Algebra III: Rings and Modules Solutions for Problem Sheet 3, Autumn Term 2022-23

John Nicholson

- 1. Prove that the two definitions of ring localisation given in lectures are equivalent. That is, let R be a commutative ring and let $S \subseteq R$ be a multiplicative submonoid. Show that there is a unique commutative ring R' such that there exists a map $\iota : R \to R'$ which satisfies:
 - (i) $\iota(S) \subseteq (R')^{\times}$, i.e. everything in S gets mapped to a unit in R'.
 - (ii) For all commutative rings A and maps $\varphi: R \to A$ with $\varphi(S) \subseteq A^{\times}$, there exists a unique $\widetilde{\varphi}: R' \to A$ such that $\varphi = \widetilde{\varphi} \circ \iota$.

Solution: Existence follows by the definition given in lectures and results on problem sheet 2, i.e. we take $R' = S^{-1}R$ and $\iota : R \to S^{-1}R$. We will show uniqueness.

Suppose R_1 and R_2 both have this property with maps $\iota_1: R \to R_1$ and $\iota_2: R \to R_2$. It suffices to show that $R_1 \cong R_2$ as rings. Consider the case $R' = R_1$. Since $(A, \varphi) = (R_2, \iota_2)$ satisfy the conditions of (ii), there exists a unique map $f: R_1 \to R_2$ such that $\iota_2 = f \circ \iota_1$. Similarly there exists a unique map $g: R_2 \to R_1$ such that $\iota_1 = g \circ \iota_2$. This implies that $\iota_1 = (g \circ f) \circ \iota_1$. We claim that $g \circ f = \mathrm{id}_{R_1}$. To see this, consider the ring R_1 and note that $(A, \varphi) = (R_1, \mathrm{id}_{R_1})$ satisfy the conditions of (ii). This implies that id_{R_1} is the unique map such that $\iota_1 = \mathrm{id}_{R_1} \circ \iota_1$. Hence $g \circ f = \mathrm{id}_{R_1}$. Similarly we have $f \circ g = \mathrm{id}_{R_2}$. This implies that f is a ring isomorphism and so $R_1 \cong R_2$ as required.

2. Let R be a unique factorisation domain, let F denote its field of fractions and let

$$f = a_0 + a_1 X + \dots + a_n X^n \in R[X].$$

Show that, if $\frac{p}{q} \in F$ is a root of f for $p, q \in R$ with gcd(p, q) = 1, then $p \mid a_0$ and $q \mid a_n$ in R. [This is a generalisation of the Rational Root theorem.]

Solution: Let $f = c(f)f_1$ where f_1 is primitive. Then $\frac{p}{q} \in F$ is a root of f_1 . Since F[X] is Euclidean domain, this means we can write $f_1 = (qX - p)g$ for some $g \in F[X]$. Since f_1 is primitive and reducible in F[X], it must be reducible in R[X] by Gauss' lemma. It follows that $f_1 = (qX - p)g$ for some $g \in R[X]$ (this follows from the proof of Gauss' lemma but can also be seen directly). If $g = b_0 + b_1X + \cdots + b_{n-1}X^{n-1}$, then f_1 has constant term $-pb_0$ and leading term qb_{n-1} . Since $f = c(f)f_1$, we have that $-pb_0 \mid a_0$ and $qb_{n-1} \mid a_n$. Hence $p \mid a_0$ and $q \mid a_n$ as required.

Note that an elementary solution is also possible.

3. Show that the following polynomials are irreducible in $\mathbb{Q}[X,Y]$:

$$3X^3Y^3 + 7X^2Y^2 + Y^4 + 2XY + 4X$$
, $2X^2Y^3 + Y^4 + 4Y^2 + 2XY + 6$.

