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What is Topology?

Topology consists of the following game:

◮ Choose a class of “spaces” (e.g. 2-dimensional polyhedra)

◮ Choose a notion of “equivalence” (e.g. equivalent if you can
bend one shape into the other without pinching or tearing)

◮ When are two spaces equivalent? What are the equivalence
classes?

The idea is to choose the right notions of space and equivalence so
that something fundamental about spaces is captured in this game



=





The goal of this lecture will be to formalise some of these pictures



Spaces: subsets of Rn

The first type of space will consider will be subsets X ⊆ Rn

Examples:

◮ The simplest example is n-dimensional space Rn

◮ The n-sphere

Sn =

󰀝
(x0, . . . , xn) ⊆ Rn+1

󰀏󰀏󰀏󰀏
n󰁓

i=1
x2i = 1

󰀞
⊆ Rn+1

◮ S2 is a sphere and S1 is a circle (a one-dimensional sphere)

◮ The unit interval I = [0, 1] ⊆ R
◮ The point space ∗ = {0} ⊆ R



We can build new spaces from old ones in all the usual ways. For
example, if X ⊆ Rn and Y ⊆ Rm, then:

X × Y = {(x , y) : x ∈ X , y ∈ Y } ⊆ Rn+m.

◮ The square I 2

◮ The (hollow) cylinder S1 × I

S1 × II 2



◮ The (hollow) torus T T

After staring at it for a while, one can eventually come up with the
following explicit formula:

T =
󰀋
((2 + cos θ) cosϕ, (2 + sin θ) cosϕ, sinϕ) ∈ R3

󰀏󰀏 0 󰃑 θ,ϕ < 2π
󰀌

Exercise: find a formula like this for the coffee mug

Just kidding (definitely do not do this...)

Is there any easier way to define a space?



Spaces: cell complexes

We will now define the notion of an n-dimensional cell complex

Definition
A 1-dimensional cell complex (or 1-complex) is a graph (V ,E )
where V = {v1, . . . , vn} is the vertex set and E = {E1, . . . ,Em} is
a collection of edges Ei ∈ V × V

◮ We will consider these graphs to be unoriented, but each edge
E = (v1, v2) comes with a natural orientation v1 → v2

◮ We will take ‘collection’ to mean that repeats are allowed, so
E = {(v1, v2)} is not the same as E = {(v1, v2), (v1, v2)}



Example: Let V = {v1, v2, v3, v4} and

E = {(v1, v2), (v2, v2), (v2, v3), (v1, v3), (v3, v4)}

v2

v1

v3

v4

E1

E3

E4

E5

E2

If we want to talk about orientations, we will write E+1
1 = (v1, v2)

and E−1
1 = (v2, v1) to denote the edge in the opposite direction



Definition
A 2-dimensional cell complex (or 2-complex) is a triple (V ,E ,F )
where (V ,E ) is a graph and F = {F1, . . . ,Fr} is a collection of
faces which are defined in either of the following ways:

◮ As sequences of edges Fi = (E±1
i1

, . . . ,E±1
ik

) where E±1
it

and

E±1
it+1

are adjacent (taking ik+1 = i1). This is the face attached
along the path (Ei1 , . . . ,Eik )

◮ As a vertex Fi = (v). This is the face attached at a single
vertex v by wrapping it up into the shape of a sphere



Example:
E1

v5

v1

F1E4 E2

E3

v2

v3v4

F2

F3

F4

E1 = (v1, v2),E2 = (v2, v3),E3 = (v3, v4),E2 = (v4, v1),
F1 = (E+1

1 ,E+1
2 ,E+1

3 ,E+1
4 ), · · · ,F4 = (v5)



How can we define the torus T as a 2-dimensional cell complex?

◮ One cell complex has 16 faces, but the other has 100s of faces

◮ Neither cell complex is ‘smooth’ like our previous definition

Later, we will choose our notion of equivalence so that all three
definitions give equivalent spaces



Spaces: metric spaces

Definition
For a set X , a metric on X is a map d : X ×X → R≥0 such that:

(i) d(x , y) = 0 ⇐⇒ x = y

(ii) d(x , y) = d(y , x) for all x , y ∈ X

(iii) d(x , z) 󰃑 d(x , y) + d(y , z) for all x , y , z ∈ X .

A metric space is a pair (X , d) where X is a set and d is a metric
on X .

Definition
If (X , dX ) and (Y , dY ) are metric spaces, then a function
f : X → Y is continuous if, for every ε > 0, there exists a δ > 0
such that dX (x , y) < δ implies dY (f (x), f (y)) < ε.



Example: R is a metric space with metric d(x , y) = |x − y |

◮ f : R → R is continuous if and only if, for every ε > 0, there
exists a δ > 0 such that |x − y | < δ implies |f (x)− f (y)| < ε

◮ This matches the usual definition for continuous

Subsets of Rn are metric spaces:

If X ⊆ Rn, then (X , d) is a metric space with

d((x1, . . . , xn), (y1, . . . , yn)) =

󰁹󰁸󰁸󰁷
n󰁛

i=1

(xi − yi )2



1-dimensional cell complexes are metric spaces:

X :=

v2

v1

v3
v4

E1

E3

E4

E5

E2

◮ Every edge has length 1, i.e. we take Ei = [0, 1]

◮ A path p is a sequence of segments of edges

For x , y ∈ X , we can define:

d(x , y) = min{length(p) | p a path from x to y}

Example: d(v1, v4) = 2, d(v1, v3) = 1



2-dimensional cell complexes are metric spaces:

E1

v5

v1

F1E4 E2

E3

v2

v3v4

F2

F3

F4

x

y

p1 : x ⇝ y p2 : x ⇝ y
F4

Suppose a face Fi has n sides

◮ If n ≥ 3, distances are that of the ’standard n-gon’

◮ If n = 1, 2, distances can be taken from curved surfaces

For x , y ∈ X , we can define:

d(x , y) = min{length(p) | p a path from x to y}



Since subsets of Rn and cell complexes are metric spaces, we now
have a notion of continuous function f : X → Y

This notion matches our intuition for continuous

Example: The function

v2

v1

v3
v4

E1

E3

E4

E5

E2

f : −→

which ’draws the graph on the torus’ is a continuous function



There is a more general notion of topological space

This definition is the answer to the question:
“what is the least amount of information we need to add to a set
in order to have a meaningful notion of continuous function?”

Every metric space is a topological spaces but there are topological
spaces which are not metric spaces

We will only consider metric spaces in this course



Equivalences: homeomorphism

From now on, will use the map to mean continuous function

Definition
We say that metric spaces X and Y are homeomorphic (X ∼= Y ) if
there are maps f : X → Y and g : Y → X such that f ◦ g = idY
and g ◦ f = idX

We say that such a map f is a homeomorphism from X to Y .

Exercise: Prove that ∼= is an equivalence relation



Example: X = [0, 1] and Y = [0, 2]

Let f (x) = 2x and g(x) = 1
2x

Then f (g(x)) = x and g(f (x)) = x and so X ∼= Y

Example: X = R and Y = (0, 1)

Let f (x) = 1
1+e−x , the sigmoid function, and g(x) = − log

󰀃
1
x − 1

󰀄

y = 1
f (x) = 1

1+e−x

Then f (g(x)) = x and g(f (x)) = x and so X ∼= Y



Example: V = {v},E = {(v , v), (v , v)},F = {(E2,E1,E
−1
2 ,E−1

1 )}

(V ,E ) =
v

X :=

v v

vv

E1

E1

E2 E2 =



Proposition

X ∼= T, i.e. X is homeomorphic to a torus

◮ The proof is based on the following picture

◮ This can be used to write down a bijection f : X → T

◮ It should be clear from the formula for f and f −1 that they
are continuous functions



Exercise: Prove T ∼= S1 × S1



Proposition

If n ≥ 1, then Rn ∕∼= ∗

Proof.
Suppose there exists a homeomorphism f : Rn → ∗, i.e. there
exists g : ∗ → Rn for which f ◦ g = id∗ and g ◦ f = idRn

Then f is a bijection

This is a contradiction since ∗ = {0} and Rn is infinite

Theorem
Rn ∼= Rm if and only if n = m

◮ Generalises the result above since R0 ∼= ∗
◮ So homeomorphisms cannot change the ’dimension’ of a space

◮ The proof is difficult and beyond the scope of this course



Equivalences: homotopy equivalence

We will now define another notion of equivalence for metric spaces
which will allow for deformations which do not preserve dimension

Definition
Two maps f , g : [0, 1] → [0, 1] are homotopy equivalent (f ≃ g) if
there is a one-parameter family of maps Ht : [0, 1] → [0, 1] such
that such that H0 = f and H1 = g and which varies continuously
for t ∈ [0, 1]

We say that H is a homotopy from f to g

Here by ‘vary continuously’, we simply mean that the induced
function H : [0, 1]× [0, 1] → [0, 1], (x , t) 󰀁→ Ht(x) is continuous



We should think of t as time and f fades into g as time flows
from time t = 0 to time t = 1

The picture we should have in our head is:

1

1

H1 = g

H0 = f



We can generalise this to arbitrary metric spaces:

Definition
Let X and Y be metric spaces. Two maps f , g : X → Y are
homotopy equivalent (f ≃ g) if there is a one-parameter family of
maps Ht : X → Y such that H0 = f and H1 = g and which varies
continuously for t ∈ [0, 1]

This is homotopy equivalence of maps. How can we use this to
define homotopy equivalence of spaces?



The idea is to replicate the definition of homeomorphism but
replace “= idX” with “≃ idX”

Definition
Two metric spaces X and Y are homotopy equivalent (X ≃ Y ) if
there exists maps f : X → Y and g : Y → X such that
f ◦ g ≃ idY and g ◦ f ≃ idX

We say that f : X → Y is a homotopy equivalence

Exercise: Prove that ≃ is an equivalence relation

Proposition

If X ∼= Y , then X ≃ Y

Proof.
If f ◦ g = idY , then f ◦ g ≃ idY
If g ◦ f = idX , then g ◦ f ≃ idX



Proposition

If n ≥ 0, then Rn ≃ ∗

Proof.
Define functions f : Rn → ∗, x 󰀁→ 0 and g : ∗ → Rn, 0 󰀁→ 0

Then f ◦ g : ∗ → ∗, 0 󰀁→ 0, i.e. f ◦ g = id∗

We also have g ◦ f : Rn → Rn, x 󰀁→ 0 and must show g ◦ f ≃ idRn

Let Ht(x) = tx for t ∈ [0, 1]. Then H0 = 0 = g ◦ f , H1 = idRn and
Ht varies continuously

Hence g ◦ f ≃ idRn and so Rn ≃ ∗

Corollary

For n,m ≥ 0, Rn ≃ ∗ ≃ Rm

So homotopy equivalences can change the ’dimension’ of a space


