
Algebra III: Rings and Modules
Solutions for Problem Sheet 2, Autumn Term 2022-23

John Nicholson

1. Determine whether or not the following rings are fields, PIDs, UFDs, integral domains:

Z[X], Z[X]/(X2 + 1), F2[X]/(X2 + 1), F2[X]/(X2 +X + 1), F3[X]/(X2 +X + 1).

Solution: We have Field ⇒ PID ⇒ UFD ⇒ Integral domain. It therefore suffices to find
the rightmost property which each ring does not possess.

Z[X]: A UFD but not a PID. We proved that R a UFD implies R[X] a UFD. Z is a UFD
by the fundamental theorem of arithmetic, therefore Z[X] is a UFD. It is not a PID since,
as shown in lectures, (2, X) is not principal.

Z[X]/(X2 +1): A PID but not a Field. First note that Z[X]/(X2 +1) ∼= Z[i]. To show this,
let ϕ : Z[X] → Z[i] be the unique ring homomorphism which maps X to i. This is clearly
surjective. By the first isomorphism theorem, it suffices to prove that ker(ϕ) = (X2 + 1).
Firstly, ϕ(X2 + 1) = i2 + 1 = 0 so X2 + 1 ∈ ker(f) and (X2 + 1) ⊆ ker(ϕ) since ker(ϕ) is an
ideal. Let f ∈ ker(ϕ). Since X2 + 1 is monic, it can be proven by induction (similar to the
Euclidean algorithm for F [X] where F is a field) that we can write f = q(X2+1)+(a+ bX)
where q ∈ Z[X] and a, b ∈ Z. (Note that Z[X] is not a Euclidean domain so we cannot use
that!) Then ϕ(f) = a+ bi = 0 implies a = b = 0 and so f = q(X2 + 1) ∈ (X2 + 1).

We know that Z[i] is a Euclidean domain and hence is also an PID. It is not a field since
2 ∕∈ Z[i]×. To see this, let N : Z[i] → Z≥0, a+bi '→ a2+b2. Suppose 2·x = 1 for some x ∈ Z[i].
Since N is multiplicative, this implies that 1 = N(1) = N(2 · x) = N(2) · N(x) = 4 · N(x)
which is a contradiction.

F2[X]/(X2 + 1): Not an integral domain. Note that (X + 1)2 = X2 + 1 = 0 but X + 1 ∕= 0
since it can be shown that distinct coset representatives are given by {a+ bX : a, b ∈ F2}.
F2[X]/(X2 +X + 1): A field. Since X2 +X + 1 has no roots in F2, it can’t have any linear
factors. Hence X2 +X +1 ∈ F2[X] is irreducible. Since F2[X] is a Euclidean domain, hence
a PID, this implies that (X2 + X + 1) ⊆ F2[X] is a maximal ideal by a result in lectures.
(Note that, in an exam, you should clearly state any results from lectures you are using. We
avoid doing this here due to lack of space!) Finally this implies that F2[X]/(X2+X+1) is a
field. [Can you find a proof which does not use the fact that F2[X] is a Euclidean domain?]

F3[X]/(X2+X+1): Not an integral domain. Similarly to the above example, just note that
(X − 1)2 = X2 +X + 1 = 0 but X − 1 ∕= 0.
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2. Given a set X ⊆ Z of prime numbers, let S(X) ⊆ Z be the set consisting of 1 and the n ≥ 2
all of whose prime factors are in X.

(i) Prove that S(X) is a submonoid of (Z, ·).
(ii) Let RX = S(X)−1Z denote the localisation of the integers at the set S(X). Prove that

if X ′ is another set of prime numbers, then RX
∼= RX′ if and only if X = X ′.

(iii) Prove that every subring of Q is of the form RX for some set of prime numbers X,
realising (a, b) ∈ RX as the fraction a

b .

(iv) Show that there exists a countable integral domain R (i.e. the set R is countable) for
which there exists uncountably many subrings which are distinct up to ring isomor-
phism.

