Algebra III: Rings and Modules Problem Sheet 2, Autumn Term 2022-23

John Nicholson

1. Determine whether or not the following rings are fields, PIDs, UFDs, integral domains:

$$
\mathbb{Z}[X], \quad \mathbb{Z}[X] /\left(X^{2}+1\right), \quad \mathbb{F}_{2}[X] /\left(X^{2}+1\right), \quad \mathbb{F}_{2}[X] /\left(X^{2}+X+1\right), \quad \mathbb{F}_{3}[X] /\left(X^{2}+X+1\right)
$$

2. Given a set $X \subseteq \mathbb{Z}$ of prime numbers, let $S(X) \subseteq \mathbb{Z}$ be the set consisting of 1 and the $n \geq 2$ all of whose prime factors are in X.
(i) Prove that $S(X)$ is a submonoid of (\mathbb{Z}, \cdot).
(ii) Let $R_{X}=S(X)^{-1} \mathbb{Z}$ denote the localisation of the integers at the set $S(X)$. Prove that if X^{\prime} is another set of prime numbers, then $R_{X} \cong R_{X^{\prime}}$ if and only if $X=X^{\prime}$.
(iii) Prove that every subring of \mathbb{Q} is of the form R_{X} for some set of prime numbers X, realising $(a, b) \in R_{X}$ as the fraction $\frac{a}{b}$.
(iv) Show that there exists a countable integral domain R (i.e. the set R is countable) for which there exists uncountably many subrings which are distinct up to ring isomorphism.
3. Let R be a commutative ring and let $S \subseteq R$ be a multiplicative submonoid.
(i) Let $\iota: R \rightarrow S^{-1} R$ be the map $a \mapsto(a, 1)$. Show that ι is injective if and only if S contains no zero divisors or zero. Show further that ι is an isomorphism if and only if $S \subseteq R^{\times}$.
(ii) Let $I \subseteq R$ be an ideal. Show that I is prime if and only if $R \backslash I \subseteq R$ is a multiplicative submonoid. Deduce that $R \backslash\{0\} \subseteq R$ is a multiplicative submonoid if and only if R is an integral domain.
4. A ring R is simple if it is non-trivial and its only two-sided ideals are $\{0\}$ and R. The centre of a ring R is the subset $Z(R) \subseteq R$ of elements $x \in R$ such that $x y=y x$ for all $y \in R$.
(i) Let R be any non-trivial ring. Find two nilpotent elements $x, y \in M_{2}(R)$ such that $x+y$ and $x y$ are both not nilpotent. [Compare with Problem 2 on Problem Sheet 1.]
(ii) Let $R=F$ be a field. Prove that $M_{n}(F)$ is simple.
(iii) Let R be a ring. Prove that the centre of $M_{n}(R)$ is $Z(R) \cdot I_{n}$ where I_{n} denotes the $n \times n$ identity matrix, i.e. the diagonal matrices whose diagonal entries are all equal to some $x \in Z(R)$.
5. Let d be an integer which is not a square.
(i) Show that, in $\mathbb{Z}[\sqrt{d}]$, if I is any nonzero ideal, then $\mathbb{Z}[\sqrt{d}] / I$ is finite. [Hint: If $a+b \sqrt{d} \in$ I, show that $a^{2}-b^{2} d \in I$ as well. Then show that $|\mathbb{Z}[\sqrt{d}] /(m)|=m^{2}$ if $m \geq 1$.]
(ii) Show that every nonzero prime ideal in $\mathbb{Z}[\sqrt{d}]$ is maximal.
(iii) Now suppose $\mathbb{Z}[\sqrt{d}]$ is a UFD. Then show that, for every irreducible $a+b \sqrt{d} \in \mathbb{Z}[\sqrt{d}]$, then $\mathbb{Z}[\sqrt{d}] /(a+b \sqrt{d})$ is a field.
(iv) Is $\mathbb{Z}[\sqrt{5}]$ a Euclidean domain? [Hint: Show that $\mathbb{Z}[\sqrt{5}] /(2) \cong(\mathbb{Z} / 2)[X] /\left(X^{2}\right)$.]
6. Let R be a UFD and let $f=a_{0}+a_{1} X+\cdots+a_{n} X^{n} \in R[X]$ be primitive (i.e. $\operatorname{gcd}\left(a_{0}, \cdots, a_{n}\right)=$ 1) with $a_{n} \neq 0$. Let $p \in R$ be irreducible (hence prime) and such that $p \nmid a_{n}, p \mid a_{i}$ for all $0 \leq i<n$ and $p^{2} \nmid a_{0}$.
(i) Prove that f is irreducible in $R[X]$. This is Eisenstein's criterion. [Hint: If f factorises in $R[X]$, what would an induced factorisation in $R[X] /(p) \cong(R /(p))[X]$ look like?]
(ii) Use Eisenstein's criterion to show that $3 X^{5}+12 X^{3}+18$ is irreducible over \mathbb{Q}.
(iii) Show that the UFD hypothesis is not needed if we replace p by a prime ideal P and the conditions $p \mid a_{i}$ by $a_{i} \in P$ and $p^{2} \nmid a_{0}$ by $a_{0} \notin P^{2}$.
7. Determine which of the following polynomials are irreducible in $\mathbb{Q}[X]$:

$$
X^{4}+2 X+2, \quad X^{4}+18 X^{2}+24, \quad X^{3}-9, \quad X^{3}+X^{2}+X+1, \quad X^{4}+1, \quad X^{4}+4
$$

8. Find the factorisations of $X^{13}+X, X^{16}+1$, and $X^{8}+X^{4}+1$ into irreducibles in $\mathbb{F}_{2}[X]$.
9. An element e of a ring R is said to be idempotent if $e^{2}=e$ and $e r=r e$ for all $r \in R$ (this is often called a central idempotent). A nonzero idempotent e is called primitive if for any other idempotent e^{\prime}, one has either $e^{\prime} e=0$ or $e^{\prime} e=e$. We will call a ring R with no idempotents other than zero or one indecomposable.
(i) Show that if R and S are rings, then $R \times S$ is not indecomposable unless either R or S is the zero ring.
(ii) Let e be an idempotent element of R other than zero or one. Show that one has an isomorphism:

$$
R \cong R /(e) \times R /(1-e)
$$

(iii) Show that if e is a primitive idempotent then $R /(1-e)$ is indecomposable.
(iv) Show that a nonzero idempotent e is primitive if and only if e cannot be expressed as $e_{1}+e_{2}$, with e_{1}, e_{2} nonzero idempotents such that $e_{1} e_{2}=0$.
(v) Let R be a ring with finitely many idempotent elements. Show that the number of idempotents is 2^{d} for some positive integer d, and that R is isomorphic to a product:

$$
R \cong R_{1} \times R_{2} \times \cdots \times R_{d}
$$

with each R_{i} indecomposable. Conclude that R has exactly d primitive idempotents.
10. For each integer $n \geq 1$, show that there exists an ideal in $\mathbb{Z}[X]$ which is generated by $n+1$ elements but not by n elements.
${ }^{+}$11. Let p be a prime. Is it true that every ideal in $\mathbb{Z}\left[C_{p}\right]$ is a principal if and only if $\mathbb{Z}\left[\zeta_{p}\right]$ is a principal ideal domain? [Here C_{p} denotes the cyclic group of order p and $\zeta_{p}=e^{2 \pi i / p} \in \mathbb{C}$ denotes the p th roots of unity.]

