometry.
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4 Modules

Finally, we are going to look at modules. Recall that to define a vector space, we first pick some
base field F . We then defined a vector space to be an abelian group V with an action of F on
V (i.e. scalar multiplication) that is compatible with the multiplicative and additive structure
of F .

In the definition, we did not at all mention division in F . So in fact we can make the same
definition, but allow F to be a ring instead of a field. We call these modules. Unfortunately,
most results we prove about vector spaces do use the fact that F is a field. So many linear
algebra results do not apply to modules, and modules have much richer structures.

4.1 Basic definitions and examples

For the purposes of this section, R will be an arbitrary (possibly non-commutative) ring.

Definition 4.1. Let R be a ring. An R-module is a set M together with function + : M×M →
M and · : R×M → M , and a given element 0M ∈ M , such that the following holds:

• (M,+) is an abelian group with identity 0M

• The operation · : R×M → M satisfies:

1. (r1 + r2) ·m = (r1 ·m) + (r2 ·m)

2. r · (m1 +m2) = (r ·m1) + (r ·m2)

3. r1 · (r2 ·m) = (r1 · r2) ·m, and

4. 1R ·m = m.

Remark 4.2. Strictly, this is the definition of a left R-module but we will call them R-modules
in this course. This is similar to how we took ideal to mean left ideals. We can define a right
R-module to be an abelian group M with an operation · : M × R → R satisfying analogous
conditions.

Remark 4.3. There are two different additions going on: addition in the ring and addition in
the module, and similarly two notions of multiplication. However, it is easy to distinguish them
since they operate on different things. If needed, we can make them explicit by writing, say,
+R and +M .

This is slightly cumbersome and so we will restate it in slightly more compact notation. For
an abelian group A, recall that End(A) = {f : A → A | f is a group homomorphism} is the
endomorphism ring of A with operations (f + g)(x) = f(x) + g(x) and (f · g)(x) = f(g(x)).

Definition 4.4. Let R be a ring. An R-module is an abelian group M equipped with a ring
homomorphism ϕ : R → End(M). Given r ∈ R and m ∈ M , we write r ·m to denote ϕ(r)(m).

Proposition 4.5. Show that these two definitions are equivalent.

Proof. See Problem Sheet 3.

The idea is that, if ϕ : R → End(M) is a ring homomorphism, then this corresponds to an
R-action via: r ·m := ϕ(r)(m) for r ∈ R and m ∈ M .

We can imagine modules as rings acting on abelian groups, just as groups can act on sets.
Hence we might say “R acts on M” to mean M is an R-module.
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Example 4.6. Let F be a field. An F -module is precisely the same as a vector space over F
(the axioms are the same). In particular, Fn is an F -module for any n ≥ 1. Here Fn denotes the
abelian group (F,+)× · · ·×(F,+) with the F -action defined by r ·(r1, · · · , rn) := (rr1, · · · , rrn).

An example which better demonstrates what modules actually are, and which you should
bear in mind when thinking of modules, is an ideal.

Example 4.7. Let I ⊆ R be an ideal. Then I is an R-module (i.e. the underlying abelian
group (I,+) is an R-module) via

r · a := r ·R a.

Example 4.8. Let R be a ring. Then R is an R-module (i.e. the underlying abelian group
(R,+) is an R-module) with R-action given by multiplication in R. Explicitly, we mean the
R-module (M,ψ) where M := (R,+) denotes the abelian group underlying the ring R and
ψ : R → End(M), r .→ (m .→ r ·R m) for all r ∈ R and m ∈ M = R.

More generally, Rn is an R-module via

r · (r1, · · · , rn) = (rr1, · · · , rrn).

This works in the same way as the example Fn given above.

Example 4.9. If I ⊆ R is a two-sided ideal, then R/I is an R-module via

r · (a+ I) := (r ·R a) + I.

In the above examples, we had different objects each with their own algebraic structures:
rings and ideals. When we take some like a ring or an ideal and say that “it” is an R-module
then we are really referring to its underlying abelian group.

Example 4.10. A Z-module is precisely the same as an abelian group. For A an abelian group,
we have

Z×A → A

(n, a) .→ a+ · · ·+ a+ ,- .
n times

,

where we adopt the notation

a+ · · ·+ a+ ,- .
−n times

= (−a) + · · ·+ (−a)+ ,- .
n times

,

and adding something to itself 0 times is just 0. This definition is essentially forced upon
us since, by the axioms of a module, we must have (1, a) .→ a. Then we must send, say,
(2, a) = (1 + 1, a) .→ a+ a.

An alternate perspective, using the second definition, is to note that there is only one choice
the action Z → End(M). This is because, as we saw earlier in the course, there is a unique ring
homomorphism to any ring from Z (which determines the characteristic of the ring).

4.2 Constructions of modules

Definition 4.11. Let M1,M2, · · · ,Mk be R-modules. The direct sum is the R-module

M1 ⊕M2 ⊕ · · ·⊕Mk,
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which is the set M1 ×M2 × · · ·×Mk, with addition given by

(m1, · · · ,mk) + (m′
1, · · · ,m′

k) = (m1 +m′
1, · · · ,mk +m′

k),

and the R-action given by

r · (m1, · · · ,mk) = (rm1, · · · , rmk).

We’ve been using one example of the direct sum already, namely

Rn = R⊕R⊕ · · ·⊕R+ ,- .
n times

.

Definition 4.12. Let M be an R-module. A subset N ⊆ M is an R-submodule if it is a
subgroup of (M,+, 0M ), and if n ∈ N and r ∈ R, then rn ∈ N . We write N ≤ M .

Example 4.13. We know R itself is an R-module. Then a subset of R is a submodule if and
only if it is an ideal.

Example 4.14. A subset of an F -module V , where F is a field, is an F -submodule if and only
if it is a vector subspace of V .

Definition 4.15. Let N ≤ M be an R-submodule. The quotient module M/N is the set of
N -cosets in (M,+, 0M ), with the R-action given by

r · (m+N) = (r ·m) +N.

It is easy to check this is well-defined and is indeed a module.

Remark 4.16. Note that modules are different from rings and groups. In groups, we had
subgroups, and we have some really nice ones called normal subgroups. We are only allowed
to quotient by normal subgroups. In rings, we have subrings and ideals, which are unrelated
objects, and we only quotient by ideals. In modules, we only have submodules, and we can
quotient by arbitrary submodules.

Definition 4.17. A function f : M → N between R-modules is an R-module homomorphism
if it is a homomorphism of abelian groups, and satisfies

f(r ·m) = r · f(m)

for all r ∈ R and m ∈ M .
An isomorphism is a bijective homomorphism, and two R-modules are isomorphic if there

is an isomorphism between them.

Note that this gives a meaningful equivalence relation on the class of ideals beyond just two
ideals being equal as subsets of the ring.

Example 4.18. If F is a field and V,W are F -modules (i.e. vector spaces over F ), then an
F -module homomorphism is precisely an F -linear map.

