Introduction to Algebraic Topology

Johnny Nicholson
University College London
https://www.ucl.ac.uk/~ucahjni/

Lecture 2. Invariants
January 26th, 2021

Recap

We considered two types of metric spaces:

- Subsets of \mathbb{R}^{n}
- 1 and 2-dimensional cell complexes

Definition

Two metric spaces X and Y are homotopy equivalent $(X \simeq Y)$ if there exists maps $f: X \rightarrow Y$ and $g: Y \rightarrow X$ such that $f \circ g \simeq \mathrm{id}_{Y}$ and $g \circ f \simeq \mathrm{id}_{X}$

We say that $f: X \rightarrow Y$ is a homotopy equivalence

- $g \circ f \simeq \mathrm{id}_{X}$ means there exists a a one-parameter family of maps $H_{t}: X \rightarrow X$ such that $H_{0}=g \circ f$ and $H_{1}=i d X$ and which varies continuously for $t \in[0,1]$

We will show that the circle S^{1} is homotopy equivalent to the punctured complex plane $\mathbb{C} \backslash\{0\}$
We will take $S^{1}=\left\{e^{i \theta}: \theta \in[0,2 \pi]\right\} \subseteq \mathbb{C}$
Exercise: Prove that this is homeomorphic to $\left\{(x, y): x^{2}+y^{2}=1\right\} \subseteq \mathbb{R}^{2}$ (our previous definition)
We need to find $f: S^{1} \rightarrow \mathbb{C} \backslash\{0\}$ and $g: \mathbb{C} \backslash\{0\} \rightarrow S^{1}$ such that $f \circ g \simeq \operatorname{id}_{\mathbb{C} \backslash\{0\}}$ and $g \circ f \simeq \mathrm{id}_{S^{1}}$
Fortunately, there are only two sensible choices for f and g :

- $f: S^{1} \rightarrow \mathbb{C} \backslash\{0\}, e^{i \theta} \mapsto e^{i \theta}$
- $g: \mathbb{C} \backslash\{0\} \rightarrow S^{1}, r e^{i \theta} \mapsto e^{i \theta}($ where $r \neq 0)$

We have $g \circ f=i d_{S^{1}}$ and so need to show that $f \circ g \simeq i d_{\mathbb{C} \backslash\{0\}}$

Since $f\left(g\left(r e^{i \theta}\right)\right)=e^{i \theta}$, we need to find a continuous one-parameter family of maps $H_{t}: \mathbb{C} \backslash\{0\} \rightarrow \mathbb{C} \backslash\{0\}$ such that

$$
H_{0}\left(r e^{i \theta}\right)=e^{i \theta}, \quad H_{1}\left(r e^{i \theta}\right)=r e^{i \theta}
$$

One example is the function $H_{t}\left(r e^{i \theta}\right)=r^{t} e^{i \theta}$:

Hence $S^{1} \simeq \mathbb{C} \backslash\{0\}$

How do we prove that two spaces are not homotopy equivalent? For example, is $S^{1} \simeq \mathbb{R}$?

One approach is:

- Suppose there exists continuous functions $f: S^{1} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow S^{1}$ such that $f \circ g \simeq \mathrm{id}_{\mathbb{R}}$ and $g \circ f \simeq \mathrm{id}_{S^{1}}$
- Find general forms for the functions f and g
- Try to arrive at a contradiction

However, this approach fails in general since there are many choices for f and g

The best approach is to instead use algebraic topology

What is Algebraic Topology?

Algebraic topology gives a method to prove that $X \nsucceq Y$ using invariants:

- An invariant is a quantity $I(X)$ which we can attach to each space X such that, if $X \simeq Y$, then $I(X)=I(Y)$
- Hence, if $I\left(S^{1}\right) \neq I(\mathbb{R})$, then $S^{1} \nsucceq \mathbb{R}$

One example is $I(X)=X$ (the space itself). However this is a bad example since:

- We want $I(X)$ to be such that determining if $I(X)=I(Y)$ is easier than determining if $X \simeq Y$

Typically this means that $I(X)$ will be a quantity from algebra

The goal of this lecture will be to define two invariants:

- The Euler characteristic $\chi(X)$
- The fundamental group $\pi_{1}(X)$

Euler characteristic

Definition

Let X be an n-dimensional cell complex and let f_{i} denote the number of cells in dimension i
The Euler characteristic of X is $\chi(X)=\sum_{i=0}^{n}(-1)^{i} f_{i}$
For low-dimensional examples, we will write:

- $V=f_{0}=$ number of vertices
- $E=f_{1}=$ number of edges
- $F=f_{2}=$ number of faces

Examples:

- $\chi(*)=1$
- Let X be a loop with one vertex. Then:
$\chi(X)=V-E=1-1=0$

- Let C be a cube (hollow but with solid faces). Then: $\chi(C)=V-E+F=8-12+6=2$

- Let D be a regular dodecahedron. Then:

$$
\chi(D)=V-E+F=20-30+12=2
$$

Note that $C \cong D \cong S^{2}$ are both homeomorphic to the sphere S^{2} We also have $\chi(C)=\chi(D)=2$
Does $X \cong Y$ imply $\chi(X)=\chi(Y)$?

In fact, even more is true:

Theorem

χ is a homotopy invariant, i.e. if X and Y are cell complexes and $X \simeq Y$, then $\chi(X)=\chi(Y)$

The proof is beyond the scope of this course
Challenge problem: Prove that χ is a homotopy invariant on the class of 2-dimensional cell complexes. You may assume that, if $X \simeq *$, then $\chi(X)=1$
Since χ is a homotopy invariant, we can extend the definition of χ to metric spaces which are homotopy equivalent to cell complexes:

Definition

If X is a metric space and Y is a cell complex such that $X \simeq Y$, then define $\chi(X):=\chi(Y)$

Examples:

- $\mathbb{R}^{n} \cong *$. Hence $\chi\left(\mathbb{R}^{n}\right)=1$
- $S^{1} \cong X$ where X is a loop with one vertex. Hence $\chi\left(S^{1}\right)=0$

This implies that $S^{1} \not \not \mathbb{R}$ which would be difficult to prove by other means
If $S^{1} \cong \mathbb{R}$, then $S^{1} \simeq \mathbb{R}$. Hence we also have $S^{1} \nsubseteq \mathbb{R}$

- $S^{2} \cong C$ where C is the cube. Hence $\chi\left(S^{2}\right)=2$

If X is the surface of a polyhedra, then $X \simeq S^{2}$ and so $\chi(X)=2$
If X has V vertices, E edges and F faces, then $V-E+F=2$
This was first discovered by Leonhard Euler in 1758

- If T is a torus, then T is homeomorphic to either of the following cell complexes

The first example shows $\chi(T)=V-E+F=1-2+1=0$
Since $\chi\left(S^{1}\right)=0$, we cannot distinguish S^{1} and T using χ
So how can we prove that $T \not 千 S^{1}$?

Summary of the Euler characteristic as an invariant:

- Hard to prove that it is a homotopy invariant
- Easy to compute
- Only consists of an integer value, so can only distinguish a limited number of spaces

The fundamental group

We will now define a new invariant $\pi_{1}(X)$
This time, homotopy will appear in the definition of our invariant and so it will be:

- Easy to prove that it is a homotopy invariant
- Hard to compute

Furthermore:

- It will have the structure of a group, and so has the power to distinguish between a larger number of spaces

Let X be a metric space and let $x_{0} \in X$ (known as the basepoint)
Consider all paths in X which start and end at x_{0} :
$\left\{\right.$ loops at $\left.x_{0}\right\}=\left\{\gamma:[0,1] \rightarrow X \mid \gamma(0)=\gamma(1)=x_{0}, \gamma\right.$ continuous $\}$

Definition

We say that loops $\gamma, \gamma^{\prime}:[0,1] \rightarrow X$ are homotopy equivalent ($\gamma \simeq \gamma^{\prime}$) if there exists a continuously varying one-parameter family of loops $H_{t}:[0,1] \rightarrow X$ such that $H_{0}=\gamma, H_{1}=\gamma^{\prime}$.

This is not the same as a homotopy between $\gamma, \gamma^{\prime}:[0,1] \rightarrow X$ considered as functions between metric spaces

Here H_{t} is a loop for all t, i.e. $H_{t}(0)=H_{t}(1)=x_{0}$ for all $t \in[0,1]$. This is also known as a based homotopy

To picture a homotopy:

- View two loops as stretchy pieces of string attached at $x_{0} \in X$
- Two loops are equivalent if you can stretch one piece of string into the other while keeping x_{0} fixed

Example: Consider loops $\gamma_{0}, \gamma_{0}^{\prime}, \gamma_{1}$ and γ_{2} on the torus T

Let $c_{x_{0}}:[0,1] \rightarrow X, t \mapsto x_{0}$ denote the constant loop
Then $\gamma_{1} \simeq \gamma_{1}^{\prime}, \gamma_{0} \simeq c_{x_{0}}$. Are γ_{0}, γ_{1} and γ_{2} homotopy equivalent?

