Algebra III: Rings and Modules Problem Sheet 1, Autumn Term 2022-23

John Nicholson

1. For sets X and Y, let $\operatorname{Fun}(X, Y)$ denote the set of all functions $f: X \rightarrow Y$.
(i) Let X be a set and R a ring. Given $f, g \in \operatorname{Fun}(X, R)$, we can define $f+g, f \cdot g \in$ $\operatorname{Fun}(X, R)$ via $(f+g)(x)=f(x)+_{R} g(x)$ and $(f \cdot g)(x)=f(x) \cdot{ }_{R} g(x)$ for $x \in X$. Given $a \in R$, we can consider the constant function $c_{a}: x \mapsto a$ for all $x \in X$. Show that $\operatorname{Fun}(X, R)$ is a ring with $0=c_{0}$ and $1=c_{1}$.
(ii) Let $X=[0,1] \subseteq \mathbb{R}$, the interval, and let $R=\mathbb{R}$. Show that the subset of $\operatorname{Fun}([0,1], \mathbb{R})$ of continuous functions is a subring, and that the subset of differentiable functions is a further subring.
(iii) Show that, if X has at least two elements, then $\operatorname{Fun}(X, R)$ is not an integral domain (regardless of what R is). [Hint: For a complete solution you will have to consider separately the trivial case $R=\{0\}$.]
2. For a ring R, an element $a \in R$ is nilpotent if $a^{n}=0$ for some $n \geq 1$. Let nil $(R) \subseteq R$ be the subset of nilpotent elements.
(i) Let R be a commutative ring. Show that nil (R) is an ideal. [Hint: Prove that the binomial formula for the expansion of $(x+y)^{n}$ holds in arbitrary commutative rings.]
(ii) Give an example of a non-commutative ring where nil (R) does not form an ideal.
(iii) Let $x \in R$ be nilpotent (and do not assume R is commutative). Show that $1+x \in R^{\times}$.
(iv) Find all the nilpotent elements in the ring $R=\mathbb{Z} / p^{r} \mathbb{Z}$ for every prime p and $r \geq 1$. [Optional: extend this to $\mathbb{Z} / n \mathbb{Z}$ for every $n \in \mathbb{Z}$.]
3. Show the following:
(i) If $a>0$, then $\mathbb{R}[X] /\left(X^{2}-a\right) \cong \mathbb{R} \times \mathbb{R}$.
(ii) Show that $(\mathbb{Z} / 3)[X] /\left(X^{2}+1\right)$ is a field with nine elements.
(iii) Show that, for any $n \geq 1$, then $\mathbb{Z}[i] /(n) \cong(\mathbb{Z} / n)[X] /\left(X^{2}+1\right)$.
(iv) Show that $\mathbb{Z}[i] /(2) \cong(\mathbb{Z} / 2)[X] /\left(X^{2}\right)$. In particular observe that this is not a field.
4. Let S be a subset of the nonnegative integers, and let $\mathbb{C}[S]$ be the subset of $\mathbb{C}[X]$ consisting of polynomials $P(X)=\sum_{i=0}^{d} a_{i} X^{i}$ such that $a_{i}=0$ for $i \notin S$. For which S is $\mathbb{C}[S]$ a subring of $\mathbb{C}[X]$?
5. Let F be a field and $f, g \in F[X]$. Prove that there exists $r, q \in F[X]$ such that

$$
f=g q+r
$$

with $\operatorname{deg} r<\operatorname{deg} g$. [This shows that $F[X]$ is a Euclidean domain with Euclidean function $\left.\operatorname{deg}: F[X] \backslash\{0\} \rightarrow \mathbb{Z}_{\geq 0}.\right]$
6. Let R be the ring of continuous functions on the unit interval $[0,1]$, where addition and multiplication of functions is defined pointwise.
(i) Show that for any $c \in[0,1]$, the subset $\{f \in R: f(c)=0\}$ is a maximal ideal M_{c} of R.
(ii) Show that if $b \neq c$, then $M_{b} \neq M_{c}$.
(iii) Show that if M is any maximal ideal of R, then $M=M_{c}$ for some c.
(iv) Show that M_{c} is not generated by the element $f(x)=x-c$ of R. Show further that M_{c} is not even finitely generated.
7. Let R be a ring, let $f: G \rightarrow H$ be a surjective group homomorphism and let $f_{*}: R[G] \rightarrow R[H]$ be the ring homomorphism induced by f. Let $N=\operatorname{ker}(f)$. Show that $\operatorname{ker}\left(f_{*}\right)=(N-1)$, i.e. the ideal generated by the set $N-1=\{x-1: x \in N\} \subseteq R[G]$. [Hint: Start by considering the case where H is the trivial group and $f_{*}: R[G] \rightarrow R$.]
8. For each commutative ring R and ideal $I \subseteq R$ below, determine (with proof) whether or not I is prime and whether or not I is maximal. [You may assume any results from the course.]
(i) $R=\mathbb{Z}, \quad I=(6)$.
(ii) $R=\mathbb{Z}, \quad I=(8,12)$.
(iii) $R=\mathbb{Z}[X], \quad I=(X+1)$.
(iv) $R=\mathbb{R}[X], \quad I=\left(X^{2}-5\right)$.
(v) $R=\mathbb{C}[X], \quad I=\left(X^{2}+3, X^{3}-1\right)$.
(vi) $R=(\mathbb{Z} / 13 \mathbb{Z})[X], \quad I=\left(X^{2}+1\right)$.
(vii) $R=\mathbb{Q}[X, Y, Z], \quad I=\left(X-Y^{2}\right)$.
9. (i) Show that every finite integral domain is a field.
(ii) Let R be a commutative ring. Show that an ideal $I \subseteq R$ is prime if and only if R / I is an integral domain. Deduce that every maximal ideal is a prime ideal.
10. Show that $\mathbb{Z}[\sqrt{-2}]$ and $\mathbb{Z}[\sqrt{2}]$ are Euclidean domains.
${ }^{+}$11. Show that $\mathbb{Z}\left[\frac{1+\sqrt{-19}}{2}\right]$ is a principal ideal domain but not a Euclidean domain.