These operations all take R-modules to R-modules. However, various constructions of new
rings from old also yield corresponding constructions on the modules over those rings.

Definition 4.19. If R1 and R2 are rings, M1 is an R1-module and M2 is an R2-module, then
M1 ×M2 is an (R1 × R2)-module with action (r1, r2) · (m1,m2) := (r1m1, r2ms). This will be
verified on Problem Sheet 3.
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Definition 4.20. Let R be a commutative ring, let S ⊆ R be a multiplicative submonoid and
let M be an R-module. The localisation of M by S, denoted S−1M , is the set of equivalence
classes of pairs (m, s) for m ∈ M and s ∈ S where (m, s) ∼ (m′, s′) if there exists t ∈ S such
that r(ms′ −m′s) = 0. This is an S−1R-module with the natural structure of an abelian group
and with S−1R-action given by (r, t) · (m, s) := (rm, ts) for (r, t) ∈ S−1R and (m, s) ∈ S−1M .
As usual, we often write m

s to denote (m, s).
It is straightforward to see that, given an ideal I ⊆ R, the localisation S−1I ⊆ S−1R as an

ideal is isomorphism as an S−1R-module to the localisation of I as a module.

4.3 Basic theory of modules

As for groups and rings, we also have three isomorphism theorems. The proofs are similar to
the cases of groups and rings and so will be omitted for brevity.

Theorem 4.21 (First isomorphism theorem). Let f : M → N be an R-module homomorphism.
Then

ker(f) = {m ∈ M : f(m) = 0} ≤ M

is an R-submodule of M . Similarly,

im(f) = {f(m) : m ∈ M} ≤ N

is an R-submodule of N . Then
M

ker(f)
∼= im(f).

Note that, unlike the situation for rings, the fact that im f ≤ N is a submodule means that
one further module N/ im f arises for an R-module homomorphism f : M → N . This leads to
a new concept (which also exists for abelian groups):

Definition 4.22. Let f : M → N be an R-module homomorphism. The cokernel of f , is

coker(f) = N/ im(f).

Theorem 4.23 (Second isomorphism theorem). Let A,B ≤ M . Then

A+B = {m ∈ M : m = a+ b for some a ∈ A, b ∈ B} ≤ M,

and
A ∩B ≤ M.

We then have
A+B

A
∼=

B

A ∩B
.

Remark 4.24. More generally, for submodules A1, · · · , An,

A1 + · · ·+An = {a1 + · · ·+ an : ai ∈ Ai} ≤ M

is an R-submodule.

Theorem 4.25 (Third isomorphism theorem). Let N ≤ L ≤ M . Then L/N ≤ M/N and

M

L
∼=

/
M

N

01/ L

N

0
.
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Finally, we have a correspondence

{submodules of M/N} ←→ {submodules of M which contain N}

The proofs of each isomorphism theorem is similar to the case of rings. They will be omitted
for brevity but are a useful exercise. It is also worth thinking about what these mean in the
cases where R is a field, and modules are vector spaces.

We will now define what it means for an R-module to be finitely generated.

Definition 4.26. Let M be an R-module, and m ∈ M . The submodule generated by m is

Rm = {r ·m ∈ M : r ∈ R}.

In order to understand this, consider the R-module homomorphism

ϕ : R → M

r .→ rm.

This is clearly a homomorphism. Then we have

im(ϕ) = Rm,

ker(ϕ) = {r ∈ R : r ·m = 0}.

We now have a new concept that was not present in rings and groups.

Definition 4.27. Let M be an R-module, and m ∈ M . The annihilator of m is

Ann(m) = {r ∈ R : r ·m = 0}.

This is a two-sided ideal since Ann(m) = ker(ϕ). Moreover, we have that:

Rm ∼= R/Ann(m).

As we mentioned, rings acting on modules is like groups acting on sets. We can think of this as
the analogue of the orbit-stabilizer theorem.

Example 4.28. Suppose R is an integral domain and I = (m) ⊆ R is a principal ideal with
m ∕= 0. Then I is an R-module and we have Ann(m) = {0}. To see this, note that the R-action
in I is just multiplication in R. So r ∈ Ann(m) if and only if r ·m = 0 ∈ R if and only if r = 0,
since m ∕= 0 and R is an integral domain.

Hence, as an R-module, we have I = Rm ∼= R/Ann(m) = R/{0} ∼= R. So all principal
ideals in R are isomorphic as R-modules. This demonstrates that, for ideals in R, we have two
very different notions of equivalence: being the same ideal, and being isomorphic as R-modules.

In general, we can generate a submodule with many elements.

Definition 4.29. An R-module M is finitely generated if there is a finite list of elements
m1, · · · ,mn such that

M = Rm1 +Rm2 + · · ·+Rmn = {r1m1 + r2m2 + · · ·+ rnmn : ri ∈ R}.

This is in some sense analogous to the idea of a vector space being finite-dimensional.
However, it behaves much more differently.

43



While this definition is rather concrete, it is often not the most helpful characterisation of
finitely generated modules. Instead, we use the following lemma:

Lemma 4.30. An R-module M is finitely generated if and only if there is a surjective R-module
homomorphism f : Rn ↠ M for some finite n.

Proof. If
M = Rm1 +Rm2 + · · ·+Rmn,

we define f : Rn → M by
(r1, · · · , rk) .→ r1m1 + · · ·+ rnmn.

It is clear that this is an R-module homomorphism. This is by definition surjective. So done.
Conversely, given a surjection f : Rn ↠ M , we let

mi = f(0, 0, · · · , 0, 1, 0, · · · , 0),

where the 1 appears in the ith position. We now claim that

M = Rm1 +Rm2 + · · ·+Rmn.

So let m ∈ M . As f is surjective, we know

m = f(r1, r2, · · · , rn)

for some ri. We then have

f(r1, r2, · · · , rn)
= f((r1, 0, · · · , 0) + (0, r2, 0, · · · , 0) + · · ·+ (0, 0, · · · , 0, rn))
= f(r1, 0, · · · , 0) + f(0, r2, 0, · · · , 0) + · · ·+ f(0, 0, · · · , 0, rn)
= r1f(1, 0, · · · , 0) + r2f(0, 1, 0, · · · , 0) + · · ·+ rnf(0, 0, · · · , 0, 1)
= r1m1 + r2m2 + · · ·+ rnmn.

So the mi generate M .

This view is a convenient way of thinking about finitely generated modules. For example,
we can immediately prove the following corollary:

Corollary 4.31. Let N ≤ M be R-modules. If M is finitely generated, then M/N is finitely
generated.

Proof. Since m is finitely generated, we have some surjection f : Rn ↠ M . Moreover, we have
the surjective quotient map q : M ↠ M/N . Then we get the following composition

Rn M M/N,
f q

which is a surjection, since it is a composition of surjections. So M/N is finitely generated.