Solution:

 $3X^3Y^3+7X^2Y^2+Y^4+2XY+4X$: This can be rewritten as $Y^4+3X^3Y^3+7X^2Y^2+2XY+4X$; we regard it as a polynomial in Y with coefficients in $\mathbb{Q}[X]$. Note that it is monic, that each of the coefficients other than the leading one lies in the prime ideal $\langle X \rangle$, and that the "constant term" 4X does not lie in $\langle X \rangle^2$. Thus this polynomial is irreducible by Eisenstein's criterion. $2X^2Y^3+Y^4+4Y^2+2XY+6$: This is monic in Y, and this is irreducible in $\mathbb{Q}[X,Y]$ if, and only if, it is irreducible in $\mathbb{Q}(X)[Y]$. Since $\mathbb{Z}[X]$ has field of fractions $\mathbb{Q}(X)$, and is a UFD, this polynomial is irreducible in $\mathbb{Q}(X)[Y]$ if and only if it is irreducible in $\mathbb{Z}[X][Y]$. But as a polynomial in $\mathbb{Z}[X][Y]$ this polynomial is Eisenstein mod (2), so it is irreducible.

- 4. We say a polynomial in $\mathbb{Z}[X,Y]$ is *primitive* if the greatest common divisor of its (integer) coefficients is one. Show that:
 - (i) If $f, g \in \mathbb{Z}[X, Y]$ are primitive, then fg is primitive.
 - (ii) If $f \in \mathbb{Z}[X,Y]$ is primitive, then $f \in \mathbb{Z}[X,Y]$ is irreducible if and only if $f \in \mathbb{Q}[X,Y]$ is irreducible. [This is the analogue of Gauss' lemma for multivariate polynomials.]

Solution: (i) We first show (following the single variable setting) that if P(X,Y) and Q(X,Y) are primitive in $\mathbb{Z}[X,Y]$ (that is, their coefficients have GCD one) then so is their product. Suppose that p is a prime in \mathbb{Z} that divides every coefficient of the product P(X,Y)Q(X,Y). Then we have that P(X,Y)Q(X,Y)=0 in $\mathbb{Z}/p\mathbb{Z}[X,Y]$. Since the latter is a domain, we must have that either P(X,Y) or Q(X,Y) is zero mod p, contradicting the fact that P(X,Y) and Q(X,Y) are primitive.

(ii) Suppose we have P(X,Y) = Q(X,Y)R(X,Y) in $\mathbb{Z}[X,Y]$. Then (considering this as a factorisation in $\mathbb{Q}[X,Y]$) we see by irreducibility of P(X,Y) that at least one factor is a unit in $\mathbb{Q}[X,Y]$, hence a nonzero constant. WLOG assume Q(X,Y) is this factor; then Q(X,Y) lies in \mathbb{Q} and $\mathbb{Z}[X,Y]$, so Q(X,Y) must be an integer d. But then d divides each coefficient of P(X,Y), so must be equal to ± 1 .

Now suppose that P(X,Y) is an irreducible (thus primitive) polynomial in $\mathbb{Z}[X,Y]$, and that we have a factorization P(X,Y) = Q(X,Y)R(X,Y) in $\mathbb{Q}[X,Y]$. Let q and r be rational numbers such that qQ(X,Y) and rR(X,Y) are primitive polynomials with integer coefficients. Then qrP(X,Y) = qQ(X,Y)rR(X,Y), so by the previous paragraph qrP(X,Y) is a primitive rational multiple of P(X,Y). Thus $qr = \pm 1$. Thus $P(X,Y) = \pm qQ(X,Y)rR(X,Y)$ is a factorization of P(X,Y) in $\mathbb{Z}[X,Y]$, so one of qQ(X,Y) or rR(X,Y) is equal to ± 1 . But then one of Q(X,Y) or R(X,Y) is constant, so P(X,Y) is irreducible in $\mathbb{Q}[X,Y]$.