Solution:

(i) To see this is a submonoid, note that it has one by definition, and the product of any two
multiples of primes in X must still be a multiple of a prime in X.

(ii) If X and X ′ are two sets of prime numbers, and X ∕= X ′, then without loss of generality
there is a prime p ∈ X with p /∈ X ′. Then there exists a multiplicative inverse (1p = (1, p))
in RX for p but not in RX′ . Any isomorphism RX → RX′ must be the identity on Z, since
it must send ι(m) = 1+ 1+ · · ·+1 to ι(m) for all m ∈ Z. So it would send p to p, but could
not send 1

p to anything. Hence RX and RX′ cannot be isomorphic.

(iii) Let R ≤ Q be a subring. By definition, R contains 1 and so we must have Z ≤ R ≤ Q.
Let X be the set of primes p for which 1

p ∈ R. Then RX , viewed as a subring of Q, is

generated by the 1
p for p ∈ X and so RX ≤ R. Suppose there exists r ∈ R with r ∕∈ RX .

Write r = a
b with b ∕= 0 and (a, b) = 1. Since r ∕∈ RX , there must exist a prime q ∕∈ X such

that q | b. Let b = b′q. Then a
q = b′r ∈ R. Since q | b, we have (q, a) = 1. By Bezout’s

lemma, there exists x, y ∈ Z such that ax+ qy = 1. Then 1
q = x · a

q + y ∈ R since a
q , y ∈ R.

This implies that q ∈ X (by definition of X) which is a contradiction.

(iv) Take Q (which is countable). Let S denote the set of prime numbers and let P (S) denote
the set of subsets of S. Note that P (S) is uncountable (e.g. by Cantor’s diagonal argument).
For each X ∈ P (S), we have a subring RX ≤ Q. By (ii), we have that RX

∼= RY if and only
if X = Y as sets. Hence {RX : X ∈ P (S)} is an uncountable collection of subrings of Q
which are all pairwise distinct up to ring isomorphism.

3. Let R be a commutative ring and let S ⊆ R be a multiplicative submonoid.

(i) Let ι : R → S−1R be the map a '→ (a, 1). Show that ι is injective if and only if S
contains no zero divisors or zero. Show further that ι is an isomorphism if and only if
S ⊆ R×.

(ii) Let I ⊆ R be an ideal. Show that I is prime if and only if R \ I ⊆ R is a multiplicative
submonoid. Deduce that R \ {0} ⊆ R is a multiplicative submonoid if and only if R is
an integral domain.

Solution:

(i) For the first part it suffices to show that the kernel of ι : R → S−1R is the set of zero
divisors, i.e. elements r ∈ R such that rt = 0 for some t ∈ S. To see this, note that
(a, 1) ∼ (b, 1) if and only if t(a− b) = 0 for some t ∈ S.

If S ⊆ R×, then ι is injective by the first part. It is surjective since every (a, b) ∈ S−1R has
(a, b) ∼ (ab−1, 1) since b ∈ S ⊆ R×. Conversely, if ι is an isomorphism, then S contains no
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zero divisors. Let b ∈ S. Since ι is surjective, we must have (1, b) ∼ (r, 1) for some r ∈ R.
Hence t · (1 − br) for some t ∈ S which implies that 1 − br = 0 since S contains no zero
divisors. Hence br = 1 and b ∈ R×.

(ii) Let I be an ideal. Then R \ I is a multiplicative submonoid if and only if 1 ∈ R \ I and
every a, b ∈ R \ I has ab ∈ R \ I, i.e. 1 ∕∈ I and ab ∈ I implies a ∈ I or b ∈ I. This is the
definition of prime ideal.

For the last part, just note that {0} ⊆ R is a prime ideal if and only if R is an integral
domain.

4. A ring R is simple if it is non-trivial and its only two-sided ideals are {0} and R. The centre
of a ring R is the subset Z(R) ⊆ R of elements x ∈ R such that xy = yx for all y ∈ R.

(i) Let R be any non-trivial ring. Find two nilpotent elements x, y ∈ M2(R) such that
x+ y and xy are both not nilpotent. [Compare with Problem 2 on Problem Sheet 1.]