If S is a set and \equiv is an equivalence relation of S, then we write S / \equiv for the equivalence classes of \equiv, i.e. "the set S modulo \equiv "

Example: if $S=\mathbb{Z}$ and $a \simeq b$ if $a \equiv b \bmod n$, then $\mathbb{Z} / \simeq \cong \mathbb{Z} / n \mathbb{Z}$ are isomorphic as rings

Definition
$\pi_{1}\left(X, x_{0}\right):=\left\{\right.$ loops at $\left.x_{0}\right\} / \simeq$
If $\gamma:[0,1] \rightarrow X$ is a loop at x_{0}, then we often write $[\gamma] \in \pi_{1}\left(X, x_{0}\right)$
Example: $\pi_{1}\left(T, x_{0}\right)=\left\{\left[c_{x_{0}}\right],\left[\gamma_{1}\right],\left[\gamma_{2}\right], \cdots\right\} / \simeq$
If we could show $\gamma_{1} \not 千 c_{x_{0}}$, then $\pi_{1}\left(T, x_{0}\right)$ would contain more than one element

Example: $X=[0,1], x_{0}=0$. We want to compute $\pi_{1}\left(X, x_{0}\right)$ Let $\gamma:[0,1] \rightarrow X$ be a loop with $\gamma(0)=\gamma(1)=0$

We claim that $\gamma \simeq c_{0}$
This is achieved by the based homotopy $H_{t}(x)=(1-t) \gamma(x)$ which has $H_{0}=\gamma, H_{1}=0$, and is a loop for all $t \in[0,1]$ since $H_{t}(0)=0$

At time t increases, every point on γ is pushed towards 0 :

Hence $\pi_{1}\left(X, x_{0}\right)=\left\{c_{0}\right\}$.

Homotopy invariance of $\pi_{1}\left(X, x_{0}\right)$

What would it mean to say that $\pi_{1}\left(X, x_{0}\right)$ is a homotopy invariant?

- Two sets are 'equal' if there is a bijection between them
- If $X \simeq Y$, then we need a bijection $\pi_{1}\left(X, x_{0}\right) \rightarrow \pi_{1}\left(Y, y_{0}\right)$
- Is this true for all choices of x_{0}, y_{0} or just some choices?

We say that a metric space X is path-connected if, for all $x_{0}, x_{1} \in X$, there exists a path from x_{0} to x_{1}, i.e. there exists a continuous function $p:[0,1] \rightarrow X$ with $p(0)=x_{0}, p(1)=x_{1}$

Theorem
Let X be a path-connected metric space and let $x_{0}, x_{1} \in X$ If p is a path from x_{0} to x_{1}, then there exists a bijection

$$
p_{*}: \pi_{1}\left(X, x_{0}\right) \rightarrow \pi_{1}\left(X, x_{1}\right)
$$

Proof: If $\gamma \in \pi_{1}\left(X, x_{0}\right)$, then define $p_{*}(\gamma):=p^{-1} \cdot \gamma \cdot p$
This is the loop at x_{1} which travels $x_{1} \xrightarrow{p^{-1}} x_{0} \xrightarrow{\gamma} x_{0} \xrightarrow{p} x_{1}$:

Explicitly, this has the form:

$$
\left(p^{-1} \cdot \gamma \cdot p\right)(t)= \begin{cases}p^{-1}(3 t) & t \leqslant 1 / 3 \\ \gamma(3 t-1) & 2 / 3 \leqslant t \leqslant 2 / 3 \\ p(3 t-2) & 2 / 3 \leqslant t \leqslant 1\end{cases}
$$

In order to show that p_{*} is a bijection, it will suffice to check that $\left(p^{-1}\right)_{*} \circ p_{*}: \pi_{1}\left(X, x_{0}\right) \rightarrow \pi_{1}\left(X, x_{0}\right)$ is equal to $\mathrm{id}_{\pi_{1}\left(X, x_{0}\right)}$

Note that $\left(p^{-1}\right)_{*} \circ p_{*}: \gamma \mapsto p \cdot p_{*}(\gamma) \cdot p^{-1}=\left(p \cdot p^{-1}\right) \cdot \gamma \cdot\left(p \cdot p^{-1}\right)$
Hence we need to show that $\left(p \cdot p^{-1}\right) \cdot \gamma \cdot\left(p \cdot p^{-1}\right) \simeq \gamma$
It suffices to prove that $p \cdot p^{-1} \simeq c_{x_{0}}$