5. For each of the following elements $\alpha \in \mathbb{C}$ determine whether α is an algebraic integer and, if so, compute its minimal polynomial f_{α} .

$$(1+\sqrt{3})/2$$
, $2\cos(2\pi/7)$, $(1+i)\sqrt{3}$, $\sqrt{5}/\sqrt{7}$, $i+\sqrt{3}$.

Solution: $(1+\sqrt{3})/2$: Not an algebraic integer. If so, then $\alpha(1-\alpha)=\frac{1^2-3}{4}=-\frac{1}{2}$ is an algebraic integer. This is a contradiction since the algebraic integers in $\mathbb Q$ are $\mathbb Z$.

 $2\cos(2\pi/7)$: We claim that $f_{\alpha} = X^3 + X^2 - 2X - 1$. Let $\zeta_7 = e^{2\pi i/7}$ so that $\alpha = \zeta_7 + \zeta_7^{-1}$. Then $\alpha^2 = \zeta_7^2 + \zeta_7^{-2} + 2$ and $\alpha^3 = \zeta_7^3 + \zeta_7^{-3} + 3\alpha$. Hence have $\alpha^3 + \alpha^2 - 2\alpha - 1 = 0$. So

 $f_{\alpha} \mid X^3 + X^2 - 2X - 1$. But $X^3 + X^2 - 2X - 1$ is irreducible since, by the rational root theorem and the fact that ± 1 are not roots, it has no linear factors.

 $(1+i)\sqrt{3}$: We claim that $f_{\alpha}=X^4+36$. We have $\alpha^2=-2i\cdot 3\Rightarrow \alpha^4=-36$, so $f_{\alpha}\mid X^4+36$. Since X^4+36 is monic, all rational roots are in $\mathbb Z$ by the rational root theorem (i.e. question 2). Clearly it has no integer roots and so X^4+36 has no linear factors. Hence, if f_{α} is not an associate of X^4+36 , it has degree two. But $X^4+36=(X^2+6i)(X^2-6i)$. This is a factorisation in $(\mathbb Z[i])[X]$ which is a UFD since $\mathbb Z[i]$ is a UFD (this follows from the fact it is an ED). X^2+6i and X^2-6i are irreducible in $(\mathbb Z[i])[X]$ since their roots are not in $\mathbb Z[i]$. Since f_{α} has degree two and no roots in $\mathbb Z[i]$, it must be irreducible in $(\mathbb Z[i])[X]$ and so, since $(\mathbb Z[i])[X]$ is a UFD, it must be an associate of X^2+6i or X^2-6i which is a contradiction.

[A much better way to prove this would be to prove that the rational minimal polynomial has degree 4 since the field $\mathbb{Q}(\alpha)$ has degree 4. This follows from the fact that it has distinct subfields $\mathbb{Q}(i)$ and $\mathbb{Q}(\sqrt{3})$. However, this material was not included in the course.]

 $\sqrt{5}/\sqrt{7}$: Not an algebraic integer. If so, then $\alpha^2 = \frac{5}{7}$ is an algebraic integer. This is a contradiction since the algebraic integers in \mathbb{Q} are \mathbb{Z} .

 $i + \sqrt{3}$: We claim that $f_{\alpha} = X^4 - 4X^2 + 16$. We have $\alpha^2 = 2 + 2i\sqrt{3} \Rightarrow (\alpha^2 - 2)^2 = -12 \Rightarrow \alpha^4 - 4\alpha^2 + 16 = 0 \Rightarrow f_{\alpha} \mid X^4 - 4X^2 + 16$. The fact this is irreducible follows by a similar argument to the case $\alpha = (1+i)\sqrt{3}$.

6. Let R be a commutative ring. Show that R is Noetherian if and only if every ideal $I \subseteq R$ is finitely generated.