It is very tempting to believe that if a module is finitely generated, then its submodules are
also finitely generated. However, we have:

Example 4.32. A submodule of a finitely generated module need not be finitely generated.
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We let R = C[X1, X2, · · · ]. We consider the R-module M = R, which is finitely generated
(by 1). A submodule of the ring is the same as an ideal. Moreover, an ideal is finitely generated
as an ideal if and only if it is finitely generated as a module. We pick the submodule

I = (X1, X2, · · · ),

which we have already shown to be not finitely generated.

Example 4.33. For a complex number α, the ring Z[α] (i.e. the smallest subring of C containing
α) is a finitely generated as a Z-module if and only if α is an algebraic integer.

The proof will not be given here. This gives an easier way to prove that algebraic integers
are closed under addition and multiplication, since it is easier to argue about whether Z[α] is
finitely generated.

4.4 Free and projective modules

We will now consider the simplest classes of modules: free modules, stably free modules and
projective modules.

Definition 4.34. Given a set S, define the free module over S to be the R-module

R(S) =
9

i∈S
R = {(xi)i∈S ∈

5

s∈S
R : xi = 0 for all but finitely many i}

with coordinate wise addition and R-action. An R-module M is free if M ∼= R(S) for some S.

Proposition 4.35. Let R be a non-trivial ring. Then the free module R(S) is finitely generated
if and only if S is finite.

Proof. (⇐): If |S| = n, then R(S) ∼= Rn = R ⊕ · · ·⊕ R. In particular, there is an isomorphism
f : Rn → R(S) (which is, in particular, surjective).

(⇒): Suppose S is infinite and R(S) = Rm1 + · · · + Rmn. For each 1 ≤ r ≤ n, write

mr = (x
(r)
i )i∈S ∈ R(S) ⊆

:
s∈S R and define Sr = {i ∈ S : x

(r)
i ∕= 0} ⊆ S. By assumption, Sr

is finite and so S1 ∪ · · · ∪ Sn ⊆ S is finite. This implies that S \ (S1 ∪ · · · ∪ Sn) is non-empty

since S is infinite. Let s ∈ S \ (S1 ∪ · · ·∪Sn). Then x
(r)
s = 0 for all r and so the sth component

of r1m1 + · · · + rnmn is r10 + · · · + rn0 = 0. Since R is non-trivial, there exists a ∈ R \ {0}.
Let α = (xi) ∈ R(S) where xs = a and xi = 0 for i ≥ a. Then a ∕∈ Rm1 + · · · + Rmn and so
Rm1 + · · ·+Rmn ⊊ R(S).

Given this, a finitely generated R-module is free if and only if M ∼= Rn for some n. We refer
to Rn as the free module of rank n.

Proposition 4.36. Let F be a field. If M is an F -module, then M is a free F -module.

Proof. See Problem Sheet 4.

We can think of free modules as natural generalisations of vector spaces of fields. We will
now explore a more abstract definition of free modules using a universal property.

Definition 4.37. A subset S ⊆ M generates M freely if

(i) S generates M as an R-module, i.e. R · S = M

(ii) Any set function ψ : S → N to an R-module N extends to an R-module map θ : M → N .
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Note that if θ1, θ2 are two such extensions, we can consider θ1 − θ2 : M → N . Then θ1 − θ2
sends everything in S to 0. So S ⊆ ker(θ1 − θ2) ≤ M . So the submodule generated by S lies in
ker(θ1 − θ2) too. But this is by definition M . So M ≤ ker(θ1 − θ2) ≤ M , i.e. equality holds. So
θ1 − θ2 = 0. So θ1 = θ2. So any such extension is unique.

Thus, what this definition tells us is that giving a map from M to N is exactly the same
thing as giving a function from S to N .

Definition 4.38. An R-module M is free if it is freely generated by some subset S ⊆ M . A
set S with this property is called a basis for M .

Proposition 4.39. The two definitions of free module are equivalent.

We will first show the following.

Lemma 4.40. Suppose M and N be R-modules such that M is freely generated by S ⊆ M and
N is freely generated by T ⊆ N . If there exists a bijection S ∼= T , then M ∼= N as R-modules.

Proof. There are injective functions iM : S → M (by inclusion) and iN : S → N (composing
S ∼= T with inclusion). Since S generates M freely, iN extends to a map θN : M → N , i.e.
θN ◦ iM = iN . Similarly, iM extends to θM : N → M , i.e. θM ◦ iN = iM . In order to show these
are R-module isomorphisms, it suffices to prove that θM ◦ θN = idM and θN ◦ θM = idN .

Note that θM ◦ θN ◦ iM = iM and idM ◦iM = iM . Hence iM : S → M extends to both
θM ◦θN : M → M and idM : M → M . However, as shown above, this extension must be unique
and so θM ◦ θN = idM . Similarly θN ◦ θM = idN and so M ∼= N .

Remark 4.41. Given θM ◦ θN ◦ iM = iM , it does not follow immediately that θM ◦ θN = idM
since iM is not surjective. It only implies that they are equal when restricted to im(iM ).

Proof of Proposition 4.39. Let S be a set and consider the module R(S) =
;

i∈S R. We can view
S ⊆ M by identifying each s ∈ S with the element (xi)i∈S which has xs = 1 and xi = 0 for i ∕= s.
It follows immediately from the definition that S generates M as an R-module. Now suppose
ψ : S → N is a function. Then the map θ : R(S) → N sending (xi)i∈S .→

&
i∈S xi · ψ(s) is an

R-module homomorphism which extends ψ. Note that the sum is finite and hence well-defined.
Conversely, suppose M is an R-module and S ⊆ M generates M freely. Since R(S) has this

property, we have M ∼= R(S) by the lemma above.

We will now use this new definition to formulate free modules in a way more similar to what
we do in linear algebra.

Definition 4.42. Let m1, · · · ,mn ∈ M . Then {m1, · · · ,mn} is linearly independent if

n!

i=1

rimi = 0

implies r1 = r2 = · · · = rn = 0.

Proposition 4.43. For a subset S = {m1, · · · ,mn} ⊆ M , the following are equivalent:

(i) S generates M freely.

(ii) S generates M and the set S is linearly independent.
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(iii) Every element of M is uniquely expressible as

r1m1 + r2m2 + · · ·+ rnmn

for some ri ∈ R.

Proof. The fact that (ii) and (iii) are equivalent is something we would expect from what we
know from linear algebra, and in fact the proof is the same. So we only show that (i) and (ii)
are equivalent.

Let S generate M freely. If S is not independent, then we can write

r1m1 + · · ·+ rnmn = 0,

with ri ∈ R and, say, r1 non-zero. We define the set function ψ : S → R by sending m1 .→ 1R
and mi .→ 0 for all i ∕= 1. As S generates M freely, this extends to an R-module homomorphism
θ : M → R.