(ii) Let R = F be a field. Prove that Mn(F ) is simple.

(iii) Let R be a ring. Prove that the centre of Mn(R) is Z(R) ·In where In denotes the n×n
identity matrix, i.e. the diagonal matrices whose diagonal entries are all equal to some
x ∈ Z(R).

Solution:

(i) We can take: x =

!

"0 1

0 0

#

$ and y =

!

"0 0

1 0

#

$. Note that this example works for any

nonzero ring R.

(ii) We have to show that if A ∈ Mn(F ) is any matrix, then the two-sided ideal (A) is
all of Mn(F ). Suppose that A = (aij) for aij ∈ R. Let i, j be two indices such that
aij ∕= 0. Then (A) contains the matrix a−1

ij eiiAejj = eij . Therefore it also contains
cekieijejℓ = ekℓ for all k, ℓ and all c ∈ F . Every matrix is a sum of such elements so
(A) = Mn(F ) as desired.

(iii) If A = (aℓ,k) ∈ Mn(R) commutes with eij , i.e. eijA = Aeij , then we deduce that
ajj = aii and ajk = aℓi = 0 for k ∕= j and ℓ ∕= i. Requiring this for all i, j implies that A
is diagonal with all diagonal entries equal, i.e., a scalar matrix. Finally, in order for the
scalar matrix to commute with R we require that the scalar be central, i.e., in Z(R).
Conversely, it is easy to see that every element in Z(R) · Id commutes with everything
in Mn(R).

5. Let d be an integer which is not a square.

(i) Show that, in Z[
√
d], if I is any nonzero ideal, then Z[

√
d]/I is finite. [Hint: If a+b

√
d ∈

I, show that a2 − b2d ∈ I as well. Then show that |Z[
√
d]/(m)| = m2 if m ≥ 1.]

(ii) Show that every nonzero prime ideal in Z[
√
d] is maximal.

(iii) Now suppose Z[
√
d] is a UFD. Then show that, for every irreducible a+ b

√
d ∈ Z[

√
d],

then Z[
√
d]/(a+ b

√
d) is a field.

(iv) Is Z[
√
5] a Euclidean domain? [Hint: Show that Z[

√
5]/(2) ∼= (Z/2)[X]/(X2).]

Solution:

(i) We can write all the elements of Z[
√
d]/(m) uniquely as a+ b

√
d for a, b ∈ Z/m (although

for the finiteness we don’t actually need the uniqueness). Therefore this quotient is finite for
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all integers m ∕= 0. On the other hand if a+ b
√
d ∈ I for I an ideal (and not both of a and

b are zero), then (a + b
√
d)(a − b

√
d) = a2 − b2d ∈ I, and since d is not a square, a2 − b2d

can only be zero if a = b = 0, which we assumed was not the case. Therefore every nonzero
ideal I contains a nonzero integer. We conclude that R/I is finite for I a nonzero ideal (its
size is at most m2 for some integer m).

(ii) If I is a nonzero prime ideal, then R/I is a finite integral domain (with finiteness from
(i)). Therefore it is a field, and hence I is maximal.

(iii) For every irreducible element a+ b
√
d, the UFD property ensures it is a prime element,

hence it generates a prime ideal. By (ii) this ideal is maximal. Therefore the quotient
Z[
√
d]/(a+ b

√
d) is a field.

(iv) We will show that it is not a UFD (and hence not a Euclidean Domain). We first
claim that 2 ∈ Z[

√
5] is irreducible. If not, then we have 2 = xy for x, y non-units. Let

N : Z[
√
5] → Z, a+ b

√
5 '→ (a+ b

√
5)(a− b

√
5) = a2− 5b2 which is a multiplicative function.

We then have that 4 = N(2) = N(x)N(y). If N(x) = ±1, then x would be a unit. Hence
we can assume that N(x) ∕= ±1 and similarly N(y) ∕= ±1. Hence N(x) = N(y) = ±2. If
x = a+ b

√
5, this implies that a2 − 5b2 = ±2 and so a2 = ±2 mod 5. However, only ±1 are

squares mod 5 so this is a contradiction.

