
Algebra III: Rings and Modules
Solutions for Problem Sheet 4, Autumn Term 2022-23

John Nicholson

1. Let R be a commutative ring and let I ⊆ R be an ideal.

(i) Prove that I is a free R-module if and only if I is principal and is generated by an
element which is not a zero divisor. [Optional: Find a non-commutative ring where
this is false.]

(ii) Deduce that a commutative ring R is a principal ideal domain if and only if every ideal
I ⊆ R is free as an R-module.

Solution: (i) Suppose I = (x) and x is not a zero divisor. Let f : R → I be the map
r → r · x. This is a surjective R-module homomorphism. If r ∈ ker(f), then r · x = 0 which
implies that r = 0 since x is not a zero divisor. Hence ker(f) = {0} and so R ∼= I by the
first isomorphism theorem.

Now suppose I is a free R-module. Let S ⊆ I be a basis. If |S| ≥ 2, then let m1,m2 ∈ S.
Since R is commutative, we havem1m2−m2m1 = 0 which is a contradiction since S is linearly
independent. Hence |S| = 1. Let S = {m}. Then I = (m) is principal. Furthermore, m is
not a zero divisor since, otherwise, S would not be linearly independent.

(ii) If R is a principal ideal domain, then every ideal is of the form I = (x). If x = 0, then
(x) = {0} is free of rank 0. If x ∕= 0 then, since R is an integral domain, x is not a zero
divisor. Hence (x) is free by part (i).

Conversely, suppose R is a commutative ring such that every ideal I ⊆ R is free as an
R-module. By (i), all ideals are therefore principal.

2. Let R be a ring and let M be a free R-module. Give a proof or counterexample to each of
the following statements:

(i) Every spanning set for M over R contains a basis for M .

(ii) Every linearly independent subset of M over R can be extended to a basis for M .

Solution: (i) False. Let R = M = Z. Then the only bases for M are ±1, as every two-
element subset of M is linearly dependent. So {2, 3} is a spanning set that does not contain
a basis.

(ii) False. With R and M as above, {2} is a linearly independent set that can not be extended
to a basis.

1



3. Let R be a non-trivial commutative ring. Prove that R is a field if and only if every finitely
generated R-module is free. [Optional: Prove this is also equivalent to every R-module being
free. You will need to use the axiom of choice.]

Solution: (⇒) Proof 1: Let R be a field and let M be a finitely generated R-module. We
claim that M has a basis. (Note that this is the same as proving that every finite-dimensional
vector space has a basis. So we can use the same argument from linear algebra.)

Let n be the minimum size of a generating set for M . We first claim that, if S ⊆ M is linearly
independent, then |S| ≤ n. If |S| > n, then let {v1, · · · , vn+1} be linearly independent.
Suppose M is generated by {m1, · · · ,mn}. For each 1 ≤ i ≤ n + 1, we can write vi =n

j=1 aijmj . Let A = (aij), which is an n+1×n matrix over a field R. Consider the system

of equations ATx = 0 for x ∈ Rn. This is a system of n+ 1 equations in n variables and so
there exists a non-zero solution b ∈ Rn \ {0}. Hence

n+1
i=1 bivi =

n
j=1(A

T b)jmj = 0, which
is a contradiction.

Next we claim that, if S ⊆ M is a linearly independent set which does not span M , then
S ⊆ {v} is linearly independent for any v ∈ M not contained in the span on S. If not,
let S = {v1, · · · , vn}. Then there exists a, ai ∈ R such that av +

n
i=1 aivi. Since S is

linearly independent, we must have a ∕= 0. Since R is a field, we then have a ∈ R× and so
v = −a−1 ·

n
i=1 aivi which contradicts the fact that v is not in the span of S.

If M = {0}, then it is free so assume M ∕= {0}. Let S1 = {v1} for any v1 ∕= 0. Then §1 is
linearly independent since v1 ∕= 0 and, since R is a field, R has no zero divisors. If S1 spans
M , then S1 is a basis and so we are done. If not, we can apply the second claim to extend
S1 to a linearly independent set S2 with |S2| = 2. This process will eventually terminate in
a basis after n steps since every linearly independent set has size at most n.

Proof 2: Use the fact that fields are PIDs and then apply the classification of finitely generated
modules over a PID. We need only note that R/(d) ∼= {0} for all d ∕= 0 since d ∈ R×.