By definition of a homomorphism, we can compute

0 = θ(0)

= θ(r1m1 + r2m2 + · · ·+ rnmn)

= r1θ(m1) + r2θ(m2) + · · ·+ rnθ(mn)

= r1.

This is a contradiction. So S must be independent.
To prove the other direction, suppose every element can be uniquely written as r1m1+ · · ·+

rnmn. Given any set function ψ : S → N , we define θ : M → N by

θ(r1m1 + · · ·+ rnmn) = r1ψ(m1) + · · ·+ rnψ(mn).

This is well-defined by uniqueness, and is clearly a homomorphism. So it follows that S generates
M freely.

Remark 4.44. To prove (i) ⇔ (ii), we could have also used the fact that (i) is equivalent to
having M ∼= Rn for some n (since the two definitions of free module given above are equivalent).

Example 4.45. The Z-module Z/2Z is not free. Suppose Z/2Z were generated by some
S ⊆ Z/2Z. Then this can only possibly be S = {1}. Then this implies there is a homomorphism
θ : Z/2Z → Z sending 1 to 1. But it does not send 0 = 1 + 1 to 1 + 1, since homomorphisms
send 0 to 0. So Z/2Z is not freely generated.

Example 4.46. The set {2, 3} ∈ Z generates Z. However, they do not generate Z freely, since

3 · 2 + (−2) · 3 = 0.

Recall from linear algebra that if a set S spans a vector space V , and it is not independent, then
we can just pick some useless vectors and throw them away in order to get a basis. However,
this is no longer the case in modules. Neither 2 nor 3 generate Z.

Definition 4.47. Let M be a finitely generated R-module. We have shown that there is
a surjective R-module homomorphism ϕ : Rn → M for some n. We call the R-submodule
ker(ϕ) ≤ Rn the relation module for those generators.

Definition 4.48. A finitely generated R-module M is finitely presented if there exists a sur-
jective homomorphism f : Rn → M such that ker(f) is a finitely generated R-module.
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Note that, if ker(f) is finitely generated, then there exists a surjective R-module homomor-
phism g : Rm ↠ ker(f) for some m. Let ϕ : Rm → Rn be i ◦ g where i : ker(f) → Rn is the
inclusion map. Then we have:

coker(ϕ) = Rn/ im(g) = Rn/ ker(f) ∼= im(f) = M.

Similarly to vector spaces, maps between finitely generated free R-modules correspond to
matrices over R.

Proposition 4.49. Let ϕ : Rm → Rn be an R-module homomorphism. Let e1, · · · , em ∈ Rm

and v1, · · · , vn ∈ Rn be the standard basis elements. Let ϕ(ej) =
&n

i=1Aijei for some Aij ∈ R
and let A = (Aij) ∈ Mm×n(R) be the corresponding n×m matrix. Then ϕ(r) = r · A where ·
represents right matrix multiplication of the row vector r = r1e1 + · · ·+ rnen by A.

Remark 4.50. If R is commutative, we can choose A such that ϕ(r) = A · r is left matrix
multiplication.

In particular, every finitely presented R-module M is the cokernel of a map ϕ : Rm → Rn

which can be expressed as an m × n matrix A. We will often write ϕA to denote the map
corresponding to A.

A natural question we might ask is if n ∕= m, then can we ever have Rn ∼= Rm? In vector
spaces, they obviously must be different, since basis and dimension are well-defined concepts.

Definition 4.51. We say that a ring R has the invariant basis number property (IBN) if
Rn ∼= Rm are isomorphic as R-modules if and only if n = m.

Proposition 4.52. Non-trivial commutative rings have the invariant basis number property.

Proof. See Problem Sheet 4.

Clearly the trivial ring R = {0} does not have IBN. It is possible to construct examples of
non-commutative rings which do not have IBN (see Problem Sheet 4). On the other hand, most
reasonable classes of non-commutative rings are known to have IBN such as group rings R[G]
for R a commutative ring and G a group.

We will now consider classes of modules which are as close to being free modules as possible.

Definition 4.53. An R-module M is stably free if there exists n such that M ⊕ Rn is a free
module. An R-module M is projective if there exists an R-module N such that M ⊕N is a free
R-module.

It follows from the definitions that free ⇒ stably free ⇒ projective. However, the converse
need not hold:

Example 4.54. Let R1 and R2 be non-zero rings and let R = R1 × R2. Then R1 is an R-
module with the natural R1-action and the trivial R2-action. Similarly R2 is an R-module. As
R-modules, we have that R1 ⊕R2

∼= R is free. Hence R1 and R2 are projective R-modules.
However, R1 and R2 not free. To see this, note that the elements of R2 ⊆ R act trivially on

R1 but would act non-trivially on any free module.
A specific example is Z/6 ∼= Z/2 × Z/3 which has projective modules Z/2 and Z/3 as

described above. We can see they are not even stably free since they are both finitely generated
but finitely generated stably free Z/6-modules must have order 6n for some n.
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Example 4.55. Let R = R[X,Y, Z]/(X2 + Y 2 + Z2 − 1). Consider

M = {(a, b, c) ∈ R3 : aX + bY + cZ = 0 ∈ R}

which is an R-submodule of R3. Then M ⊕ R ∼= R3 but M ∕∼= R2. The proof will not be given
here1 and uses the hairy ball theorem from topology: there does not exists a non-vanishing
continuous vector field on the sphere S2.

On the other hand, free modules, stably free modules and projective modules often coincide
for nice classes of rings.

Example 4.56. If R is a principal ideal domain, then projective modules over R[X1, · · · , Xn]
are free. Whilst this might sound like a simple statement to prove, it was an open problem for a
long time and was resolved independently by Daniel Quillen and Andrei Suslin in 1976. Quillen
was awarded a Fields Medal for his proof in 1978. The case where R is a field is particularly
important since it has far reaching consequences in algebraic geometry.

4.5 Noetherian modules

Let R be a ring and let M be an R-module. We say M is Noetherian if every increasing infinite
chain

N0 ⊆ N1 ⊆ N2 ⊆ N3 ⊆ . . .

ofR-submodulesNi ofM is eventually constant. (That is, for any such chain, we haveNi = Ni+1

for all sufficiently large i.) A ring R is Noetherian if R is Noetherian as an R-module.
Since the R-submodules of R are just the ideals of R, a ring R is Noetherian if every

increasing infinite chain:
I0 ⊆ I1 ⊆ I2 ⊆ I3 ⊆ . . .

of ideals Ij of R is eventually constant.
The following result about Noetherian R-modules is fundamental:

Theorem 4.57. An R-module M is Noetherian if and only if every R-submodule of M is
finitely generated.

