Algebra III: Rings and Modules Problem Sheet 3, Autumn Term 2022-23

John Nicholson

1. Prove that the two definitions of ring localisation given in lectures are equivalent. That is, let R be a commutative ring and let $S \subseteq R$ be a multiplicative submonoid. Show that there is a unique commutative ring R^{\prime} such that there exists a map $\iota: R \rightarrow R^{\prime}$ which satisfies:
(i) $\iota(S) \subseteq\left(R^{\prime}\right)^{\times}$, i.e. everything in S gets mapped to a unit in R^{\prime}.
(ii) For all commutative rings A and maps $\varphi: R \rightarrow A$ with $\varphi(S) \subseteq A^{\times}$, there exists a unique $\widetilde{\varphi}: R^{\prime} \rightarrow A$ such that $\varphi=\widetilde{\varphi} \circ \iota$.
2. Let R be a unique factorisation domain, let F denote its field of fractions and let

$$
f=a_{0}+a_{1} X+\cdots+a_{n} X^{n} \in R[X] .
$$

Show that, if $\frac{p}{q} \in F$ is a root of f for $p, q \in R$ with $\operatorname{gcd}(p, q)=1$, then $p \mid a_{0}$ and $q \mid a_{n}$ in R. [This is a generalisation of the Rational Root theorem.]
3. Show that the following polynomials are irreducible in $\mathbb{Q}[X, Y]$:

$$
3 X^{3} Y^{3}+7 X^{2} Y^{2}+Y^{4}+2 X Y+4 X, \quad 2 X^{2} Y^{3}+Y^{4}+4 Y^{2}+2 X Y+6
$$

4. We say a polynomial in $\mathbb{Z}[X, Y]$ is primitive if the greatest common divisor of its (integer) coefficients is one. Show that:
(i) If $f, g \in \mathbb{Z}[X, Y]$ are primitive, then $f g$ is primitive.
(ii) If $f \in \mathbb{Z}[X, Y]$ is primitive, then $f \in \mathbb{Z}[X, Y]$ is irreducible if and only if $f \in \mathbb{Q}[X, Y]$ is irreducible. [This is the analogue of Gauss' lemma for multivariate polynomials.]
5. For each of the following elements $\alpha \in \mathbb{C}$ determine whether α is an algebraic integer and, if so, compute its minimal polynomial f_{α}.

$$
(1+\sqrt{3}) / 2, \quad 2 \cos (2 \pi / 7), \quad(1+i) \sqrt{3}, \quad \sqrt{5} / \sqrt{7}, \quad i+\sqrt{3}
$$

6. Let R be a commutative ring. Show that R is Noetherian if and only if every ideal $I \subseteq R$ is finitely generated.
7. Let R be a commutative ring. Give a proof or counterexample to each of the following statements:
(i) If R is Noetherian, then R is an integral domain.
(ii) If $R[X]$ is Noetherian, then R is Noetherian. [The converse to Hilbert's basis theorem.]
(iii) Let $S \subseteq R$ be a multiplicative submonoid. If R is Noetherian, then $S^{-1} R$ is Noetherian.
8. Let R and S be rings. Show that every $R \times S$ module M is isomorphic to a product $M_{1} \times M_{2}$, where M_{1} is an R-module and M_{2} is an S module, and the $R \times S$-module structure on $M_{1} \times M_{2}$ is given by $(r, s) \cdot\left(m_{1}, m_{2}\right)=\left(r m_{1}, s m_{2}\right)$.
9. Let R be a ring. An R-module is M said to be cyclic if M it is generated by one element, and simple if M has no R-submodules other than 0 and M.
(i) Show that any cyclic R module is isomorphic to R / I for some ideal I of R.
(ii) Show that any simple R-module is cyclic.
(iii) Show that M is a simple R-module if and only if M is isomorphic to R / I for some maximal ideal I of R.
10. Let R be a ring and M an R-module. Define the endomorphism ring of M to be set $\operatorname{End}_{R}(M):=\{f: M \rightarrow M \mid f$ is an R-module homomorphism $\}$ with pointwise addition and multiplication given by function composition. The automorphism group of M, denoted by $\operatorname{Aut}_{R}(M)$, is defined to be the group of units of $\operatorname{End}_{R}(M)$.
(i) Show that a \mathbb{Z}-module is the same thing as an abelian group. Deduce that, for for an abelian group M, we have $\operatorname{End}(M) \cong \operatorname{End}_{\mathbb{Z}}(M)$ and $\operatorname{Aut}(M) \cong \operatorname{Aut}_{\mathbb{Z}}(M)$.
(ii) Show that the two definitions of R-module given in lectures are equivalent. That is, for an abelian group M, show that the structure $\cdot: R \times M \rightarrow M$ of a left R-module on M is the same information as a ring homomorphism $\varphi: R \rightarrow \operatorname{End}(M)$.
(iii) Let G be a group and M an abelian group. Show that an $R[G]$-module structure on M is equivalently an R-module structure on M and a homomorphism $\varphi: G \rightarrow \operatorname{Aut}_{R}(M)$.
(iv) Let G be a group. Show that a $\mathbb{Z}[G]$-module is equivalently an abelian group M with a G-action, i.e. group homomorphism $G \rightarrow \operatorname{Aut}(M)$. [We often call this a G-module.]
[Hint: To show that two definitions are equivalent, we need to establish a one-to-one correspondence. For example, you could show that (a) for every abelian group A, there exists a \mathbb{Z}-module M_{A}, (b) For every \mathbb{Z}-module M, there exists an abelian group $A(M)$, (c) $A\left(M_{A}\right) \cong A$ as abelian groups and $M_{A(M)} \cong M$ as \mathbb{Z}-modules.]
+11 . If R is a ring, the formal power series ring $R[[X]]$ is the ring with elements

$$
f=a_{0}+a_{1} X+a_{2} X^{2}+\cdots,
$$

where each $a_{i} \in R$. This has addition and multiplication the same as for polynomials, but without upper limits. Show that, if R is Noetherian, then $R[[X]]$ is Noetherian.

