Algebra III: Rings and Modules Problem Sheet 4, Autumn Term 2022-23

John Nicholson

1. Let R be a commutative ring and let $I \subseteq R$ be an ideal.
(i) Prove that I is a free R-module if and only if I is principal and is generated by an element which is not a zero divisor. [Optional: Find a non-commutative ring where this is false.]
(ii) Deduce that a commutative ring R is a principal ideal domain if and only if every ideal $I \subseteq R$ is free as an R-module.
2. Let R be a ring and let M be a free R-module. Give a proof or counterexample to each of the following statements:
(i) Every spanning set for M over R contains a basis for M.
(ii) Every linearly independent subset of M over R can be extended to a basis for M.
3. Let R be a non-trivial commutative ring. Prove that R is a field if and only if every finitely generated R-module is free. [Optional: Prove this is also equivalent to every R-module being free. You will need to use the axiom of choice.]
4. Let R be a ring, let $S \subseteq R$ be a multiplicative submonoid and let $N \leq M$ be R-modules. Show that there is an isomorphism of $S^{-1} R$-modules $S^{-1}(M / N) \cong S^{-1} M / S^{-1} N$.
5. Let R be a ring, M a right R-module and N a left R-module. The tensor product $M \otimes_{R} N$ is defined to be the abelian group

$$
\begin{aligned}
& M \otimes_{R} N=\mathbb{Z}[M \times N] /\left((v a, w)-(v, a w),(v, w)+\left(v^{\prime}, w\right)-\left(v+v^{\prime}, w\right),\right. \\
& \left.(v, w)+\left(v, w^{\prime}\right)-\left(v, w+w^{\prime}\right) \mid a \in R, v, v^{\prime} \in M, w, w^{\prime} \in N\right) .
\end{aligned}
$$

For left R-modules M and N, let $\operatorname{Hom}_{R}(M, N)$ denote the set of left R-module homomorphisms $f: M \rightarrow N$, which is an abelian group under pointwise addition.
From now on, let R be a commutative ring.
(i) Let M, N be left R-modules (which we can also view as right modules since R is commutative). Show that $M \otimes_{R} N$ is an R-module with action $a\left(v \otimes_{R} w\right)=a v \otimes_{R} w$ for $a \in R, v \in M$ and $w \in N$.
(ii) Let M, N be left R-modules. Show that $\operatorname{Hom}_{R}(M, N)$ is an R-module, with action: for $a \in R$ and $\varphi: M \rightarrow N$, define $a \cdot \varphi: M \rightarrow N$ by $(a \cdot \varphi)(b)=a \varphi(b)$ for $b \in M$.
(iii) Show that, if M, N, and T are all R-modules, then $\operatorname{Hom}_{R}\left(M \otimes_{R} N, T\right)$ is identified with the set of R-bilinear maps $\varphi: M \times N \rightarrow T$, which means functions satisfying $\varphi(a u, v)=a \varphi(u, v)=\varphi(u, a v)$ and $\varphi\left(u+u^{\prime}, v\right)=\varphi(u, v)+\varphi\left(u^{\prime}, v\right)$ as well as $\varphi(u, v+$ $\left.v^{\prime}\right)+\varphi(u, v)+\varphi\left(u, v^{\prime}\right)$. Use this to give an alternative definition of tensor product.
6. Let R be a ring and let M be a left R-module. We say that R is a ring with involution (or a *-ring) if R is equipped with a map $*: R \rightarrow R$ such that $(x+y)^{*}=x^{*}+y^{*},(x y)^{*}=y^{*} x^{*}$, $1^{*}=1$ and $\left(x^{*}\right)^{*}=x$ for all $x, y \in R$, i.e. $*$ is an anti-homomorphism and an involution.
(i) Show that $M^{*}=\operatorname{Hom}_{R}(M, R)$ is a right R-module with action: for $a \in R$ and $\varphi \in$ $\operatorname{Hom}_{R}(M, R)$, define $\varphi \cdot a: M \rightarrow R$ by $(\varphi \cdot a)(b)=\varphi(b) \cdot R a$ for $b \in M$. This is known as the dual module.
(ii) Let R be a commutative ring. Show that R is a ring with involution. For a group G, show that $R[G]$ is a ring with involution.
(iii) Let R be a ring with involution. Show that any right R-module M can be viewed as a left R-module with action: for $a \in R$ and $m \in M$, define $x \cdot m=m \cdot{ }_{M} x^{*}$. Use this to define a left R-module structure on $\operatorname{Hom}_{R}(M, R)$. For left R-modules M and N, define a (sensible) left R-module structure on the tensor product of abelian groups $M \otimes_{\mathbb{Z}} N$. [Optional: How do these R-module structures compare to those defined in (5) in the commutative case?]
7. Let R be a ring and let M be an R-module and let $N \leq M$ be a submodule. Show that M is Noetherian if and only if N and M / N are Noetherian.
8. Let a, b be nonzero positive integers. Find the Smith normal form of the following matrices in their respective rings:

$$
\left(\begin{array}{cc}
a & b \\
-b & a
\end{array}\right) \in M_{2}(\mathbb{Q}), \quad\left(\begin{array}{cc}
X^{2}-5 X+6 & X-3 \\
(X-2)^{3} & X^{2}-5 X+6
\end{array}\right) \in M_{2}(\mathbb{Q}[X]) .
$$

9. Let G be the abelian group given by generators a, b, c and the relations $6 a+10 b=0$, $6 a+15 c=0,10 b+15 c=0$ (i.e. G is the free abelian group generated by a, b, c quotiented by the subgroup $(6 a+10 b, 6 a+15 c, 10 b+15 c))$. Determine the structure of G as a direct sum of cyclic groups.
10. A ring R has the invariant basis number property (IBN) if, for all positive integers m, n, $R^{n} \cong R^{m}$ as R-modules implies $m=n$.
(i) For an ideal $I \subseteq R$ and an R-module M, we define an R-submodule $I M=\{a m \in M$: $a \in I, m \in M\} \leq M$. Prove that $M / I M$ is an R / I-module in a natural way.
(ii) Prove that non-zero commutative rings have IBN. You may assume that every non-zero commutative ring has a maximal ideal. [This is equivalent to the axiom of choice.]
(iii) Let S be a ring and M a free S-module with basis $\left\{x_{i} \mid i \geq 1\right\}$. Let $R=\operatorname{End}_{S}(M)$. Prove that R does not have IBN. [Hint: Note that $M \cong M_{\text {even }} \oplus M_{\text {odd }}$ where $M_{\text {even }}$ and $M_{\text {odd }}$ are the submodules generated by x_{i} for i even and odd respectively. Use this to show that $R \cong R^{2}$ as R-modules.]
+11 . Let G be a finite group, let $N=\sum_{g \in G} g \in \mathbb{Z}[G]$ and let $r \in \mathbb{Z}$ be an integer with $(r,|G|)=1$
(i) Show that the ideal $(N, r) \subseteq \mathbb{Z}[G]$ is projective as a $\mathbb{Z}[G]$-module.
(ii) Let $G=C_{n}$ be a finite cyclic group. Show that (N, r) is free as a $\mathbb{Z}[G]$-module.
(iii) Let $G=Q_{8}$ be the quaternion group of order 8 . Show that $(N, 3)$ is not free as a $\mathbb{Z}[G]$-module. Is it stably free as a $\mathbb{Z}[G]$-module?
