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Recap

We considered two types of metric spaces:

I Subsets of Rn

I 1 and 2-dimensional cell complexes

Definition
Two metric spaces X and Y are homotopy equivalent (X ' Y ) if
there exists maps f : X → Y and g : Y → X such that
f ◦ g ' idY and g ◦ f ' idX

We say that f : X → Y is a homotopy equivalence

I g ◦ f ' idX means there exists a a one-parameter family of
maps Ht : X → X such that H0 = g ◦ f and H1 = idX and
which varies continuously for t ∈ [0, 1]



We will show that the circle S1 is homotopy equivalent to the
punctured complex plane C \ {0}

We will take S1 = {e iθ : θ ∈ [0, 2π]} ⊆ C

Exercise: Prove that this is homeomorphic to
{(x , y) : x2 + y2 = 1} ⊆ R2 (our previous definition)

We need to find f : S1 → C \ {0} and g : C \ {0} → S1 such that
f ◦ g ' idC\{0} and g ◦ f ' idS1

Fortunately, there are only two sensible choices for f and g :

I f : S1 → C \ {0}, e iθ 7→ e iθ

I g : C \ {0} → S1, re iθ 7→ e iθ (where r 6= 0)

We have g ◦ f = idS1 and so need to show that f ◦ g ' idC\{0}



Since f
(
g
(
re iθ
))

= e iθ, we need to find a continuous
one-parameter family of maps Ht : C \ {0} → C \ {0} such that

H0

(
re iθ
)

= e iθ, H1

(
re iθ
)

= re iθ

One example is the function Ht

(
re iθ
)

= r te iθ:

H0

(
re iθ

)
= e iθ

H1

(
re iθ

)
= re iθ

Ht

(
e iθ

)
= r te iθ

Hence S1 ' C \ {0}



How do we prove that two spaces are not homotopy equivalent?
For example, is S1 ' R?

One approach is:

I Suppose there exists continuous functions f : S1 → R and
g : R→ S1 such that f ◦ g ' idR and g ◦ f ' idS1

I Find general forms for the functions f and g

I Try to arrive at a contradiction

However, this approach fails in general since there are many
choices for f and g

The best approach is to instead use algebraic topology



What is Algebraic Topology?

Algebraic topology gives a method to prove that X 6' Y using
invariants:

I An invariant is a quantity I (X ) which we can attach to each
space X such that, if X ' Y , then I (X ) = I (Y )

I Hence, if I (S1) 6= I (R), then S1 6' R

One example is I (X ) = X (the space itself). However this is a bad
example since:

I We want I (X ) to be such that determining if I (X ) = I (Y ) is
easier than determining if X ' Y

Typically this means that I (X ) will be a quantity from algebra



The goal of this lecture will be to define two invariants:

I The Euler characteristic χ(X )

I The fundamental group π1(X )



Euler characteristic

Definition
Let X be an n-dimensional cell complex and let fi denote the
number of cells in dimension i

The Euler characteristic of X is χ(X ) =
n∑

i=0
(−1)i fi

For low-dimensional examples, we will write:

I V = f0 = number of vertices

I E = f1 = number of edges

I F = f2 = number of faces



Examples:

I χ(∗) = 1

I Let X be a loop with one vertex. Then:
χ(X ) = V − E = 1− 1 = 0

X =

I Let C be a cube (hollow but with solid faces). Then:
χ(C ) = V − E + F = 8− 12 + 6 = 2



I Let D be a regular dodecahedron. Then:
χ(D) = V − E + F = 20− 30 + 12 = 2

Note that C ∼= D ∼= S2 are both homeomorphic to the sphere S2

We also have χ(C ) = χ(D) = 2

Does X ∼= Y imply χ(X ) = χ(Y )?