Proof. Suppose first that M is Noetherian, and let N be an R-submodule of M . Choose an
element n0 of N , and let N0 be the R-submodule of N generated by n0. If N0 is all of N , then
N is finitely generated. Otherwise, choose n1 in N \N0, and let N1 be the R-submodule of N
generated by n0 and n1. If N is not finitely generated, we may continue this process indefinitely,
choosing for each i an ni in N \Ni−1 (which is nonempty since N is not finitely generated), and
letting Ni be generated by n0, . . . , ni. In this way we obtain a strictly increasing infinite chain

N0 ⊊ N1 ⊊ N2 ⊊ . . .

of submodules of M , contradicting the fact that M is Noetherian.
Conversely, suppose that every R-submodule of M is finitely generated, and let

N0 ⊆ N1 ⊆ N2 ⊆ N3 ⊆ . . .

be an increasing chain. We must show that this chain is eventually constant. Let N be the
union of the submodules Ni; note that N is an R-submodule of M . Thus N is finitely generated,
say by n0, . . . , nr. Since N is the union of the Ni, there exists j1, . . . , jr such that ni is in Nji for

1See https://kconrad.math.uconn.edu/blurbs/linmultialg/stablyfree.pdf for details.
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all i. Let j be the largest of the ji. Then Nj contains n0, . . . , nr so it contains N . In particular
for any i ≥ j we have Nj ⊂ Ni ⊂ N ⊂ Nj , so N = Ni = Nj for all such i and the chain is
constant after Nj .

Corollary 4.58. Let R be a Principal Ideal Domain. Then R is Noetherian.

Proof. Every ideal of R is principal, hence finitely generated.

The goal of this section is to prove the following crucial theorem:

Theorem 4.59. Any finitely generated module over a Noetherian ring is Noetherian.

We proceed in several steps. First note:

Proposition 4.60. Let M be a Noetherian R-module. Then, for any submodule N ≤ M , both
N and M/N are Noetherian.

Proof. Since M is Noetherian, any submodule of M is finitely generated, and thus any submod-
ule of N is finitely generated. Given a submodule J of M/N , let J̃ be its preimage in N under
the natural map M → M/N . Then J̃ is finitely generated, and the image of a generating set
for J̃ in J is a generating set for J .

Proposition 4.61. Let M be an R-module, let N be a Noetherian submodule of M , and
suppose that M/N is Noetherian. Then M is Noetherian.

Proof. See Problem Sheet 4.

Corollary 4.62. If M and N are Noetherian R-modules, then so is M ⊕N .

Proof. We have a surjection M ⊕N → N taking (m,n) to n. Its kernel K is the set of pairs of
the form (m, 0), which is isomorphic to M , and hence Noetherian. The surjection M ⊕N → N
descends to an isomorphism (M ⊕N)/K ∼= N , so that (M ⊕N)/K is Noetherian. Thus M ⊕N
is Noetherian.

Corollary 4.63. If R is Noetherian, then any free R-module of finite rank is Noetherian.

Proof. A free R-module of rank s is the direct sum of s copies of R, each of which is Noetherian
as an R-module when R is Noetherian.

Proof of Theorem 4.59. Let M be a finitely generated R-module, and let m1, . . . ,ms be a set
of generators for M . Then if F is a free R-module of rank s, with generators e1, . . . , es, we have
a surjection of F onto M taking ei to mi for all i. Let K be the kernel. Then M is isomorphic
to F/K, and F is a Noetherian R-module, so M is Noetherian as well.

One nice consequence of this is as follows.

Corollary 4.64. Let R be a Noetherian ring. Then every finitely generated R-module is finitely
presented.

Proof. Let M be a finitely generated R-module. Then there exists a map f : Rn ↠ M and we
want to show that ker(f) ≤ Rn is finitely generated. Since Rn is a finitely generated R-module,
Theorem 4.59 (or, more specifically, Corollary 4.63) implies that Rn is a Noetherian module.
Theorem 4.57 then implies that ker(f) is finitely generated.

Since principal ideal domains are Noetherian, this implies that finitely generated modules
over principal ideal domains are finitely presented.
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4.6 Modules over principal ideal domains

The aim of this section will be to prove the following theorem.

Theorem 4.65 (Classification of finitely generated modules over a PID). Let R be a principal
ideal domain. If M is a finitely generated R-module, then there exists n, r ≥ 0 and elements
d1, · · · , dr ∈ R such that

M ∼= Rn ⊕R/(d1)⊕ · · ·⊕R/(dr).

Furthermore, we can assume that d1 | d2 | · · · | dr.

In less compact notation, the last part says that d1 | d2, d2 | d3, · · · , dr−1 | dr. It can be
shown that, if we choose the di to satisfy these conditions, then the n and the di are unique.
We will not prove this in this course.

The outline for the proof is as follows.

(1) Let R be a PID and let M be a finitely generated R-module. Since R is Noetherian, the
result in the previous section implies that M is finitely presented.

(2) Since M is finitely presented, we have that M ∼= coker(ϕA) where ϕA : Rm → Rn is an
R-module homomorphism represented by an m× n matrix A over R.

(3) If B = PAQ for invertible matrices P and Q, then coker(ϕA) ∼= coker(ϕB) as R-modules.
We call A and B equivalent matrices.

(4) Every matrix over a PID can be transformed into a rectangular diagonal matrix using a
sequence of row and column operations (i.e. a square diagonal matrix with additional rows
or columns which are zero). This is called Smith normal form.

(5) Let A be a rectangular diagonal matrix whose diagonal contains non-zero entries d1, · · · , dr
and n copies of 0. Then coker(ϕA) ∼= Rn ⊕R/(d1)⊕ · · ·⊕R/(dr).

We have already completed parts (1) and (2) in the previous sections. We will now focus on
parts (3), (4) and (5).

Definition 4.66. Two m× n matrices A and B over R are equivalent if there exists invertible
matrices P ∈ GLn(R) and Q ∈ GLm(R) such that

B = PAQ.

For the corresponding maps ϕA,ϕB : Rm → Rn, this is equivalent to the existence of R-module
isomorphisms f : Rn → Rn and g : Rm → Rm such that ϕB = f−1 ◦ ϕA ◦ g. In particular, we
can take f = ϕP−1 and g = ϕQ.

We will now resolve part (3) of the proof.

Proposition 4.67. Let A and B be m× n matrices over a ring R. If A and B are equivalent,
then coker(ϕA) ∼= coker(ϕB) are isomorphic as R-modules.

This is true since equivalent matrices correspond to the same map ϕ : Rm → Rn with
different choices of bases for Rm and Rn. We will now check the details more carefully.

Proof. We have maps ϕA,ϕB : Rm → Rn. Since A and B are equivalent, there exists R-
module isomorphisms f : Rm → Rm and g : Rn → Rn such that f ◦ ϕB = ϕA ◦ g and so
im(ϕA) = im(ϕA ◦ g) = im(f ◦ ϕB) = f(im(ϕB)).
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Consider the map f̄ : Rm → Rm/ im(ϕA) which is the composition of f with the quotient
map ·̄ : Rm → Rm/ im(ϕA). We claim that ker(f̄) = im(ϕB). First note that f̄(im(ϕB)) =
f(im(ϕB)) = im(ϕA) = {0} and so im(ϕB) ⊆ ker(f̄). Conversely, if f̄(r) = 0, then f(r) ∈
im(ϕA) implies r ∈ im(f−1 ◦ ϕA) = im(f−1 ◦ ϕA ◦ g) = im(ϕB) and so ker(f̄) ⊆ im(ϕB). Since
f̄ is surjective, the first isomorphism theorem now implies that Rm/ im(ϕB) ∼= Rm/ im(ϕA), i.e.
coker(ϕB) ∼= coker(ϕA).

