Algebra III: Rings and Modules Solutions for Problem Sheet 3, Autumn Term 2022-23

John Nicholson

1. Prove that the two definitions of ring localisation given in lectures are equivalent. That is, let R be a commutative ring and let $S \subseteq R$ be a multiplicative submonoid. Show that there is a unique commutative ring R^{\prime} such that there exists a map $\iota: R \rightarrow R^{\prime}$ which satisfies:
(i) $\iota(S) \subseteq\left(R^{\prime}\right)^{\times}$, i.e. everything in S gets mapped to a unit in R^{\prime}.
(ii) For all commutative rings A and maps $\varphi: R \rightarrow A$ with $\varphi(S) \subseteq A^{\times}$, there exists a unique $\widetilde{\varphi}: R^{\prime} \rightarrow A$ such that $\varphi=\widetilde{\varphi} \circ \iota$.

Solution: Existence follows by the definition given in lectures and results on problem sheet 2, i.e. we take $R^{\prime}=S^{-1} R$ and $\iota: R \rightarrow S^{-1} R$. We will show uniqueness.
Suppose R_{1} and R_{2} both have this property with maps $\iota_{1}: R \rightarrow R_{1}$ and $\iota_{2}: R \rightarrow R_{2}$. It suffices to show that $R_{1} \cong R_{2}$ as rings. Consider the case $R^{\prime}=R_{1}$. Since $(A, \varphi)=\left(R_{2}, \iota_{2}\right)$ satisfy the conditions of (ii), there exists a unique map $f: R_{1} \rightarrow R_{2}$ such that $\iota_{2}=f \circ \iota_{1}$. Similarly there exists a unique map $g: R_{2} \rightarrow R_{1}$ such that $\iota_{1}=g \circ \iota_{2}$. This implies that $\iota_{1}=(g \circ f) \circ \iota_{1}$. We claim that $g \circ f=\operatorname{id}_{R_{1}}$. To see this, consider the ring R_{1} and note that $(A, \varphi)=\left(R_{1}, \mathrm{id}_{R_{1}}\right)$ satisfy the conditions of (ii). This implies that $\mathrm{id}_{R_{1}}$ is the unique map such that $\iota_{1}=\operatorname{id}_{R_{1}} \circ \iota_{1}$. Hence $g \circ f=\operatorname{id}_{R_{1}}$. Similarly we have $f \circ g=\mathrm{id}_{R_{2}}$. This implies that f is a ring isomorphism and so $R_{1} \cong R_{2}$ as required.
2. Let R be a unique factorisation domain, let F denote its field of fractions and let

$$
f=a_{0}+a_{1} X+\cdots+a_{n} X^{n} \in R[X] .
$$

Show that, if $\frac{p}{q} \in F$ is a root of f for $p, q \in R$ with $\operatorname{gcd}(p, q)=1$, then $p \mid a_{0}$ and $q \mid a_{n}$ in R. [This is a generalisation of the Rational Root theorem.]

Solution: Let $f=c(f) f_{1}$ where f_{1} is primitive. Then $\frac{p}{q} \in F$ is a root of f_{1}. Since $F[X]$ is Euclidean domain, this means we can write $f_{1}=(q X-p) g$ for some $g \in F[X]$. Since f_{1} is primitive and reducible in $F[X]$, it must be reducible in $R[X]$ by Gauss' lemma. It follows that $f_{1}=(q X-p) g$ for some $g \in R[X]$ (this follows from the proof of Gauss' lemma but can also be seen directly). If $g=b_{0}+b_{1} X+\cdots+b_{n-1} X^{n-1}$, then f_{1} has constant term $-p b_{0}$ and leading term $q b_{n-1}$. Since $f=c(f) f_{1}$, we have that $-p b_{0} \mid a_{0}$ and $q b_{n-1} \mid a_{n}$. Hence $p \mid a_{0}$ and $q \mid a_{n}$ as required.