The proof that $p \cdot p^{-1} \simeq c_{x_{0}}$ is the following picture:

Recall that $p \cdot p^{-1}$ is defined as:

$$
\left(p \cdot p^{-1}\right)(x)= \begin{cases}p(2 x) & 0 \leqslant x \leqslant 1 / 2 \\ p^{-1}(2 x-1) & 1 / 2 \leqslant x \leqslant 1\end{cases}
$$

Explicitly, the diagram above corresponds to taking the homotopy:

$$
H_{t}(x)= \begin{cases}p(t \cdot 2 x) & 0 \leqslant x \leqslant 1 / 2 \\ p^{-1}(1+2 t \cdot(x-1)) & 1 / 2 \leqslant x \leqslant 1\end{cases}
$$

We say that two sets A, B are equivalent if there is a bijection $f: A \rightarrow B$

This is an equivalence relation on the class of sets
If X is a metric space and $x_{0}, x_{1} \in X$, then $\pi_{1}\left(X, x_{0}\right)$ and $\pi_{1}\left(X, x_{1}\right)$ are equivalent as sets

Definition

Let $\pi_{1}(X)$ denote the set equivalence class containing $\pi_{1}\left(X, x_{0}\right)$ (for any choice of $x_{0} \in X$)

From now on, we will assume that all spaces are path-connected metric spaces

Theorem (π_{1} is a homotopy invariant)
If $X \simeq Y$, then $\pi_{1}(X) \cong \pi_{1}(Y)$ are equivalent as sets

This will follow from:
Theorem
If $f: X \rightarrow Y$ is a homotopy equivalence, $x_{0} \in X$ and $y_{0}=f\left(x_{0}\right)$, then there is a bijection

$$
f_{*}: \pi_{1}\left(X, x_{0}\right) \rightarrow \pi_{1}\left(Y, y_{0}\right), \quad \gamma \mapsto f \circ \gamma
$$

Proof: Suppose there is a map $g: Y \rightarrow X$ such that $f \circ g \simeq$ id $_{Y}$, $g \circ f \simeq \mathrm{id} x$ and $g\left(y_{0}\right)=x_{0}$ (in general, $g\left(y_{0}\right) \neq x_{0}$)

It will suffice to show that the composition

$$
(g \circ f)_{*}=g_{*} \circ f_{*}: \pi_{1}\left(X, x_{0}\right) \rightarrow \pi_{1}\left(X, x_{0}\right), \gamma \mapsto(g \circ f) \circ \gamma
$$

is equal to $\mathrm{id}_{\pi_{1}\left(X, x_{0}\right)}$ (and similarly $\left.f_{*} \circ g_{*}=\mathrm{id}_{\pi_{1}\left(Y, y_{0}\right)}\right)$
This would imply that f_{*} and g_{*} are invertible and hence bijections

It suffices to prove:

Lemma

Let $f: X \rightarrow X$ be a map such that $f \simeq \operatorname{id} X$ and $f\left(x_{0}\right)=x_{0}$
Then $f_{*}=\operatorname{id}_{\pi_{1}\left(X, x_{0}\right)}$, i.e. $f \circ \gamma \simeq \gamma$ for all $\gamma \in \pi_{1}\left(X, x_{0}\right)$
Proof.
Let $H_{t}: X \rightarrow X$ be a homotopy from f to id $_{X}$
Then $\widetilde{H}_{t}=H_{t} \circ \gamma:[0,1] \rightarrow X$ is a based homotopy $f \circ \gamma \simeq \gamma$
This completes the proof since:

- $f \circ g \simeq \mathrm{id}_{Y}$ implies $f_{*} \circ g_{*}=(f \circ g)_{*}=\operatorname{id}_{\pi_{1}\left(Y, y_{0}\right)}$
- $g \circ f \simeq \mathrm{id}_{X}$ implies $g_{*} \circ f_{*}=(g \circ f)_{*}=\operatorname{id}_{\pi_{1}\left(X, x_{0}\right)}$

However, in the proof we assumed that $g\left(y_{0}\right)=x_{0}$
Exercise: Show that, if $f: X \rightarrow X$ is a map such that $f \simeq \mathrm{id}_{X}$, then f_{*} is bijective. That is, finish the proof of the Theorem.