In practice, finding equivalent matrices typically amounts to performing row or column
operations.

Definition 4.68. Elementary row operations on an m × n matrix A with entries in R are
operations of the form

(i) Add c ∈ R times the ith row to the jth row. This may be done by multiplying by the
following matrix on the left:

"

<<<<<<<<<<<<<<<#

1

. . .

1 c

. . .

1

. . .

1

$

===============%

,

where c appears in the ith column of the jth row.

(ii) Swap the ith and jth rows. This can be done by left-multiplication of the matrix

"

<<<<<<<<<<<<<<<<<<<<<<<<<<#

1

. . .

1

0 1

1

. . .

1

1 0

1

. . .

1

$

==========================%

.

Again, the rows and columns we have messed with are the ith and jth rows and columns.
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(iii) We multiply the ith row by a unit c ∈ R. We do this via the following matrix:

"

<<<<<<<<<<<<<<<#

1

. . .

1

c

1

. . .

1

$

===============%

Notice that if R is a field, then we can multiply any row by any non-zero number, since
they are all units.

We also have elementary column operations defined in a similar fashion, corresponding to right
multiplication of the matrices. Notice all these matrices are invertible.

The following is immediate, though worth stating.

Proposition 4.69. Let A be an m× n matrix over R. If B is obtained from A by elementary
row and column operations, then A and B are equivalent.

The aim is now to find, for each matrix, a matrix equivalent to it that is as simple as possible.
Recall from linear algebra that if R is a field, then we can put any matrix into the form

"

#Ir 0

0 0

$

%

via elementary row and column operations. This is no longer true when working with rings.
For example, over Z, we cannot put the matrix

"

#2 0

0 0

$

%

into that form, since no operation can turn the 2 into a 1.

Definition 4.70. We say that an m × n matrix over R is in Smith normal form if it has the
form "

<<<<<<<<<<<<<<<#

d1

d2
. . .

dr

0

. . .

0

$

===============%

,

with the di all non-zero and
d1 | d2 | d3 | · · · | dr.
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We would like to show that matrices over a principal ideal domains R can be put in Smith
normal form.

Theorem 4.71 (Smith normal form). Every m× n matrix over a principal ideal domain R is
equivalent to a matrix in Smith normal form.

Note that, since R is a PID, R is a UFD and so greatest common divisors exist. Whilst gcd
is only defined up to units, we will fix a choice each time we use it.

Proof. Let A = (aij) be an m × n. When we say that we modify A, we mean that we replace
A by an equivalent matrix. For ease of notation, we will still use A to denote this matrix.

If A = 0, then done. So suppose A ∕= 0. We start by proving the following.

Claim 1. Given two entries aij and akl in the same row (j = l) or column (i = k), we can
modify A so that gcd(aij , akl) appears as an entry in the matrix.

Proof. Suppose the two entries are in the same column, i.e. we aij and aik. Since invertible
2× 2 matrices can be extended to invertible m×m matrices, it suffices to show that any vector

"

#a

b

$

%

can be be left-multiplied by an invertible 2 × 2 matrix P to obtain a vector with an entry
gcd(a, b). Since R is a PID, we have that (a, b) = (d) for some d ∈ R. It follows easily that
d = gcd(a, b). Since d ∈ (a, b), there exists x, y ∈ R such that xa+yb = d. Note that multiplying
by a matrix if the form

P =

"

#x y

z w

$

%

changes a to d. We have det(P ) = xw − yz. Since xa + yb = gcd(a, b), we must have that
gcd(x, y) = 1 and so there exists u, v ∈ R such that xu + yv = 1 and so choosing z = −v and
w = u gives a matrix with det(P ) = 1 and so which is invertible.

If the entries of A are in the same row, then we can do the same but with right-multiplication
by an invertible matrix instead. Alternatively, apply the above the transpose AT to get a matrix
P such that P ·AT has the required entry. Then AP T = (PAT )T has the required entry.

This will now be used to show the following, which will be the basis for an algorithm which
we will describe to modify A to put it in Smith normal form.

Claim 2. We can modify A so that a11 | ai1 and a11 | a1j for all i, j.

Proof. For r ∈ R \ {0}, let δ(r) ∈ Z≥0 denote the number of factors which appear in the
factorisation of r into irreducible elements, i.e. if r = pn1

1 · · · pnt
t for pi irreducible, then δ(r) =&t

i=1 ni. Since R is a PID, R is a UFD and so this is well-defined.
Suppose A is not of this form. Then there exists a non-zero entry aij . Using row and column

operations, we can move this entry to the top left corner and so we can assume that a11 ∕= 0.
Let α1 = a11. If A is still not of the required form, then there exists aij with i = 1 or j = 1 such
that a11 ∤ aij . By Claim 1, we can modify A so that α2 := gcd(a11, aij) appears as an entry in
the matrix. Using row and column operations, we can modify A to get that α2 is in the top
left corner. Note that α2 | α1 but α2 and α1 are not associates since α2 | aij and α1 ∤ aij . This
implies that δ(α2) < δ(α1). By the well-ordering principle, this process terminates. That is, we
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eventually obtain an entry αt in the top left corner such that αt | aij for all i, j such that i = 1
or j = 1.

Suppose A is in the form given in Claim 2 and let d1 = a11. Since d1 | a1j for all j, we can
subtract appropriate multiples of the first column from others so that a1j = 0 for j ∕= 1. After
these transformations, it is still true that a1 | ai1 for all i and so we can do the same thing with
rows so that the first row is cleared. Then we have a matrix of the form:

A =

"

<<<<<<#

d1 0 · · · 0

0
... C

0

$

======%
.

We can now apply the same process to C. If C = 0, then we are done and have r = 1. If not, we
can put C in the above form with d2 in the top left corner. By induction on n, repeating this
process puts the matrix in a diagonal rectangular form with diagonal entries d1, · · · , dr, 0 · · · , 0.