Note that an elementary solution is also possible.
3. Show that the following polynomials are irreducible in $\mathbb{Q}[X, Y]$:

$$
3 X^{3} Y^{3}+7 X^{2} Y^{2}+Y^{4}+2 X Y+4 X, \quad 2 X^{2} Y^{3}+Y^{4}+4 Y^{2}+2 X Y+6
$$

Solution:

$3 X^{3} Y^{3}+7 X^{2} Y^{2}+Y^{4}+2 X Y+4 X$: This can be rewritten as $Y^{4}+3 X^{3} Y^{3}+7 X^{2} Y^{2}+2 X Y+4 X$; we regard it as a polynomial in Y with coefficients in $\mathbb{Q}[X]$. Note that it is monic, that each of the coefficients other than the leading one lies in the prime ideal $\langle X\rangle$, and that the "constant term" $4 X$ does not lie in $\langle X\rangle^{2}$. Thus this polynomial is irreducible by Eisenstein's criterion. $2 X^{2} Y^{3}+Y^{4}+4 Y^{2}+2 X Y+6$: This is monic in Y, and this is irreducible in $\mathbb{Q}[X, Y]$ if, and only if, it is irreducible in $\mathbb{Q}(X)[Y]$. Since $\mathbb{Z}[X]$ has field of fractions $\mathbb{Q}(X)$, and is a UFD, this polynomial is irreducible in $\mathbb{Q}(X)[Y]$ if and only if it is irreducible in $\mathbb{Z}[X][Y]$. But as a polynomial in $\mathbb{Z}[X][Y]$ this polynomial is Eisenstein mod (2), so it is irreducible.
4. We say a polynomial in $\mathbb{Z}[X, Y]$ is primitive if the greatest common divisor of its (integer) coefficients is one. Show that:
(i) If $f, g \in \mathbb{Z}[X, Y]$ are primitive, then $f g$ is primitive.
(ii) If $f \in \mathbb{Z}[X, Y]$ is primitive, then $f \in \mathbb{Z}[X, Y]$ is irreducible if and only if $f \in \mathbb{Q}[X, Y]$ is irreducible. [This is the analogue of Gauss' lemma for multivariate polynomials.]

Solution: (i) We first show (following the single variable setting) that if $P(X, Y)$ and $Q(X, Y)$ are primitive in $\mathbb{Z}[X, Y]$ (that is, their coefficients have GCD one) then so is their product. Suppose that p is a prime in \mathbb{Z} that divides every coefficient of the product $P(X, Y) Q(X, Y)$. Then we have that $P(X, Y) Q(X, Y)=0$ in $\mathbb{Z} / p \mathbb{Z}[X, Y]$. Since the latter is a domain, we must have that either $P(X, Y)$ or $Q(X, Y)$ is zero $\bmod p$, contradicting the fact that $P(X, Y)$ and $Q(X, Y)$ are primitive.
(ii) Suppose we have $P(X, Y)=Q(X, Y) R(X, Y)$ in $\mathbb{Z}[X, Y]$. Then (considering this as a factorisation in $\mathbb{Q}[X, Y])$ we see by irreducibility of $P(X, Y)$ that at least one factor is a unit in $\mathbb{Q}[X, Y]$, hence a nonzero constant. WLOG assume $Q(X, Y)$ is this factor; then $Q(X, Y)$ lies in \mathbb{Q} and $\mathbb{Z}[X, Y]$, so $Q(X, Y)$ must be an integer d. But then d divides each coefficient of $P(X, Y)$, so must be equal to ± 1.
Now suppose that $P(X, Y)$ is an irreducible (thus primitive) polynomial in $\mathbb{Z}[X, Y]$, and that we have a factorization $P(X, Y)=Q(X, Y) R(X, Y)$ in $\mathbb{Q}[X, Y]$. Let q and r be rational numbers such that $q Q(X, Y)$ and $r R(X, Y)$ are primitive polynomials with integer coefficients. Then $q r P(X, Y)=q Q(X, Y) r R(X, Y)$, so by the previous paragraph $q r P(X, Y)$ is a primitive rational multple of $P(X, Y)$. Thus $q r= \pm 1$. Thus $P(X, Y)= \pm q Q(X, Y) r R(X, Y)$ is a factorization of $P(X, Y)$ in $\mathbb{Z}[X, Y]$, so one of $q Q(X, Y)$ or $r R(X, Y)$ is equal to ± 1. But then one of $Q(X, Y)$ or $R(X, Y)$ is constant, so $P(X, Y)$ is irreducible in $\mathbb{Q}[X, Y]$.
5. For each of the following elements $\alpha \in \mathbb{C}$ determine whether α is an algebraic integer and, if so, compute its minimal polynomial f_{α}.