Since 2 is irreducible it suffices, by (iii), to show that Z[
√
5]/(2) is not a field. To see this,

note that (1 +
√
5)2 = 0 but 1 +

√
5 ∕= 0 since a set of distinct coset representatives is given

by {a + b
√
5 : a, b ∈ {0, 1}} (i.e. the ring has order 4). [Note: This can certainly also be

proven by showing that Z[
√
5]/(2) ∼= (Z/2)[X]/(X2). But the ‘hint’ is really to look at the

element 2 ∈ Z[
√
5].]

6. Let R be a UFD and let f = a0+a1X+· · ·+anX
n ∈ R[X] be primitive (i.e. gcd(a0, · · · , an) =

1) with an ∕= 0. Let p ∈ R be irreducible (hence prime) and such that p ∤ an, p | ai for all
0 ≤ i < n and p2 ∤ a0.

(i) Prove that f is irreducible in R[X]. This is Eisenstein’s criterion. [Hint: If f factorises
in R[X], what would an induced factorisation in R[X]/(p) ∼= (R/(p))[X] look like?]

(ii) Use Eisenstein’s criterion to show that 3X5 + 12X3 + 18 is irreducible over Q.

(iii) Show that the UFD hypothesis is not needed if we replace p by a prime ideal P and
the conditions p | ai by ai ∈ P and p2 ∤ a0 by a0 /∈ P 2.

Solution: The proof of Eisenstein’s criterion is important so I will write the proof below
in two different ways: one by considering R[X]/(p) (as in the hint) and another more direct
proof working inside of R[X].

(i) [Proof 1] Observe that, since f is primitive and p divides all coefficients except possibly the
leading coefficient, and p is not a unit, it follows that p cannot divide the leading coefficient.

Now suppose f = gh. Since p is prime, R/(p) is an integral domain. Modulo p, we have
f = anx

n with an ∈ R/(p) nonzero. Thus, modulo p, we have g = cXm, h = dXn−m for some
c, d ∈ R/(p). Now, if m and n−m are both positive, this implies that p divides the constant
terms of both g and h, and hence p2 divides the constant term of f = gh, a contradiction.
Hence either m or n −m is zero. Suppose without loss of generality that m = 0. Then we
claim g has degree zero (this is only obvious modulo p). If not, the leading term of g had
coefficient a multiple of p, but then the same would be true for f = gh, a contradiction.
So g is a scalar. Since we assumed f was primitive, this scalar must be invertible, so f is
irreducible in R[X].
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(i) [Proof 2] Suppose we have a factorisation f = gh with

g = r0 + r1X + · · ·+ rkX
k

h = s0 + s1X + · · ·+ sℓX
ℓ,

for rk, sℓ ∕= 0.

We know rksℓ = an. Since p ∤ an, so p ∤ rk and p ∤ sℓ. We can also look at bottom coefficients.
We know r0s0 = a0. We know p | a0 and p2 ∤ a0. So p divides exactly one of r0 and s0. wlog,
p | r0 and p ∤ s0.
Now let j be such that

p | r0, p | r1, · · · , p | rj−1, p ∤ rj .

We now look at aj . This is, by definition,

aj = r0sj + r1sj−1 + · · ·+ rj−1s1 + rjs0.

We know r0, · · · , rj−1 are all divisible by p. So

p | r0sj + r1sj−1 + · · ·+ rj−1s1.

Also, since p ∤ rj and p ∤ s0, we know p ∤ rjs0, using the fact that p is prime. So p ∤ aj . So
we must have j = n.

We also know that j ≤ k ≤ n. So we must have j = k = n. So deg g = n. Hence
ℓ = n− h = 0. So h is a constant. But we also know f is primitive. So h must be a unit. So
this is not a proper factorisation.