(⇐) Suppose R is not a field. Then there exists a non-unit a ∈ R\{0}. Consider the quotient
R-module M := R/(a). We claim that M is not free. Note that, for all m ∈ M , we have
a ·m = 0. If f : M → R(S) is an isomorphism, then a ·m = 0 for all m ∈ R(S).

We claim that r ·m = 0 for all m ∈ R(S) implies r = 0. This gives a contradiction and so
would complete the proof. This is true when S = ∅ so assume S ∕= ∅. Let s ∈ S and let
m = (xi)i∈S be any element with xs = 1. If r ·m = 0, then restricting to the sth coordinate
gives that r = r · 1 = 0 ∈ R as required.

We can phrase this proof another way. Define the annihilator of an R-module M to be
AnnR(M) = {r ∈ R : r · m = 0 for all m ∈ M}. If M is free, then AnnR(M) = {0}.
However, we have AnnR(R/(a)) = (a) ∕= {0}. Hence R/(a) is not free.

4. Let R be a ring, let S ⊆ R be a multiplicative submonoid and let N ≤ M be R-modules.
Show that there is an isomorphism of S−1R-modules S−1(M/N) ∼= S−1M/S−1N .

Solution: Let f : S−1M → S−1(M/N) be the map sending (m, s) ∈ S−1M to (m +
N, s) ∈ S−1(M/N). We can check that this is an S−1R-module homomorphism. It is clearly
surjective.

Since N ≤ M , we have that S−1N ≤ S−1M . By the first isomorphism theorem for modules,
it now suffices to prove that ker(f) = S−1N . It is clear that S−1N ⊆ ker(f). Now suppose
(m, s) ∈ ker(f). Then (m + N, s) ∼ (0 + N, 1) in S−1(M/N), i.e. there exists t ∈ S such
that t · (m+N) = 0 and so t ·m ∈ N . This implies that (m, s) = (t ·m, t · s) ∈ S−1N .
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5. Let R be a ring, M a right R-module and N a left R-module. The tensor product M ⊗R N
is defined to be the abelian group

M ⊗R N = Z[M ×N ] / ((va, w)− (v, aw), (v, w) + (v′, w)− (v + v′, w),

(v, w) + (v, w′)− (v, w + w′) | a ∈ R, v, v′ ∈ M,w,w′ ∈ N).

For left R-modules M and N , let HomR(M,N) denote the set of left R-module homomor-
phisms f : M → N , which is an abelian group under pointwise addition.

From now on, let R be a commutative ring.

(i) Let M,N be left R-modules (which we can also view as right modules since R is
commutative). Show that M ⊗R N is an R-module with action a(v ⊗R w) = av ⊗R w
for a ∈ R, v ∈ M and w ∈ N .

(ii) Let M,N be left R-modules. Show that HomR(M,N) is an R-module, with action: for
a ∈ R and ϕ : M → N , define a · ϕ : M → N by (a · ϕ)(b) = aϕ(b) for b ∈ M .

(iii) Show that, if M,N , and T are all R-modules, then HomR(M ⊗R N,T ) is identified
with the set of R-bilinear maps ϕ : M × N → T , which means functions satisfying
ϕ(au, v) = aϕ(u, v) = ϕ(u, av) and ϕ(u+ u′, v) = ϕ(u, v) + ϕ(u′, v) as well as ϕ(u, v +
v′) + ϕ(u, v) + ϕ(u, v′). Use this to give an alternative definition of tensor product.

Solution: (Sketch) (i) M ⊗R N is already an abelian group so we need only show that the
map ϕ : R → Aut(M ⊗R N) defined by this action is a ring homomorphism. This follows
directly by analysing the relations we quotiented by, e.g. ϕ(a+ b)(v⊗Rw) = (a+ b)v⊗Rw =
av ⊗R w + bv ⊗R w = ϕ(a)(v ⊗R w) + ϕ(b)(v ⊗R w) and so ϕ(a+ b) = ϕ(a) + ϕ(b).

(ii) (a1a2 ·ϕ)(b) = a1a2 ·ϕ(b), so a1a2 ·ϕ = a1 · (a2 ·ϕ); similarly 1 ·ϕ = ϕ. We need to verify
that the action is well-defined, i.e., that a · ϕ is still a homomorphism: this is where we use
R is commutative: a1 · ϕ(a2 · b) = a1a2 · ϕ(b) = a2 · ϕ(a1 · b).
(iii) This is based on the relations in the definition of tensor product. Namely HomZ(Z[M ×
N ], T ) equals the set of all maps (not necessarily linear), ϕ : M ×N → T . Now to send the
relations of M ⊗R N to zero means that ϕ(u, av) = ϕ(au, v). Finally to be an R-linear map
means that ϕ(au, v) = aϕ(u, v). Put together yields the statement.