$$
(1+\sqrt{3}) / 2, \quad 2 \cos (2 \pi / 7), \quad(1+i) \sqrt{3}, \quad \sqrt{5} / \sqrt{7}, \quad i+\sqrt{3} .
$$

Solution: $(1+\sqrt{3}) / 2$: Not an algebraic integer. If so, then $\alpha(1-\alpha)=\frac{1^{2}-3}{4}=-\frac{1}{2}$ is an algebraic integer. This is a contradiction since the algebraic integers in \mathbb{Q} are \mathbb{Z}.
$2 \cos (2 \pi / 7)$: We claim that $f_{\alpha}=X^{3}+X^{2}-2 X-1$. Let $\zeta_{7}=e^{2 \pi i / 7}$ so that $\alpha=\zeta_{7}+\zeta_{7}^{-1}$. Then $\alpha^{2}=\zeta_{7}^{2}+\zeta_{7}^{-2}+2$ and $\alpha^{3}=\zeta_{7}^{3}+\zeta_{7}^{-3}+3 \alpha$. Hence have $\alpha^{3}+\alpha^{2}-2 \alpha-1=0$. So
$f_{\alpha} \mid X^{3}+X^{2}-2 X-1$. But $X^{3}+X^{2}-2 X-1$ is irreducible since, by the rational root theorem and the fact that ± 1 are not roots, it has no linear factors.
$(1+i) \sqrt{3}$: We claim that $f_{\alpha}=X^{4}+36$. We have $\alpha^{2}=-2 i \cdot 3 \Rightarrow \alpha^{4}=-36$, so $f_{\alpha} \mid X^{4}+36$. Since $X^{4}+36$ is monic, all rational roots are in \mathbb{Z} by the rational root theorem (i.e. question 2). Clearly it has no integer roots and so $X^{4}+36$ has no linear factors. Hence, if f_{α} is not an associate of $X^{4}+36$, it has degree two. But $X^{4}+36=\left(X^{2}+6 i\right)\left(X^{2}-6 i\right)$. This is a factorisation in $(\mathbb{Z}[i])[X]$ which is a UFD since $\mathbb{Z}[i]$ is a UFD (this follows from the fact it is an ED). $X^{2}+6 i$ and $X^{2}-6 i$ are irreducible in $(\mathbb{Z}[i])[X]$ since their roots are not in $\mathbb{Z}[i]$. Since f_{α} has degree two and no roots in $\mathbb{Z}[i]$, it must be irreducible in $(\mathbb{Z}[i])[X]$ and so, since $(\mathbb{Z}[i])[X]$ is a UFD, it must be an associate of $X^{2}+6 i$ or $X^{2}-6 i$ which is a contradiction.
[A much better way to prove this would be to prove that the rational minimal polynomial has degree 4 since the field $\mathbb{Q}(\alpha)$ has degree 4 . This follows from the fact that it has distinct subfields $\mathbb{Q}(i)$ and $\mathbb{Q}(\sqrt{3})$. However, this material was not included in the course.]
$\sqrt{5} / \sqrt{7}$: Not an algebraic integer. If so, then $\alpha^{2}=\frac{5}{7}$ is an algebraic integer. This is a contradiction since the algebraic integers in \mathbb{Q} are \mathbb{Z}.
$i+\sqrt{3}$: We claim that $f_{\alpha}=X^{4}-4 X^{2}+16$. We have $\alpha^{2}=2+2 i \sqrt{3} \Rightarrow\left(\alpha^{2}-2\right)^{2}=-12 \Rightarrow$ $\alpha^{4}-4 \alpha^{2}+16=0 \Rightarrow f_{\alpha} \mid X^{4}-4 X^{2}+16$. The fact this is irreducible follows by a similar argument to the case $\alpha=(1+i) \sqrt{3}$.
6. Let R be a commutative ring. Show that R is Noetherian if and only if every ideal $I \subseteq R$ is finitely generated.