In fact, even more is true:

Theorem
χ is a homotopy invariant, i.e. if X and Y are cell complexes and
X ' Y , then χ(X ) = χ(Y )

The proof is beyond the scope of this course

Challenge problem: Prove that χ is a homotopy invariant on the
class of 2-dimensional cell complexes. You may assume that, if
X ' ∗, then χ(X ) = 1

Since χ is a homotopy invariant, we can extend the definition of χ
to metric spaces which are homotopy equivalent to cell complexes:

Definition
If X is a metric space and Y is a cell complex such that X ' Y ,
then define χ(X ) := χ(Y )



Examples:

I Rn ∼= ∗. Hence χ(Rn) = 1

I S1 ∼= X where X is a loop with one vertex. Hence χ(S1) = 0

This implies that S1 6' R which would be difficult to prove by
other means

If S1 ∼= R, then S1 ' R. Hence we also have S1 6∼= R

I S2 ∼= C where C is the cube. Hence χ(S2) = 2

If X is the surface of a polyhedra, then X ' S2 and so χ(X ) = 2

If X has V vertices, E edges and F faces, then V − E + F = 2
This was first discovered by Leonhard Euler in 1758



I If T is a torus, then T is homeomorphic to either of the
following cell complexes

v v

vv

E1

E1

E2 E2 =

The first example shows χ(T ) = V − E + F = 1− 2 + 1 = 0

Since χ(S1) = 0, we cannot distinguish S1 and T using χ

So how can we prove that T 6' S1?



Summary of the Euler characteristic as an invariant:

I Hard to prove that it is a homotopy invariant

I Easy to compute

I Only consists of an integer value, so can only distinguish a
limited number of spaces



The fundamental group

We will now define a new invariant π1(X )

This time, homotopy will appear in the definition of our invariant
and so it will be:

I Easy to prove that it is a homotopy invariant

I Hard to compute

Furthermore:

I It will have the structure of a group, and so has the power to
distinguish between a larger number of spaces



Let X be a metric space and let x0 ∈ X (known as the basepoint)

Consider all paths in X which start and end at x0:

{loops at x0} = {γ : [0, 1]→ X | γ(0) = γ(1) = x0, γ continuous}

Definition
We say that loops γ, γ′ : [0, 1]→ X are homotopy equivalent
(γ ' γ′) if there exists a continuously varying one-parameter
family of loops Ht : [0, 1]→ X such that H0 = γ, H1 = γ′.

This is not the same as a homotopy between γ, γ′ : [0, 1]→ X
considered as functions between metric spaces

Here Ht is a loop for all t, i.e. Ht(0) = Ht(1) = x0 for all
t ∈ [0, 1]. This is also known as a based homotopy



To picture a homotopy:

I View two loops as stretchy pieces of string attached at x0 ∈ X

I Two loops are equivalent if you can stretch one piece of string
into the other while keeping x0 fixed

Example: Consider loops γ0, γ′0, γ1 and γ2 on the torus T

x0

γ1
γ′1

γ0

γ2

Let cx0 : [0, 1]→ X , t 7→ x0 denote the constant loop

Then γ1 ' γ′1, γ0 ' cx0 . Are γ0, γ1 and γ2 homotopy equivalent?



If S is a set and ≡ is an equivalence relation of S , then we write
S/ ≡ for the equivalence classes of ≡, i.e. “the set S modulo ≡”

Example: if S = Z and a ' b if a ≡ b mod n, then Z/ ' ∼= Z/nZ
are isomorphic as rings

Definition
π1(X , x0) := {loops at x0}/ '

If γ : [0, 1]→ X is a loop at x0, then we often write [γ] ∈ π1(X , x0)

Example: π1(T , x0) = {[cx0 ], [γ1], [γ2], · · · }/ '

If we could show γ1 6' cx0 , then π1(T , x0) would contain more than
one element



Example: X = [0, 1], x0 = 0. We want to compute π1(X , x0)

Let γ : [0, 1]→ X be a loop with γ(0) = γ(1) = 0

We claim that γ ' c0

This is achieved by the based homotopy Ht(x) = (1− t)γ(x) which
has H0 = γ, H1 = 0, and is a loop for all t ∈ [0, 1] since Ht(0) = 0

At time t increases, every point on γ is pushed towards 0:

0 1

H0 = γ

H1 = c0

Hence π1(X , x0) = {c0}.



Homotopy invariance of π1(X , x0)

What would it mean to say that π1(X , x0) is a homotopy
invariant?

I Two sets are ‘equal’ if there is a bijection between them

I If X ' Y , then we need a bijection π1(X , x0)→ π1(Y , y0)

I Is this true for all choices of x0, y0 or just some choices?