Solution: (\Leftarrow): Suppose every ideal of R is finitely generated. Given the chain $I_1 \subseteq I_2 \subseteq \cdots$, let:

$$I = \bigcup_{i > 1} I_i$$

This is an ideal (e.g. we proved this in lectures). We know I is finitely generated, say $I = (r_1, \dots, r_n)$, with $r_i \in I_{k_i}$. Let

$$K = \max_{i=1,\dots,n} \{k_i\}.$$

Then $r_1, \dots, r_n \in I_K$. So $I_K = I$. So $I_K = I_{K+1} = I_{K+2} = \dots$.

(⇒): To prove the other direction, suppose there is an ideal $I \triangleleft R$ that is not finitely generated. We pick $r_1 \in I$. Since I is not finitely generated, we know $(r_1) \neq I$. So we can find some $r_2 \in I \setminus (r_1)$.

Again $(r_1, r_2) \neq I$. So we can find $r_3 \in I \setminus (r_1, r_2)$. We continue on, and then can find an infinite strictly ascending chain

$$(r_1) \subseteq (r_1, r_2) \subseteq (r_1, r_2, r_3) \subseteq \cdots$$

So R is not Noetherian.

- 7. Let R be a commutative ring. Give a proof or counterexample to each of the following statements:
 - (i) If R is Noetherian, then R is an integral domain.
 - (ii) If R[X] is Noetherian, then R is Noetherian. [The converse to Hilbert's basis theorem.]
 - (iii) Let $S \subseteq R$ be a multiplicative submonoid. If R is Noetherian, then $S^{-1}R$ is Noetherian.

- **Solution**: (i) False. For example, take $\mathbb{Z}/6\mathbb{Z}$. This is not an integral domain but it is Noetherian since it is a finite ring and all finite rings are Noetherian.
- (ii) True. Let $I_1 \subseteq I_2 \subseteq ...$ be an infinite increasing sequence of ideals of R, and for each integer k, let J_k be the subset of R[X] consisting of polynomials all of whose coefficients lie in I_k . Then $J_1 \subseteq J_2 \subseteq ...$ is an infinite increasing sequence of ideals of R[X], so it is eventually stable. But since $I_k = J_k \cap R$, this means the I_k are also eventually stable.
- (iii) True. Recall from lectures that every ideal of $S^{-1}R$ is of the form $S^{-1}I = \{\frac{i}{s} : i \in I, s \in S\}$ for some ideal $I \subseteq R$. Suppose $I_1 \subseteq I_2 \subseteq \cdots$ is an ascending chain in $S^{-1}R$. Then this implies that there exists ideals $J_i \subseteq R$ such that $I_i = S^{-1}J_i$ for all $i \geq 1$. Since $I_i \subseteq I_{i+1}$ for all i, we have $J_i \subseteq J_{i+1}$ for all i. Since R is Noetherian, there exists N such that $J_{i+N} = J_N$ for all $i \geq 0$. This then implies that $I_{i+N} = I_N$ for all $i \geq 0$. Hence $S^{-1}R$ is Noetherian.
- 8. Let R and S be rings. Show that every $(R \times S)$ -module M is isomorphic to a product $M_1 \times M_2$, where M_1 is an R-module and M_2 is an S-module, and the $(R \times S)$ -module structure on $M_1 \times M_2$ is given by $(r, s) \cdot (m_1, m_2) = (rm_1, sm_2)$.

Solution: Let $e_1 = (1,0)$ and $e_2 = (0,1)$ in $R \times S$, and set $N_1 = e_1 M$, $N_2 = e_2 M$. Although a priori N_1 and N_2 are $(R \times S)$ -modules, we note that $(r,s)e_1m = (r,0)m$ and $(r,s)e_2m = (0,s)m$, so that "multiplication by (r,s)" depends only on r on N_1 and only on s on N_2 . Give N_1 the structure of an R-module by setting $re_1m = (r,0)e_1m$ and similarly give N_2 the structure of an S-module.