Solution: (\Leftarrow) : Suppose every ideal of R is finitely generated. Given the chain $I_{1} \subseteq I_{2} \subseteq \cdots$, let:

$$
I=\bigcup_{i \geq 1} I_{i}
$$

This is an ideal (e.g. we proved this in lectures). We know I is finitely generated, say $I=\left(r_{1}, \cdots, r_{n}\right)$, with $r_{i} \in I_{k_{i}}$. Let

$$
K=\max _{i=1, \cdots, n}\left\{k_{i}\right\}
$$

Then $r_{1}, \cdots, r_{n} \in I_{K}$. So $I_{K}=I$. So $I_{K}=I_{K+1}=I_{K+2}=\cdots$.
(\Rightarrow) : To prove the other direction, suppose there is an ideal $I \triangleleft R$ that is not finitely generated. We pick $r_{1} \in I$. Since I is not finitely generated, we know $\left(r_{1}\right) \neq I$. So we can find some $r_{2} \in I \backslash\left(r_{1}\right)$.
Again $\left(r_{1}, r_{2}\right) \neq I$. So we can find $r_{3} \in I \backslash\left(r_{1}, r_{2}\right)$. We continue on, and then can find an infinite strictly ascending chain

$$
\left(r_{1}\right) \subseteq\left(r_{1}, r_{2}\right) \subseteq\left(r_{1}, r_{2}, r_{3}\right) \subseteq \cdots .
$$

So R is not Noetherian.
7. Let R be a commutative ring. Give a proof or counterexample to each of the following statements:
(i) If R is Noetherian, then R is an integral domain.
(ii) If $R[X]$ is Noetherian, then R is Noetherian. [The converse to Hilbert's basis theorem.]
(iii) Let $S \subseteq R$ be a multiplicative submonoid. If R is Noetherian, then $S^{-1} R$ is Noetherian.

Solution: (i) False. For example, take $\mathbb{Z} / 6 \mathbb{Z}$. This is not an integral domain but it is Noetherian since it is a finite ring and all finite rings are Noetherian.
(ii) True. Let $I_{1} \subseteq I_{2} \subseteq \ldots$ be an infinite increasing sequence of ideals of R, and for each integer k, let J_{k} be the subset of $R[X]$ consisting of polynomials all of whose coefficients lie in I_{k}. Then $J_{1} \subseteq J_{2} \subseteq \ldots$ is an infinite increasing sequence of ideals of $R[X]$, so it is eventually stable. But since $I_{k}=J_{k} \cap R$, this means the I_{k} are also eventually stable.
(iii) True. Recall from lectures that every ideal of $S^{-1} R$ is of the form $S^{-1} I=\left\{\frac{i}{s}: i \in I, s \in\right.$ $S\}$ for some ideal $I \subseteq R$. Suppose $I_{1} \subseteq I_{2} \subseteq \cdots$ is an ascending chain in $S^{-1} R$. Then this implies that there exists ideals $J_{i} \subseteq R$ such that $I_{i}=S^{-1} J_{i}$ for all $i \geq 1$. Since $I_{i} \subseteq I_{i+1}$ for all i, we have $J_{i} \subseteq J_{i+1}$ for all i. Since R is Noetherian, there exists N such that $J_{i+N}=J_{N}$ for all $i \geq 0$. This then implies that $I_{i+N}=I_{N}$ for all $i \geq 0$. Hence $S^{-1} R$ is Noetherian.
8. Let R and S be rings. Show that every $(R \times S)$-module M is isomorphic to a product $M_{1} \times M_{2}$, where M_{1} is an R-module and M_{2} is an S-module, and the ($R \times S$)-module structure on $M_{1} \times M_{2}$ is given by $(r, s) \cdot\left(m_{1}, m_{2}\right)=\left(r m_{1}, s m_{2}\right)$.