We can define M ⊗R N to be the R-module for which HomR(M ⊗R N,T ) coincides with
the set of R-bilinear maps. Existence is verified by the above argument. We can also check
uniqueness.
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6. Let R be a ring and let M be a left R-module. We say that R is a ring with involution (or a
∗-ring) if R is equipped with a map ∗ : R → R such that (x+ y)∗ = x∗ + y∗, (xy)∗ = y∗x∗,
1∗ = 1 and (x∗)∗ = x for all x, y ∈ R, i.e. ∗ is an anti-homomorphism and an involution.

(i) Show that M∗ = HomR(M,R) is a right R-module with action: for a ∈ R and ϕ ∈
HomR(M,R), define ϕ · a : M → R by (ϕ · a)(b) = ϕ(b) ·R a for b ∈ M . This is known
as the dual module.

(ii) Let R be a commutative ring. Show that R is a ring with involution. For a group G,
show that R[G] is a ring with involution.

(iii) Let R be a ring with involution. Show that any right R-module M can be viewed as a
left R-module with action: for a ∈ R and m ∈ M , define x ·m = m ·M x∗. Use this to
define a left R-module structure on HomR(M,R). For left R-modules M and N , define
a (sensible) left R-module structure on the tensor product of abelian groups M ⊗Z N .
[Optional: How do these R-module structures compare to those defined in (5) in the
commutative case?]

Solution: (Sketch) (i) By (5) we know that HomR(M,R), i.e. the set of left R-module
homomorphisms f : M → R, is an abelian group. We can check that ϕ · a denotes a right
R-module action directly.

(ii) If R is commutative, we can just take ∗ = idR. For the group ring R[G], we can take
∗ :

n
i=1 aigi →

n
i=1 aig

−1
i .

(iii) We define a left R-module structure on HomR(M,R) by using the right modules structure
defined in part (i) and then using the involution to convert this to a left module structure.

For r ∈ R and m⊗ n ∈ M ⊗Z N , we can define r · (m⊗ n) := (rm⊗ rn).

7. Let R be a ring and let M be an R-module and let N ≤ M be a submodule. Show that M
is Noetherian if and only if N and M/N are Noetherian.

Solution: Let J be a submodule of M . Then J ∩ N is a submodule of N , hence finitely
generated. Let j1, . . . , jn generate J ∩ N . Let J denote the image of J in M/N ; this is a
submodule of M/N and thus finitely generated. Let jn+1, . . . , jm generate J , and choose
elements jn+1, . . . , jm of J mapping to jn+1, . . . , jm, respectively.

We now show that j1, . . . , jm is a generating set for J , proving the claim. Given any j ∈ J ,
let j be its image in M/N . Then we can write j as a sum rn+1jn+1 + · · · + rmjm. Let
j′ = j − rn+1jn+1 − rn+2jn+2 + · · ·+ rmjm. Then the image of j′ in M/N is zero, so j′ lies
in J ∩N . We can thus write j′asr1j1 + · · ·+ rnjn. We then have

j = r1j1 + · · ·+ rnJn + rn+1jn+1 + · · ·+ rmjm,

proving the claim.
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8. Let a, b be nonzero positive integers. Find the Smith normal form of the following matrices
in their respective rings:



 a b

−b a



 ∈ M2(Q),



X2 − 5X + 6 X − 3

(X − 2)3 X2 − 5X + 6



 ∈ M2(Q[X]).

Solution: We perform the Euclidean algorithm on the first column, using row operations
to subtract multiples of row 2 from row 1 until the norm of the entry in row 2 is strictly
less than that in row 1, then interchanging rows 1 and 2. At the end of this process the
greatest common divisor of a and b is in the upper left, and the lower left entry is zero. The
right-hand column contains linear combinations of a and b, so its entries are both divisible
by (a, b). We can thus subtract a multiple of the first column from the second to zero out the
upper right entry. The matrix is now in Smith normal form, and none of the operations we
have done have affected the determinant, so the lower left entry must be a2+b2

(a,b) . The Smith
normal form is thus: 

(a, b) 0

0 a2+b2

(a,b)





A similar strategy works for the second matrix since Q[X] is a Euclidean domain. The Smith
normal form is: 

1 0

0 −(t− 2)2(t− 3)





9. Let G be the abelian group given by generators a, b, c and the relations 6a + 10b = 0,
6a+ 15c = 0, 10b+ 15c = 0 (i.e. G is the free abelian group generated by a, b, c quotiented
by the subgroup (6a + 10b, 6a + 15c, 10b + 15c)). Determine the structure of G as a direct
sum of cyclic groups.