It remains to show that we can modify this matrix to get that d1 | d2 | · · · | dr. Pick
1 ≤ i, j ≤ r with i ∕= j and consider the following row and column operations on 2× 2 matrices

"

#di 0

0 dj

$

% ∼

"

#di gcd(di, dj)

0 dj

$

% ∼

"

# di gcd(di, dj)

−d · d1 0

$

% ∼

"

#gcd(di, dj) 0

0 d · d1

$

%

where d is such that di = d · gcd(di, dj). These operations can be extended to operations on
m×n matrices and show that, given di, dj on the diagonal, we can modify A to still be diagonal
rectangular and have a diagonal entry gcd(di, dj). We can now apply the same argument that
we used in the proof of Claim 2.Let α1 = d1. If d1 ∤ di for some i ≥ 2, then use the procedure
above to get α2 = gcd(d1, di) and then use row and column operations to move it into the place
of d1. We have α2 | α1 but α1 ∤ α2 (since d1 ∤ di) and so δ(α2) < δ(α1). By the well ordering
process, this process terminates and so we eventually obtain a sequence where d1 | di for all i.
We can repeat the same process for d2 ∤ di for some i ≥ 3. Note that d1 | di for all i still holds
after using the operations described to modify d2, · · · , dr. Hence this process eventually results
in a sequence such that d1 | d2 | · · · | dr, as required.

If R is a Euclidean domain, then this can be done is a reasonably straightforward manner
using row and column operations.

Exercise 4.72. Show that, if R is a Euclidean domain, then every m × n matrix can be
transformed using row and column operations into a matrix in Smith normal form. Deduce
that, for all n, every matrix in GLn(R) is the product of elementary matrices.

Does this hold for principal ideal domains? In order to find an example where this does not
work, we need R to be a principal ideal domain but not a Euclidean domain. We gave exactly

one such example in this course which was the ring Z[1+
√
−19
2 ].

Exercise 4.73. Let R = Z[α] where α = 1+
√
−19
2 . Prove that the following matrix in GL2(R)

is not the product of elementary matrices:

"

# 3− α 2 + α

−3− 2α 5− 2α

$

%
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This can be viewed as a further extension of Q11 on Problem Sheet 1.

This shows that, in our proof that matrices over principal ideals domains are equivalent to
matrices in Smith normal form, it is necessary to use something other than row and column
operations somewhere in the proof. We used such matrices in the proof of Claim 1.

Remark 4.74. We say that a ring is generalised Euclidean (GE) if, for all n ≥ 1, every matrix
in GLn(R) is the product of elementary matrices. The above shows that, if R is a Euclidean

domain, then R is generalised Euclidean. Furthermore, Z[1+
√
−19
2 ] is an example of a ring which

is a principal ideal domain but which is not generalised Euclidean.

This completes part (4) of the proof. We will now resolve part (5).

Proposition 4.75. Let A be an m × n matrix over a ring R which is in Smith normal form,
i.e.

A =

"

<<<<<<<<<<<<<<<#

d1

d2
. . .

dr

0

. . .

0

$

===============%

for some non-zero elements d1, · · · , dr ∈ R. Then coker(ϕA) ∼= Rn−r ⊕R/(d1)⊕ · · ·⊕R/(dr).

Proof. Define a surjective R-module homomorphism f : Rn ↠ R/(d1)⊕ · · ·R/(dr)⊕R⊕ · · ·⊕R
to be the diagonal map which is the quotient map R → R/(di) on the first r components and
the identify map R → R on the next n − r components. Note that im(ϕA) = (d1) ⊕ (d2) ⊕
· · · (dr)⊕ 0⊕ · · ·⊕ 0, and it is straightforward to see that this coincides with ker(f). Hence, by
the first isomorphism theorem, we have

coker(ϕA) = Rn/ im(ϕA) = Rn/ ker(f) ∼= im(f) ∼= Rn−r ⊕R/(d1)⊕ · · ·⊕R/(dr)

as required.

This completes the proof of our our main theorem. We will recap on the steps of the proof.

Theorem 4.76 (Classification of finitely generated modules over a PID). Let R be a principal
ideal domain. If M is a finitely generated R-module, then there exists n, r ≥ 0 and elements
d1, · · · , dr ∈ R such that

M ∼= Rn ⊕R/(d1)⊕ · · ·⊕R/(dr).

Furthermore, we can assume that d1 | d2 | · · · | dr.

Proof. (1) Let R be a PID and let M be a finitely generated R-module. Since R is Noetherian,
the result in the previous section implies that M is finitely presented.

(2) Since M is finitely presented, we have that M ∼= coker(ϕA) where ϕA : Rm → Rn is an
R-module homomorphism represented by an m× n matrix A over R.

(3) If A and B are equivalent matrices, then coker(ϕA) ∼= coker(ϕB) as R-modules.
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(4) Since R is a PID, every matrix over a R is equivalent to a matrix B in Smith normal form.

(5) Suppose B is a matrix whose diagonal contains non-zero entries d1, · · · , dr and n copies of
0. Then M ∼= coker(ϕA) ∼= coker(ϕB) ∼= Rn ⊕R/(d1)⊕ · · ·⊕R/(dr).

Remark 4.77. There are another type of decomposition for modules over principal ideal do-
mains that we can derive from this one. For each, if d ∈ R\{0} has the form d = pn1

1 · · · pnm
m for

pi ∈ R prime, then we can show the following using the Chinese remainder theorem for rings:

R/(d) ∼= R/(pn1
1 )⊕ · · ·⊕R/(pnm

m ).

In particular, if M is a finitely generated R-module where R is a PID, then we have:

M ∼= Rn ⊕R/(pn1
1 )⊕ · · ·⊕R/(pnt

t )

for some n, t, ni ≥ 0 and some prime elements pi ∈ R. This is known as prime decomposition.

In the remainder of this section, we will give a few consequences of this theorem and briefly
discuss how to approach the classification of modules over rings which are not principal ideal
domains.

Firstly note that the classification of finitely generated modules over principal ideal domains
is even interesting in the case where R = Z, i.e. where R-modules are just abelian groups.

Corollary 4.78 (Classification of finitely generated abelian groups). If G is a finitely generated
abelian group, then there exists n, r ≥ 0 and positive integers d1, · · · , dr such that

G ∼= Zn ⊕ Z/(d1)⊕ · · ·⊕ Z/(dr).

Furthermore, we can assume that d1 | d2 | · · · | dr.

Proof. Put R = Z in the above theorem. If di < 0, then we can replace it with −di since (di)
and (−di) are equal ideals in Z.

It is important to note that our proof was constructive. In particular, we described an explicit
algorithm that can be used to obtain the integers n, r ≥ 0 and positive integers d1, · · · , dr ∈ Z.

Example 4.79. Let A be the abelian group generated by a, b, c with relations

2a+ 3b+ c = 0,

a+ 2b = 0,

5a+ 6b+ 7c = 0.

In other words, we have

A =
Z3

〈(2, 3, 1), (1, 2, 0), (5, 6, 7)〉 .

We would like to get a better description of A. It is not even obvious if this module is the zero
module or not. To work out a good description, We consider the matrix

X =

"

<<#

2 1 5

3 2 6

1 0 7

$

==% .
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Using row and column operations, we can put this in Smith normal form. We obtain:

X ′ =

"

<<#

3 0 0

0 1 0

0 0 1

$

==% .

