Algebra III: Rings and Modules Problem Sheet 1, Autumn Term 2022-23

John Nicholson

- 1. For sets X and Y, let $\operatorname{Fun}(X, Y)$ denote the set of all functions $f: X \to Y$.
 - (i) Let X be a set and R a ring. Given $f, g \in Fun(X, R)$, we can define $f + g, f \cdot g \in Fun(X, R)$ via $(f+g)(x) = f(x) +_R g(x)$ and $(f \cdot g)(x) = f(x) \cdot_R g(x)$ for $x \in X$. Given $a \in R$, we can consider the constant function $c_a : x \mapsto a$ for all $x \in X$. Show that Fun(X, R) is a ring with $0 = c_0$ and $1 = c_1$.
 - (ii) Let $X = [0, 1] \subseteq \mathbb{R}$, the interval, and let $R = \mathbb{R}$. Show that the subset of Fun([0, 1], \mathbb{R}) of continuous functions is a subring, and that the subset of differentiable functions is a further subring.
 - (iii) Show that, if X has at least two elements, then Fun(X, R) is not an integral domain (regardless of what R is). [Hint: For a complete solution you will have to consider separately the trivial case $R = \{0\}$.]
- 2. For a ring R, an element $a \in R$ is *nilpotent* if $a^n = 0$ for some $n \ge 1$. Let $nil(R) \subseteq R$ be the subset of nilpotent elements.
 - (i) Let R be a commutative ring. Show that nil(R) is an ideal. [Hint: Prove that the binomial formula for the expansion of $(x + y)^n$ holds in arbitrary commutative rings.]
 - (ii) Give an example of a non-commutative ring where nil(R) does not form an ideal.
 - (iii) Let $x \in R$ be nilpotent (and do not assume R is commutative). Show that $1 + x \in R^{\times}$.
 - (iv) Find all the nilpotent elements in the ring $R = \mathbb{Z}/p^r\mathbb{Z}$ for every prime p and $r \ge 1$. [Optional: extend this to $\mathbb{Z}/n\mathbb{Z}$ for every $n \in \mathbb{Z}$.]
- 3. Show the following:
 - (i) If a > 0, then $\mathbb{R}[X]/(X^2 a) \cong \mathbb{R} \times \mathbb{R}$.
 - (ii) Show that $(\mathbb{Z}/3)[X]/(X^2+1)$ is a field with nine elements.
 - (iii) Show that, for any $n \ge 1$, then $\mathbb{Z}[i]/(n) \cong (\mathbb{Z}/n)[X]/(X^2+1)$.
 - (iv) Show that $\mathbb{Z}[i]/(2) \cong (\mathbb{Z}/2)[X]/(X^2)$. In particular observe that this is not a field.
- 4. Let S be a subset of the nonnegative integers, and let $\mathbb{C}[S]$ be the subset of $\mathbb{C}[X]$ consisting of polynomials $P(X) = \sum_{i=0}^{d} a_i X^i$ such that $a_i = 0$ for $i \notin S$. For which S is $\mathbb{C}[S]$ a subring of $\mathbb{C}[X]$?
- 5. Let F be a field and $f, g \in F[X]$. Prove that there exists $r, q \in F[X]$ such that

$$f = gq + r,$$

with deg $r < \deg g$. [This shows that F[X] is a Euclidean domain with Euclidean function deg : $F[X] \setminus \{0\} \to \mathbb{Z}_{\geq 0}$.]

- 6. Let R be the ring of continuous functions on the unit interval [0, 1], where addition and multiplication of functions is defined pointwise.
 - (i) Show that for any $c \in [0, 1]$, the subset $\{f \in R : f(c) = 0\}$ is a maximal ideal M_c of R.
 - (ii) Show that if $b \neq c$, then $M_b \neq M_c$.
 - (iii) Show that if M is any maximal ideal of R, then $M = M_c$ for some c.
 - (iv) Show that M_c is not generated by the element f(x) = x c of R. Show further that M_c is not even finitely generated.
- 7. Let R be a ring, let $f: G \to H$ be a surjective group homomorphism and let $f_*: R[G] \to R[H]$ be the ring homomorphism induced by f. Let $N = \ker(f)$. Show that $\ker(f_*) = (N-1)$, i.e. the ideal generated by the set $N - 1 = \{x - 1 : x \in N\} \subseteq R[G]$. [Hint: Start by considering the case where H is the trivial group and $f_*: R[G] \to R$.]
- 8. For each commutative ring R and ideal $I \subseteq R$ below, determine (with proof) whether or not I is prime and whether or not I is maximal. [You may assume any results from the course.]
 - (i) $R = \mathbb{Z}, I = (6).$
 - (ii) $R = \mathbb{Z}, I = (8, 12).$
 - (iii) $R = \mathbb{Z}[X], I = (X+1).$
 - (iv) $R = \mathbb{R}[X], I = (X^2 5).$
 - (v) $R = \mathbb{C}[X], I = (X^2 + 3, X^3 1).$
 - (vi) $R = (\mathbb{Z}/13\mathbb{Z})[X], I = (X^2 + 1).$
 - (vii) $R = \mathbb{Q}[X, Y, Z], I = (X Y^2).$
- 9. (i) Show that every finite integral domain is a field.
 - (ii) Let R be a commutative ring. Show that an ideal $I \subseteq R$ is prime if and only if R/I is an integral domain. Deduce that every maximal ideal is a prime ideal.
- 10. Show that $\mathbb{Z}[\sqrt{-2}]$ and $\mathbb{Z}[\sqrt{2}]$ are Euclidean domains.
- +11. Show that $\mathbb{Z}[\frac{1+\sqrt{-19}}{2}]$ is a principal ideal domain but not a Euclidean domain.