Solution: We have thatG ∼= Z3/N whereN = Z·(16, 10, 0)+Z·(6, 0, 15)+Z·(0, 10, 15) ⊆ Z3.
So G ∼= coker(ϕA) where

A =





6 6 0

10 0 10

0 15 15



 .

We can use elementary row and column operations to put A is Smith normal form, and we
obtain:

B =





1 0 0

0 30 0

0 0 60



 .

Since A and B differ by row and column operations, they are equivalent and so G ∼=
coker(ϕA) ∼= coker(ϕB). Furthermore, we have

coker(ϕB) ∼= Z/1⊕ Z/30⊕ Z/60 ∼= Z/30⊕ Z/60.

Hence G ∼= Z/30⊕ Z/60.
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10. A ring R has the invariant basis number property (IBN) if, for all positive integers m,n,
Rn ∼= Rm as R-modules implies m = n.

(i) For an ideal I ⊆ R and an R-module M , we define an R-submodule IM = {am ∈ M :
a ∈ I,m ∈ M} ≤ M . Prove that M/IM is an R/I-module in a natural way.

(ii) Prove that non-zero commutative rings have IBN. You may assume that every non-zero
commutative ring has a maximal ideal. [This is equivalent to the axiom of choice.]

(iii) Let S be a ring and M a free S-module with basis {xi | i ≥ 1}. Let R = EndS(M).
Prove that R does not have IBN. [Hint: Note that M ∼= Meven⊕Modd where Meven and
Modd are the submodules generated by xi for i even and odd respectively. Use this to
show that R ∼= R2 as R-modules.]

Solution: (i) Since IM ≤ M is an R-submodule, the quotient M/IM is an R-module.
Suppose this is defined by a map ϕ : R → Aut(M/IM).

If b ∈ I, then its action on M/IM is

b(m+ IM) = bm+ IM = IM.

That is, I ⊆ ker(ϕ). Hence ϕ naturally descends to a map ϕ′ : R/I → Aut(M/IM) which
gives M/IM the structure of an R/I-module. The action is given by

(r + I) · (m+ IM) = r ·m+ IM.

(ii) Let I be a maximal ideal of R. Suppose we have Rn ∼= Rm. Then we must have
Rn/IRn ∼= Rm/IRm as R/I modules. By constructing an explicit isomorphism, we can then
show that Rn/IRn ∼= (R/I)n and similarly for m. Since R/I is a field, the result follows by
linear algebra (and, in particular, the proof of (3)).

(iii) We have M = S(N) ∼= Meven ⊕ Modd where Meven = S(2N) and Modd = S(2N−1). Since
there are bijections N ∼= 2N ∼= 2N− 1, we have that M ∼= Meven

∼= Modd as S-modules. Let
R = EndS(M). We will define a map Ψ : R2 → R. Let f1, f2 ∈ R. Then f1, f2 : M → M
are S-module homomorphisms. Given this, and the identifications ϕ1 : M → Meven and
ϕ2 : M → Modd, we obtain an S-module homomorphism:

Ψ(f1, f2) = (ϕ1 ◦ f1,ϕ2 ◦ f2) : M → Meven ⊕Modd.

We can then check that Ψ is a bijective R-module homomorphism.

+11. Let G be a finite group, let N =


g∈G g ∈ Z[G] and let r ∈ Z be an integer with (r, |G|) = 1

(i) Show that the ideal (N, r) ⊆ Z[G] is projective as a Z[G]-module.

(ii) Let G = Cn be a finite cyclic group. Show that (N, r) is free as a Z[G]-module.

(iii) Let G = Q8 be the quaternion group of order 8. Show that (N, 3) is not free as a
Z[G]-module. Is it stably free as a Z[G]-module?

Solution not provided. You may continue to work on this throughout the term and contact
me to discuss ideas and/or hand in a solution. Remember that this problem is optional and
may be significantly more challenging than the other problems.
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