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Recap

We considered two types of metric spaces:
» Subsets of R”
» 1 and 2-dimensional cell complexes
Definition
Two metric spaces X and Y are homotopy equivalent (X ~ Y) if

there exists maps f : X — Y and g : Y — X such that
fog~idy and gof ~idx

We say that f : X — Y is a homotopy equivalence
» gof ~idx means there exists a a one-parameter family of

maps H; : X — X such that Hy =g o f and H; = idx and
which varies continuously for t € [0, 1]



We will show that the circle S is homotopy equivalent to the
punctured complex plane C\ {0}

We will take S* = {e? : 0 € [0,27]} C C

Exercise: Prove that this is homeomorphic to
{(x,y): x>+ y? = 1} C R? (our previous definition)

We need to find f : St — C\ {0} and g : C\ {0} — S! such that
fog ~ Id(c\{o} and g o f~ idsl

Fortunately, there are only two sensible choices for f and g:
» f:St = C\ {0}, eier—>ei9
» g:C\ {0} — St re s e (where r # 0)

We have g o f = idsi and so need to show that f o g ~ idg\ {0y



Since f (g (re™)) = €/, we need to find a continuous
one-parameter family of maps H; : C\ {0} — C\ {0} such that

Ho (reia) = eie, Hy (rei9> = re®

One example is the function H; (re?) = rtef:

Hence S' ~ C\ {0}



How do we prove that two spaces are not homotopy equivalent?
For example, is St ~ R?
One approach is:
» Suppose there exists continuous functions f : S' — R and
g :R — S'such that fog ~idg and go f ~ida
» Find general forms for the functions f and g
» Try to arrive at a contradiction
However, this approach fails in general since there are many

choices for f and g

The best approach is to instead use algebraic topology



What is Algebraic Topology?

Algebraic topology gives a method to prove that X £ Y using
invariants:

» An invariant is a quantity /(X) which we can attach to each
space X such that, if X ~ Y, then /(X) = I(Y)

» Hence, if /(S!) # I(R), then ST £ R

One example is /(X) = X (the space itself). However this is a bad
example since:

» We want /(X) to be such that determining if /(X) =/(Y) is
easier than determining if X ~ Y

Typically this means that /(X) will be a quantity from algebra



The goal of this lecture will be to define two invariants:
» The Euler characteristic x(X)

» The fundamental group 71(X)



Euler characteristic

Definition
Let X be an n-dimensional cell complex and let f; denote the
number of cells in dimension | .,

The Euler characteristic of X is x(X) = 3. (—1)'f;
i=0

For low-dimensional examples, we will write:
» V = fy = number of vertices
» E = f; = number of edges

» F = f, = number of faces



Examples:
> x(x) =1
> Let X be a loop with one vertex. Then:
X(X)=V—-E=1-1=0

- Q

» Let C be a cube (hollow but with solid faces). Then:
xX(C)=V—-E+F=8-12+6=2




» Let D be a regular dodecahedron. Then:
x(D)=V-E+F=20-30+12=2

Note that C =2 D =2 S? are both homeomorphic to the sphere 52
We also have x(C) = x(D) =2
Does X 2 Y imply x(X) = x(Y)?



In fact, even more is true:

Theorem
X s a homotopy invariant, i.e. if X and Y are cell complexes and
X ~Y, then x(X) = x(Y)

The proof is beyond the scope of this course

Challenge problem: Prove that x is a homotopy invariant on the
class of 2-dimensional cell complexes. You may assume that, if

X ~ %, then x(X) =1

Since x is a homotopy invariant, we can extend the definition of x
to metric spaces which are homotopy equivalent to cell complexes:
Definition

If X is a metric space and Y is a cell complex such that X ~ Y,
then define x(X) := x(Y)



Examples:
» R” = % Hence x(R") =1
» S = X where X is a loop with one vertex. Hence x(S!) =0

This implies that S* % R which would be difficult to prove by
other means

If SL~ R, then S! ~ R. Hence we also have S! 2R
» S22 C where C is the cube. Hence x(S5%) =2
If X is the surface of a polyhedra, then X ~ S? and so y(X) =2

If X has V vertices, E edges and F faces, then V — E+ F =2
This was first discovered by Leonhard Euler in 1758



» If T is a torus, then T is homeomorphic to either of the
following cell complexes

v E}l v
Exx rE, =
\
v E’l v

The first example shows x(T) =V —-E+F=1-2+1=0
Since x(S') = 0, we cannot distinguish S* and T using x

So how can we prove that T % S'?



Summary of the Euler characteristic as an invariant:

> Hard to prove that it is a homotopy invariant
» Easy to compute

» Only consists of an integer value, so can only distinguish a
limited number of spaces



The fundamental group

We will now define a new invariant m1(X)

This time, homotopy will appear in the definition of our invariant
and so it will be:

» Easy to prove that it is a homotopy invariant

» Hard to compute

Furthermore:

> It will have the structure of a group, and so has the power to
distinguish between a larger number of spaces



Let X be a metric space and let xp € X (known as the basepoint)

Consider all paths in X which start and end at xp:

{loops at xp} = {7 :[0,1] = X | 7(0) = v(1) = xo, ¥ continuous}

Definition

We say that loops 7,7’ : [0,1] — X are homotopy equivalent
(v ~ +') if there exists a continuously varying one-parameter
family of loops H; : [0,1] — X such that Hy =, Hy =7/.