Solution: Let $e_{1}=(1,0)$ and $e_{2}=(0,1)$ in $R \times S$, and set $N_{1}=e_{1} M, N_{2}=e_{2} M$. Although a priori N_{1} and N_{2} are $(R \times S)$-modules, we note that $(r, s) e_{1} m=(r, 0) m$ and $(r, s) e_{2} m=(0, s) m$, so that "multiplication by (r, s) " depends only on r on N_{1} and only on s on N_{2}. Give N_{1} the structure of an R-module by setting $r e_{1} m=(r, 0) e_{1} m$ and similarly give N_{2} the structure of an S-module.
We then have maps $N_{1} \times N_{2} \rightarrow M$ and M to $N_{1} \times N_{2}$ that take (n_{1}, n_{2}) to $n_{1}+n_{2}$ and m to $\left(e_{1} m, e_{2} m\right)$. It is easy to see that these are inverse to each other and define homomorphisms of ($R \times S$)-modules, so we have our desired isomorphism.
9. Let R be a ring. An R-module is M said to be cyclic if M it is generated by one element, and simple if M has no R-submodules other than 0 and M.
(i) Show that any cyclic R module is isomorphic to R / I for some ideal I of R.
(ii) Show that any simple R-module is cyclic.
(iii) Show that M is a simple R-module if and only if M is isomorphic to R / I for some maximal ideal I of R.

Solution: (i) Let m generate M, and consider the map $R \rightarrow M$ of R-modules taking 1 to m (and thus taking r to $r m$ for all $r \in R$). It is clear that this is a surjective homomorphism of R-modules, and its kernel is an R-submodule (i.e. ideal) I of R. We thus get an isomorphism $R / I \cong M$.
(ii) Let M be simple and $m \in M$ nonzero. The submodule of M generated by m is then nonzero, so must be all of M.
(iii) By part (i), we must show that R / I is simple if, and only if, I is maximal. Let $f: R \rightarrow$ R / I be the natural quotient map. Then given any submodule J of R / I, its preimage $f^{-1}(J)$ is an ideal of R containing I. This gives a bijection between the ideals of R containing I and the submodules of R / I. In particular we see that R / I is simple if, and only if, the only ideals containing I are I itself and the unit ideal; that is, if and only if I is maximal.
10. Let R be a ring and M an R-module. Define the endomorphism ring of M to be set $\operatorname{End}_{R}(M):=\{f: M \rightarrow M \mid f$ is an R-module homomorphism $\}$ with pointwise addition and multiplication given by function composition. The automorphism group of M, denoted by $\operatorname{Aut}_{R}(M)$, is defined to be the group of units of $\operatorname{End}_{R}(M)$.
(i) Show that the two definitions of R-module given in lectures are equivalent. That is, for an abelian group M, show that the structure $\cdot: R \times M \rightarrow M$ of a left R-module on M is the same information as a ring homomorphism $\varphi: R \rightarrow \operatorname{End}(M)$.
(ii) Show that a \mathbb{Z}-module is the same thing as an abelian group. Deduce that, for for an abelian group M, we have $\operatorname{End}(M) \cong \operatorname{End}_{\mathbb{Z}}(M)$ and $\operatorname{Aut}(M) \cong \operatorname{Aut}_{\mathbb{Z}}(M)$.
(iii) Let G be a group and M an abelian group. Show that an $R[G]$-module structure on M is equivalently an R-module structure on M and a homomorphism $\varphi: G \rightarrow \operatorname{Aut}_{R}(M)$.
(iv) Let G be a group. Show that a $\mathbb{Z}[G]$-module is equivalently an abelian group M with a G-action, i.e. group homomorphism $G \rightarrow \operatorname{Aut}(M)$. [We often call this a G-module.]
[Hint: To show that two definitions are equivalent, we need to establish a one-to-one correspondence. For example, you could show that (a) for every abelian group A, there exists a \mathbb{Z}-module M_{A}, (b) For every \mathbb{Z}-module M, there exists an abelian group $A(M)$, (c) $A\left(M_{A}\right) \cong A$ as abelian groups and $M_{A(M)} \cong M$ as \mathbb{Z}-modules.]