We say that a metric space X is path-connected if, for all
x0, x1 ∈ X , there exists a path from x0 to x1, i.e. there exists a
continuous function p : [0, 1]→ X with p(0) = x0, p(1) = x1

Theorem
Let X be a path-connected metric space and let x0, x1 ∈ X
If p is a path from x0 to x1, then there exists a bijection

p∗ : π1(X , x0)→ π1(X , x1)



Proof: If γ ∈ π1(X , x0), then define p∗(γ) := p−1 · γ · p

This is the loop at x1 which travels x1
p−1

−−→ x0
γ−→ x0

p−→ x1:

x0 x1p : x0  x1

p−1 : x1  x0

γ

Explicitly, this has the form:

(p−1 · γ · p)(t) =


p−1(3t) t 6 1/3

γ(3t − 1) 2/3 6 t 6 2/3

p(3t − 2) 2/3 6 t 6 1.



In order to show that p∗ is a bijection, it will suffice to check that
(p−1)∗ ◦ p∗ : π1(X , x0)→ π1(X , x0) is equal to idπ1(X ,x0)

Note that (p−1)∗ ◦ p∗ : γ 7→ p · p∗(γ) · p−1 = (p · p−1) · γ · (p · p−1)

Hence we need to show that (p · p−1) · γ · (p · p−1) ' γ

It suffices to prove that p · p−1 ' cx0



The proof that p · p−1 ' cx0 is the following picture:

x0 x1
p · p−1 : x0  x0

Recall that p · p−1 is defined as:

(p · p−1)(x) =

{
p(2x) 0 6 x 6 1/2

p−1(2x − 1) 1/2 6 x 6 1.

Explicitly, the diagram above corresponds to taking the homotopy:

Ht(x) =

{
p(t · 2x) 0 6 x 6 1/2

p−1(1 + 2t · (x − 1)) 1/2 6 x 6 1



We say that two sets A, B are equivalent if there is a bijection
f : A→ B

This is an equivalence relation on the class of sets

If X is a metric space and x0, x1 ∈ X , then π1(X , x0) and
π1(X , x1) are equivalent as sets

Definition
Let π1(X ) denote the set equivalence class containing π1(X , x0)
(for any choice of x0 ∈ X )

From now on, we will assume that all spaces are path-connected
metric spaces

Theorem (π1 is a homotopy invariant)

If X ' Y , then π1(X ) ∼= π1(Y ) are equivalent as sets



This will follow from:

Theorem
If f : X → Y is a homotopy equivalence, x0 ∈ X and y0 = f (x0),
then there is a bijection

f∗ : π1(X , x0)→ π1(Y , y0), γ 7→ f ◦ γ

Proof: Suppose there is a map g : Y → X such that f ◦ g ' idY ,
g ◦ f ' idX and g(y0) = x0 (in general, g(y0) 6= x0)

It will suffice to show that the composition

(g ◦ f )∗ = g∗ ◦ f∗ : π1(X , x0)→ π1(X , x0), γ 7→ (g ◦ f ) ◦ γ

is equal to idπ1(X ,x0) (and similarly f∗ ◦ g∗ = idπ1(Y ,y0))

This would imply that f∗ and g∗ are invertible and hence bijections



It suffices to prove:

Lemma
Let f : X → X be a map such that f ' idX and f (x0) = x0
Then f∗ = idπ1(X ,x0), i.e. f ◦ γ ' γ for all γ ∈ π1(X , x0)

Proof.
Let Ht : X → X be a homotopy from f to idX

Then H̃t = Ht ◦ γ : [0, 1]→ X is a based homotopy f ◦ γ ' γ

This completes the proof since:

I f ◦ g ' idY implies f∗ ◦ g∗ = (f ◦ g)∗ = idπ1(Y ,y0)
I g ◦ f ' idX implies g∗ ◦ f∗ = (g ◦ f )∗ = idπ1(X ,x0)

However, in the proof we assumed that g(y0) = x0

Exercise: Show that, if f : X → X is a map such that f ' idX ,
then f∗ is bijective. That is, finish the proof of the Theorem.