This is not the same as a homotopy between ~,~" : [0,1] — X
considered as functions between metric spaces

Here H; is a loop for all t, i.e. H:(0) = H¢(1) = xo for all
t € [0,1]. This is also known as a based homotopy



To picture a homotopy:
» View two loops as stretchy pieces of string attached at xg € X

» Two loops are equivalent if you can stretch one piece of string
into the other while keeping xg fixed

Example: Consider loops 7o, v, 71 and 72 on the torus T

Let ¢y, : [0,1] — X, t — xo denote the constant loop

Then 71 >~ 71, Y0 = G- Are 70, 71 and 2 homotopy equivalent?



If S is a set and = is an equivalence relation of S, then we write
S/ = for the equivalence classes of =, i.e. “the set S modulo ="

Example: if S=Z and a~ bif a= b mod n, then Z/ ~ = 7 /nZ
are isomorphic as rings

Definition

m1(X, x0) := {loops at xg}/ =~

If v:[0,1] — X is a loop at xp, then we often write [y] € 71 (X, x0)

Example: m1(T,x0) = {[cx]: [11], [2], - -+ }/ =~

If we could show ;1 % ¢, then w1 (T, xp) would contain more than
one element



Example: X = [0,1], xop = 0. We want to compute 71 (X, xp)
Let v:[0,1] — X be a loop with v(0) = v(1) =0
We claim that v ~ ¢

This is achieved by the based homotopy H:(x) = (1 — t)y(x) which
has Hy =, H1 =0, and is a loop for all t € [0, 1] since H;(0) =0

At time t increases, every point on -y is pushed towards O:

Hence 71 (X, x0) = {co}-



Homotopy invariance of 71 (X, xp)

What would it mean to say that 71(X, xp) is a homotopy
invariant?

» Two sets are ‘equal’ if there is a bijection between them

» If X >~ Y, then we need a bijection 71 (X, x0) — m1(Y, y0)

» Is this true for all choices of xgy, yp or just some choices?
We say that a metric space X is path-connected if, for all

Xp, x1 € X, there exists a path from xp to xi, i.e. there exists a
continuous function p : [0,1] — X with p(0) = xo, p(1) = x1

Theorem
Let X be a path-connected metric space and let xp,x1 € X
If p is a path from xp to x1, then there exists a bijection

Px - 7T1(X7X0) — 7T1(X7Xl)



Proof: If v € m1(X, x0), then define p.(v) :=p~L-7-p

-1
This is the loop at x; which travels x; LN X0 N X0 L X1:

Explicitly, this has the form:

p~1(3t) t<1/3
(Pt v p)(t) = (3t — 1) 2/3< <2
p(3t—2) 2/3<t<1



In order to show that p, is a bijection, it will suffice to check that
(p~1)s 0 ps : (X, x0) — m1(X, x0) is equal to idr (X x0)

Note that (p™")uopu:y = p-p(v)-pt=(p-p ") -7-(p-p ")
Hence we need to show that (p-p~1)-v-(p-p7 1) ~~

It suffices to prove that p- p~1 ~ ¢,



1

The proof that p- p~* ~ ¢, is the following picture:

1

Recall that p- p~* is defined as:

vy [p(2x) 0<x
(p-p )00 = {p—l(zx 1) 1<

Explicitly, the diagram above corresponds to taking the homotopy:

He(x) = {p(t 2x) oS

pi(l+2t-(x—1)) 1/2<



We say that two sets A, B are equivalent if there is a bijection
f:A—B

This is an equivalence relation on the class of sets
If X is a metric space and xp, x1 € X, then m1(X, xp) and

m1(X, x1) are equivalent as sets

Definition
Let 71(X) denote the set equivalence class containing m1(X, xo)
(for any choice of xp € X)

From now on, we will assume that all spaces are path-connected
metric spaces

Theorem (7 is a homotopy invariant)
If X ~ Y, then m(X) = m1(Y') are equivalent as sets



This will follow from:

Theorem
If f : X — Y is a homotopy equivalence, xo € X and yp = f(xo),
then there is a bijection

f*37T1(X,X0)—>7T1(Ya)/O)7 7'_)7(07

Proof: Suppose there is a map g : Y — X such that f o g ~ idy,
gof ~idx and g(y) = xo (in general, g(yo) # xo)

It will suffice to show that the composition
(gof)s=geofi:m(X,x0) = m(X,x0), v+ (gof)ory

is equal to id;, (x,x) (and similarly . o g« = id; (v )

This would imply that £, and g, are invertible and hence bijections



It suffices to prove:

Lemma
Let f : X — X be a map such that f ~idx and f(xp) = xo
Then f, = id . (x,x), i-e fory =7 forally € m(X,x)

Proof.
Let H; : X — X be a homotopy from f to idx
Then H; = H, o v :[0,1] = X is a based homotopy f oy ~ ~
This completes the proof since:
» fog~idy implies f, 0 g« = (f 0 g)« = idy (v )
» gof ~idx implies gi o f, = (g o f)s = idr (x )

However, in the proof we assumed that g(yo) = xo

Exercise: Show that, if f : X — X is a map such that f ~ idy,
then f, is bijective. That is, finish the proof of the Theorem.
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