(ii) First, this is not primitive. To form a primitive polynomial, divide by 3. Then we get
X5 + 4X3 + 6. This polynomial is primitive and hence it is irreducible over Q if and only
if it is irreducible over Z, and we can apply Eisenstein’s criterion: 2 | 6 and 2 | 4 but 4 ∤ 6
shows, using p = 2, that the polynomial is irreducible.

(ii) The proof is the same as before, using R/P instead of R/(p). Since R/P is an integral
domain, everything goes through.

7. Determine which of the following polynomials are irreducible in Q[X]:

X4 + 2X + 2, X4 + 18X2 + 24, X3 − 9, X3 +X2 +X + 1, X4 + 1, X4 + 4.

Solution: By Gauss’ lemma, a primitive polynomial is irreducible in Q[X] if and only if
it is irreducible in Z[X]. All polynomials are monic and so primitive. Hence it suffices to
determine irreducibility in Z[X].

X4 + 2X + 2: Irreducible. Apply Eisenstein’s criterion for p = 2.

X4 + 18X2 + 24: Irreducible. Apply Eisenstein’s criterion for p = 3.

X3 − 9: Irreducible. If it is reducible then, since it has degree 3, it must have a linear factor
hence a rational root. It is straightforward to show that 3

√
9 ∕∈ Q and so X3 − 9 has no

rational roots.

X3 +X2 +X + 1: Not irreducible since equal to (X + 1)(X2 + 1) which are non-units.

X4 +1: Irreducible. Substituting Y = X − 1 gives (Y +1)4 +1 = Y 4 +4Y 3 +6Y 2 +4Y +2
which is irreducible by Eisenstein’s critertion for p = 2.
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X4 + 4: Not irreducible since equal to (X2 + 2)2 − 4X2 = (X2 − 2X + 2)(X2 + 2X + 2).

8. Find the factorisations of X13 +X, X16 + 1, and X8 +X4 + 1 into irreducibles in F2[X].

Solution: We have X13 +X = X(X12 + 1) = X(X6 + 1)2 = X(X3 + 1)4. Now X3 + 1 has
1 as a root, and X3 + 1 = (X + 1)(X2 +X + 1). Finally X2 +X + 1 has no roots so it is
irreducible. We obtain X13 +X = X(X + 1)4(X2 +X + 1)4.

Next X16 + 1 = (X8 + 1)2 = (X4 + 1)4 = (X2 + 1)8 = (X + 1)16.

Finally X8 +X4 + 1 = (X4 +X2 + 1)2 = (X2 +X + 1)4.

9. An element e of a ring R is said to be idempotent if e2 = e and er = re for all r ∈ R (this is
often called a central idempotent). A nonzero idempotent e is called primitive if for any other
idempotent e′, one has either e′e = 0 or e′e = e. We will call a ring R with no idempotents
other than zero or one indecomposable.

(i) Show that if R and S are rings, then R×S is not indecomposable unless either R or S
is the zero ring.

(ii) Let e be an idempotent element of R other than zero or one. Show that one has an
isomorphism:

R ∼= R/(e)×R/(1− e).

(iii) Show that if e is a primitive idempotent then R/(1− e) is indecomposable.

(iv) Show that a nonzero idempotent e is primitive if and only if e cannot be expressed as
e1 + e2, with e1, e2 nonzero idempotents such that e1e2 = 0.

(v) Let R be a ring with finitely many idempotent elements. Show that the number of
idempotents is 2d for some positive integer d, and that R is isomorphic to a product:

R ∼= R1 ×R2 × · · ·×Rd,

with each Ri indecomposable. Conclude that R has exactly d primitive idempotents.

Solution:

(i) If R and S are both not the zero ring, then (1R, 0S) is an idempotent of R × S that is
neither zero nor one.

(ii) The ideals generated by (e) and (1 − e) are both two-sided ideals since e and 1 − e
commute with all elements of R. Hence it makes sense to write R/(e) and R/(1− e).

Let f : R → R/(e)×R/(1− e) be the natural quotient maps, i.e. r '→ (r + (e), r + (1− e)).
This is surjective since, for all a, b ∈ R, we have f(a(1− e) + be) = (a, b).