We then have maps $N_1 \times N_2 \to M$ and M to $N_1 \times N_2$ that take (n_1, n_2) to $n_1 + n_2$ and m to (e_1m, e_2m) . It is easy to see that these are inverse to each other and define homomorphisms of $(R \times S)$ -modules, so we have our desired isomorphism.

- 9. Let R be a ring. An R-module is M said to be cyclic if M it is generated by one element, and simple if M has no R-submodules other than 0 and M.
 - (i) Show that any cyclic R module is isomorphic to R/I for some ideal I of R.
 - (ii) Show that any simple R-module is cyclic.
 - (iii) Show that M is a simple R-module if and only if M is isomorphic to R/I for some maximal ideal I of R.

Solution: (i) Let m generate M, and consider the map $R \to M$ of R-modules taking 1 to m (and thus taking r to rm for all $r \in R$). It is clear that this is a surjective homomorphism of R-modules, and its kernel is an R-submodule (i.e. ideal) I of R. We thus get an isomorphism $R/I \cong M$.

- (ii) Let M be simple and $m \in M$ nonzero. The submodule of M generated by m is then nonzero, so must be all of M.
- (iii) By part (i), we must show that R/I is simple if, and only if, I is maximal. Let $f: R \to R/I$ be the natural quotient map. Then given any submodule J of R/I, its preimage $f^{-1}(J)$ is an ideal of R containing I. This gives a bijection between the ideals of R containing I and the submodules of R/I. In particular we see that R/I is simple if, and only if, the only ideals containing I are I itself and the unit ideal; that is, if and only if I is maximal.

- 10. Let R be a ring and M an R-module. Define the endomorphism ring of M to be set $\operatorname{End}_R(M) := \{f : M \to M \mid f \text{ is an } R\text{-module homomorphism}\}$ with pointwise addition and multiplication given by function composition. The automorphism group of M, denoted by $\operatorname{Aut}_R(M)$, is defined to be the group of units of $\operatorname{End}_R(M)$.
 - (i) Show that the two definitions of R-module given in lectures are equivalent. That is, for an abelian group M, show that the structure $\cdot : R \times M \to M$ of a left R-module on M is the same information as a ring homomorphism $\varphi : R \to \operatorname{End}(M)$.
 - (ii) Show that a \mathbb{Z} -module is the same thing as an abelian group. Deduce that, for for an abelian group M, we have $\operatorname{End}(M) \cong \operatorname{End}_{\mathbb{Z}}(M)$ and $\operatorname{Aut}(M) \cong \operatorname{Aut}_{\mathbb{Z}}(M)$.
 - (iii) Let G be a group and M an abelian group. Show that an R[G]-module structure on M is equivalently an R-module structure on M and a homomorphism $\varphi: G \to \operatorname{Aut}_R(M)$.
 - (iv) Let G be a group. Show that a $\mathbb{Z}[G]$ -module is equivalently an abelian group M with a G-action, i.e. group homomorphism $G \to \operatorname{Aut}(M)$. [We often call this a G-module.]

[Hint: To show that two definitions are equivalent, we need to establish a one-to-one correspondence. For example, you could show that (a) for every abelian group A, there exists a \mathbb{Z} -module M_A , (b) For every \mathbb{Z} -module M, there exists an abelian group A(M), (c) $A(M_A) \cong A$ as abelian groups and $M_{A(M)} \cong M$ as \mathbb{Z} -modules.]

Solution: (i) If $R \times M \to M$ is a left module structure, then we have first to check that $\varphi(a)(m) := a \cdot m$ defines an element $\varphi(a) \in \operatorname{End}(M)$, i.e., that $\varphi(a)$ is additive (as we recall from group theory, this is enough to be a group endomorphism). It follows from the distributivity axioms of a left R-module that $\varphi(a)$ is additive, as desired. Next we check that φ is a homomorphism. It follows from the other distributivity axiom that $\varphi(a+b) = \varphi(a) + \varphi(b)$, and from the associative axiom that $\varphi(ab) = \varphi(a)\varphi(b)$. Finally the unit axiom implies that $\varphi(1) = \operatorname{Id}_M$.