So we know

A ∼=
Z
(1)

⊕ Z
(1)

⊕ Z
(3)

∼=
Z
(3)

∼= C3.

We can also apply the theorem in the case R = F [X] where F is a field, since R is a
Euclidean domain and so a principal ideal domain.

Let A be an n× n matrix over F with corresponding map ϕA : Fn → Fn. Then there is a
corresponding F [X]-module MA with abelian group Fn and, for f = amXm + · · · + a1X + a0
and x ∈ Fn, the F [X]-action is given by

f · x := am · ϕm
A (x) + · · ·+ a1 · ϕA(x) + a0.

Conversely, suppose M is a finitely generated F [X]-module whose underlying F -module is
finitely generated and so of the form Fn for some n. The action by X ∈ F [X] gives a map
X· : Fn → Fn. If this map is denote by ϕA, then we have that M ∼= MA as above.

Hence there is a one-to-one correspondence between n×nmatrices A over F and finitely gen-
erated F [X]-modules MA whose underlying F -module is Fn. This means that decompositions
of F [X]-modules can be interpreted as giving decompositions for matrices over F .

Example 4.80. Let F be a field and let A be an n × n matrix over F . Since F [X] is a PID,
there exists n, r ≥ 0 and f1, · · · , fr ∈ F [X] \ {0} such that

MA
∼= F [X]n ⊕ F [X]/(f1)⊕ · · ·⊕ F [X]/(fr).

Since the underlying F -module of MA is finitely generated, we must have that n = 0. We can
assume the fi are monic since (dfi) = (fi) for all d ∈ F×.

If f = Xm + am−1X
m−1 + · · · + a1X + A0, then it can be shown that F[X]/(f) ∼= Mc(f)

where c(f) is the following m×m matrix over F :

c(f) =

"

<<<<<<<<<#

0 0 · · · 0 −a0

1 0 · · · 0 −a1

0 1 · · · 0 −a2
...

...
. . .

...
...

0 0 · · · 1 −am−1

$

=========%

.

known as the companion matrix for f . Hence we have that

MA
∼= Mc(f1) ⊕ · · ·⊕Mc(fr)

∼= Mc(f1)⊕···⊕c(fr)

where ⊕ denotes block addition of matrices. That is, every n × n matrix A is equivalent to a
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block diagonal matrix of the form:

c(f) =

"

<<<<<<#

c(f1) 0 · · · 0

0 c(f2) · · · 0
...

...
. . .

...

0 0 · · · c(fr)

$

======%
.

This is known as Rational canonical form.
Prime decomposition of modules over PIDs leads to further types of matrix decomposition.

Over C[X], this decomposition takes a particularly simple form since the prime elements are just
X − λ for λ ∈ C. In particular, we need only determine the matrix corresponding to (X − λ)n

which is a Jordan block. The associated decomposition is Jordan normal form.

Given a general form for a module over a principal ideal domain R, we can now determine
when R-modules have particular properties. One property which tends to be particularly elusive
is the property of being a projective R-module. We have:

Corollary 4.81. Let R be a principal ideal domain. Then finitely generated projective R-
modules are free.

Proof. Let M be a finitely generated projective R-module. Then, by the classification of finitely
generated modules over a PID, we have that

M ∼= Rn ⊕R/(d1)⊕ · · ·⊕R/(dr)

for some d1, · · · , dr ∈ R \ {0}. Since M is projective, there exists an R-module N such that
M ⊕ N ∼= R(S) is a free module for some set S. If d1, · · · , dr ∈ R×, then M ∼= Rn is free.
If not, then there exists an injective R-module homomorphism i : R/(d) ↩→ R(S). Let i(1) =
(xi)i∈S ∈ R(S). Since i is injective, i(1) ∕= 0 and so there exists s ∈ S such that xs ∕= 0. Since
d · i(1) = i(d) = 0, we must have that dxs = 0 ∈ R. Since R is an integral domain and xs ∕= 0,
this implies that d = 0 which is a contradiction.

Remark 4.82. In fact, for R a principal ideal domain, all projective R-modules are free. There
is a theory of infinitely generated projective modules, which we will not give here, that implies
that such modules are free for a much wider class of rings than principal ideal domains.

We conclude by asking what happens when R is not a principal ideal domain. Consider the
case where R = Z[α] where α ∈ C is an algebraic integer (or, more generally, R can be any
Dedekind domain). If F = Frac(R), then a fractional ideal is an R-submodule I ⊆ F such that
r · I ⊆ R for some r ∈ R. For rings of this form, we can consider the ideal class group

C(R) = {I : I a fractional ideal in R}/ ∼

where I ∼ J if there exists u ∈ F× such that I = u · J ⊆ F . This is an abelian group under the
operation (I, J) .→ I ·J . It can be shown that C(R) is trivial if and only if R is a principal ideal
domain and so, in some sense, C(R) measures the failure of R to be a principal ideal domain.

It turns out that the ideal class group is just a special case of a much more general con-
struction which works for all rings. For an arbitrary ring R, define the projective class group

6K0(R) = {P : P a finitely generated projective R-module}/ ∼=st
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where P ∼=st Q if and only if there exists n,m such that P ⊕Rn ∼= Q⊕Rm. This is an abelian
group under the operation (P,Q) .→ P ⊕Q and is one of the basic objects of algebraic K-theory.
Note that a projective R-module P is stably free if and only if [P ] = 0 ∈ 6K0(R) and so, in some
sense, 6K0(R) measures the failure of projective R-modules to be stably free. If R is a principal
ideal domain, then the above implies that 6K0(R) is trivial. More generally, if R = Z[α] for
α ∈ C an algebraic integer (or, more generally, R a Dedekind domain), then it can be shown
that 6K0(R) ∼= C(R) as abelian groups.

There are many deep questions about 6K0(R) which have remained unanswered for decades,
and which remain at the forefront of modern research. One such question is: does there exists a
torsion-free group G (i.e. every non-zero element has infinite order) such that 6K0(Z[G]) is non-
trivial? That is, does there exists a non-stably free projective ZG-module over a torsion-free
group G? For example, if G is finitely generated abelian group, then G ∼= Zn (by Corollary 4.78)
and so Z[G] ∼= Z[X1, X

−1
1 , · · · , Xn, X

−1
n ]. Since Z is a PID, the Quillen-Suslin theorem (Ex-

ample 4.56) implies that projective modules are free over Z[X1, · · · , Xn]. This can be used
to deduce that projective modules are free over Z[X1, X

−1
1 , · · · , Xn, X

−1
n ] and so 6K0(Z[G]) is

trivial in this case. More generally, the Farrell-Jones conjecture in algebraic K-theory predicts
that such groups do not exist and this has been verified for many large classes of torsion free
groups (not just finitely generated abelian groups). However, whether or not the prediction
made by the Farrell-Jones conjecture actually holds remains a mystery.
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