Note that ker(f) = (e)∩ (1− e) = ∅ since, if r ∈ (e)∩ (1− e), then r = ae = b(1− e) implies
r = ae = ae2 = b(1− e)e = 0. Hence f is injective and so an isomorphism.

This is a special case of the Chinese remainder theorem for rings.

(iii) By part (ii) we have R ∼= R/(e)×R/(1− e). If R/(1− e) decomposes as S×S′, then we
have R ∼= R/(e)× S × S′. Under this isomorphism e maps to (0, 1, 1). Let e′ be the element
of R mapping to (0, 1, 0). Then ee′ = e′ so e is not primitive.

(iv) If e = e1+e2 with e1e2 = 0, then ee1 = (e1+e2)e1 = e1, so e is not primitive. Conversely,
if e is not primitive, let e′ be such that ee′ is not equal to zero or e. Then ee′ is idempotent,
as is e− ee′, and ee′(e− ee′) = 0.
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(v) Since there are only finitely many idempotents, there exists a primitive idempotent e;
then by (ii) and (iii), R = R1×S with R1 indecomposible. Since for every idempotent e of S,
(0, e) and (1, e) correspond to idempotents of R, the number of idempotents of S is half the
number of idempotents or R. Proceeding inductively, we find that R ∼= R1×R2×· · ·×Rd with
each Ri indecomposable, and R has 2d idempotents. Under this isomorphism the primitive
idempotents of R are ei, where ei maps to 1 in Ri and 0 in Rj for i ∕= j.

10. For each integer n ≥ 1, show that there exists an ideal in Z[X] which is generated by n+ 1
elements but not by n elements.

Solution: For n = 1, we can take I1 = (2, X). This consists of polynomials with con-
stant term divisible by 2 and the rest arbitrary. Such an ideal is too complicated to be
generated by a single element. We want to generalise this idea somehow. After some
thought, we might come up with I2 = (4, 2X,X2) for the next case. More generally, let
In = (2n, 2n−1X, 2n−2X2, · · · , 2Xn−1, Xn). This is generated by n + 1 elements and we
claim that it is not generated by n elements. Note that I1 ⊇ I2 ⊇ I3 ⊇ · · · .
Note that, for In+1 ⊆ In, the quotient In/In+1 is an ideal in Z[X]/In+1 and in particular an
abelian group. If In is generated by n elements, then the abelian group In/In+1 must also
be generated by n elements. In the case n = 1, we have

I1/I2 = (2, X)/(4, 2X,X2) = {a · 2 + b ·X + (4, 2X,X2) : a, b ∈ {0, 1}} ∼= (Z/2Z)2.

The abelian group (Z/2Z)2 requires two generators and hence so does (2, X) (though we
knew this already). More generally, we have that

In/In+1 = (2n, 2n−1X, · · · , Xn)/(2n+1, 2nX, · · · , Xn+1).

The coset representatives are {a0 · 2n + a1 · 2n−1X + · · · + an · Xn : ai ∈ {0, 1}}. It is
straightforward to see they represent every class. To show they represent distinct classes
note that

%
ai · 2n−iXi =

%
bi · 2n−iXi if and only if

%
(ai − bi) · 2n−iXi ∈ In+1. By

definition, the coefficient in Xi for i ≤ n of any polynomial in In+1 is divisible by 2n+1−i.
Hence ai ≡ bi mod 2 which implies ai = bi since ai, bi ∈ {0, 1}. Given these coset operations,
it follows immediately that In/In+1

∼= (Z/2Z)n+1 which is not generated by n elements as
an abelian group. Hence In is not generated by n elements as an ideal.

+11. Let p be a prime. Is it true that every ideal in Z[Cp] is a principal if and only if Z[ζp] is a
principal ideal domain? [Here Cp denotes the cyclic group of order p and ζp = e2πi/p ∈ C
denotes the pth roots of unity.]

Solution not provided. You may continue to work on this throughout the term and contact
me to discuss ideas and/or hand in a solution. Remember that this problem is optional and
may be significantly more challenging than the other problems.
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