Similarly, if φ is a ring homomorphism, then the same argument in reverse shows that $a \cdot b = \varphi(a)(m)$ defines an action. Finally, we note that if we apply the map (def 1) \Rightarrow (def 2) and then (def 2) \Rightarrow (def 1) we get the original action back, and similarly in the other direction we get the homomorphism back.

(ii) Given an abelian group A, define M_A to be the \mathbb{Z} -module with abelian group A and with action $\mathbb{Z} \to \operatorname{End}(A)$ the unique ring homomorphism $n \mapsto \operatorname{id}_A + \cdots \operatorname{id}_A$. Given an \mathbb{Z} -module

M, let A(M) denote its underlying abelian group. By definition, we have $A(M_A) \cong A$ as abelian groups. Finally, $M \cong M_{A(M)}$ are isomorphic as \mathbb{Z} -modules with the \mathbb{Z} -actions are determined by maps $\mathbb{Z} \to \operatorname{End}(A)$ which are unique.

(iii) By part (i), an R[G]-module structure on M is a map $\varphi: R[G] \to \operatorname{End}(M)$. Restricting this map to R gives an R-modules structure on M. Since $G \subseteq R[G]^{\times}$, we have that $\varphi(G) \subseteq \operatorname{End}(M)^{\times} = \operatorname{Aut}(M)$. Hence, by restricting to G, we get a map $\varphi \mid_{G}: G \to \operatorname{Aut}(M)$. We want to show this lands in $\operatorname{Aut}_{R}(M)$. For $g \in G$, $\varphi(g): M \to M$ is an abelian group homomorphism and we want to show that $\varphi(g)(r \cdot m) = r \cdot \varphi(g)(m)$. By definition, we have $r \cdot m = \varphi(r)(m)$ and $r \cdot \varphi(g)(m) = \varphi(r)(\varphi(g)(m))$. We have:

$$\varphi(g)(r \cdot m) = \varphi(g)(\varphi(r)(m)) = (\varphi(g) \cdot_{\operatorname{End}(M)} \varphi(r))(m) = \varphi(gr)(m)$$
$$= \varphi(rg)(m) = (\varphi(r) \cdot_{\operatorname{End}(M)} \varphi(g))(m) = \varphi(r)(\varphi(g)(m)) = r \cdot \varphi(g)(m)$$

since φ is multiplicative and since $r, g \in R[G]$ commute. Hence φ restricts to a map $\varphi \mid_G$: $G \to \operatorname{Aut}_R(M)$.

Given an R-module structure on M given by $h: R \to \operatorname{End}(M)$ and a homomorphism $f: G \to \operatorname{Aut}_R(M) \subseteq \operatorname{End}(M)$, define $\widehat{f}: R[G] \to \operatorname{End}(M)$ by $\sum r_i g_i \mapsto \sum h(r_i) \cdot_{\operatorname{End}(M)} f(g_i)$. It can be easily verified that this is a ring homomorphism.

Given $f: G \to \operatorname{Aut}_R(M)$, it is clear that $\widehat{f}|_{G} = f$. It also needs to be verified that, given $\varphi: R[G] \to \operatorname{End}(M)$, we have $\widehat{\varphi|_G} = \varphi$.

- (iv) This is essentially immediate from (ii) and (iii).
- +11. If R is a ring, the formal power series ring R[[X]] is the ring with elements

$$f = a_0 + a_1 X + a_2 X^2 + \cdots,$$

where each $a_i \in R$. This has addition and multiplication the same as for polynomials, but without upper limits. Show that, if R is Noetherian, then R[[X]] is Noetherian.

Solution not provided. You may continue to work on this throughout the term and contact me to discuss ideas and/or hand in a solution. Remember that this problem is optional and may be significantly more challenging than the other problems.