Solution: (i) If $R \times M \rightarrow M$ is a left module structure, then we have first to check that $\varphi(a)(m):=a \cdot m$ defines an element $\varphi(a) \in \operatorname{End}(M)$, i.e., that $\varphi(a)$ is additive (as we recall from group theory, this is enough to be a group endomorphism). It follows from the distributivity axioms of a left R-module that $\varphi(a)$ is additive, as desired. Next we check that φ is a homomorphism. It follows from the other distributivity axiom that $\varphi(a+b)=$ $\varphi(a)+\varphi(b)$, and from the associative axiom that $\varphi(a b)=\varphi(a) \varphi(b)$. Finally the unit axiom implies that $\varphi(1)=\operatorname{Id}_{M}$.
Similarly, if φ is a ring homomorphism, then the same argument in reverse shows that $a \cdot b=\varphi(a)(m)$ defines an action. Finally, we note that if we apply the map (def 1$) \Rightarrow$ (def $2)$ and then $(\operatorname{def} 2) \Rightarrow(\operatorname{def} 1)$ we get the original action back, and similarly in the other direction we get the homomorphism back.
(ii) Given an abelian group A, define M_{A} to be the \mathbb{Z}-module with abelian group A and with action $\mathbb{Z} \rightarrow \operatorname{End}(A)$ the unique ring homomorphism $n \mapsto \underbrace{\operatorname{id}_{A}+\cdots \mathrm{id}_{A}}_{n}$. Given an \mathbb{Z}-module M, let $A(M)$ denote its underlying abelian group. By definition, we have $A\left(M_{A}\right) \cong A$ as abelian groups. Finally, $M \cong M_{A(M)}$ are isomorphic as \mathbb{Z}-modules with the \mathbb{Z}-actions are determined by maps $\mathbb{Z} \rightarrow \operatorname{End}(A)$ which are unique.
(iii) By part (i), an $R[G]$-module structure on M is a map $\varphi: R[G] \rightarrow \operatorname{End}(M)$. Restricting this map to R gives an R-modules structure on M. Since $G \subseteq R[G]^{\times}$, we have that $\varphi(G) \subseteq$ $\operatorname{End}(M)^{\times}=\operatorname{Aut}(M)$. Hence, by restricting to G, we get a $\left.\operatorname{map} \varphi\right|_{G}: G \rightarrow \operatorname{Aut}(M)$. We want to show this lands in $\operatorname{Aut}_{R}(M)$. For $g \in G, \varphi(g): M \rightarrow M$ is an abelian group homomorphism and we want to show that $\varphi(g)(r \cdot m)=r \cdot \varphi(g)(m)$. By definition, we have $r \cdot m=\varphi(r)(m)$ and $r \cdot \varphi(g)(m)=\varphi(r)(\varphi(g)(m))$. We have:

$$
\begin{aligned}
\varphi(g)(r \cdot m) & =\varphi(g)(\varphi(r)(m))=(\varphi(g) \cdot \operatorname{End}(M) \varphi(r))(m)=\varphi(g r)(m) \\
& =\varphi(r g)(m)=(\varphi(r) \cdot \operatorname{End}(M) \varphi(g))(m)=\varphi(r)(\varphi(g)(m))=r \cdot \varphi(g)(m)
\end{aligned}
$$

since φ is multiplicative and since $r, g \in R[G]$ commute. Hence φ restricts to a map $\left.\varphi\right|_{G}$: $G \rightarrow \operatorname{Aut}_{R}(M)$.

Given an R-module structure on M given by $h: R \rightarrow \operatorname{End}(M)$ and a homomorphism $f: G \rightarrow \operatorname{Aut}_{R}(M) \subseteq \operatorname{End}(M)$, define $\widehat{f}: R[G] \rightarrow \operatorname{End}(M)$ by $\sum r_{i} g_{i} \mapsto \sum h\left(r_{i}\right) \cdot \operatorname{End}(M) f\left(g_{i}\right)$. It can be easily verified that this is a ring homomorphism.
Given $f: G \rightarrow \operatorname{Aut}_{R}(M)$, it is clear that $\left.\widehat{f}\right|_{G}=f$. It also needs to be verified that, given $\varphi: R[G] \rightarrow \operatorname{End}(M)$, we have $\widehat{\left.\varphi\right|_{G}}=\varphi$.
(iv) This is essentially immediate from (ii) and (iii).
+11 . If R is a ring, the formal power series ring $R[[X]]$ is the ring with elements

$$
f=a_{0}+a_{1} X+a_{2} X^{2}+\cdots,
$$

where each $a_{i} \in R$. This has addition and multiplication the same as for polynomials, but without upper limits. Show that, if R is Noetherian, then $R[[X]]$ is Noetherian.

Solution not provided. You may continue to work on this throughout the term and contact me to discuss ideas and/or hand in a solution. Remember that this problem is optional and may be significantly more challenging than the other problems.

