Introduction to Algebraic Topology

Johnny Nicholson

University College London

https://www.ucl.ac.uk/~ucahjni/

Lecture 2. Invariants January 26th, 2021

Recap

We considered two types of metric spaces:

- Subsets of \mathbb{R}^n
- 1 and 2-dimensional cell complexes

Definition

Two metric spaces X and Y are homotopy equivalent $(X \simeq Y)$ if there exists maps $f : X \to Y$ and $g : Y \to X$ such that $f \circ g \simeq id_Y$ and $g \circ f \simeq id_X$

We say that $f: X \rightarrow Y$ is a homotopy equivalence

▶ $g \circ f \simeq id_X$ means there exists a a one-parameter family of maps $H_t : X \to X$ such that $H_0 = g \circ f$ and $H_1 = id_X$ and which varies continuously for $t \in [0, 1]$ We will show that the circle S^1 is homotopy equivalent to the punctured complex plane $\mathbb{C} \setminus \{0\}$

We will take
$$S^1 = \{e^{i\theta} : \theta \in [0, 2\pi]\} \subseteq \mathbb{C}$$

Exercise: Prove that this is homeomorphic to $\{(x, y) : x^2 + y^2 = 1\} \subseteq \mathbb{R}^2$ (our previous definition)

We need to find $f: S^1 \to \mathbb{C} \setminus \{0\}$ and $g: \mathbb{C} \setminus \{0\} \to S^1$ such that $f \circ g \simeq \operatorname{id}_{\mathbb{C} \setminus \{0\}}$ and $g \circ f \simeq \operatorname{id}_{S^1}$

Fortunately, there are only two sensible choices for f and g:

We have $g \circ f = id_{S^1}$ and so need to show that $f \circ g \simeq id_{\mathbb{C} \setminus \{0\}}$

Since $f(g(re^{i\theta})) = e^{i\theta}$, we need to find a continuous one-parameter family of maps $H_t : \mathbb{C} \setminus \{0\} \to \mathbb{C} \setminus \{0\}$ such that

$$H_0\left(re^{i\theta}
ight)=e^{i\theta},\quad H_1\left(re^{i\theta}
ight)=re^{i\theta}$$

One example is the function $H_t(re^{i\theta}) = r^t e^{i\theta}$:

How do we prove that two spaces are not homotopy equivalent? For example, is $S^1 \simeq \mathbb{R}$?

One approach is:

- ▶ Suppose there exists continuous functions $f : S^1 \to \mathbb{R}$ and $g : \mathbb{R} \to S^1$ such that $f \circ g \simeq \operatorname{id}_{\mathbb{R}}$ and $g \circ f \simeq \operatorname{id}_{S^1}$
- Find general forms for the functions f and g
- Try to arrive at a contradiction

However, this approach fails in general since there are many choices for $f \mbox{ and } g$

The best approach is to instead use algebraic topology

What is Algebraic Topology?

Algebraic topology gives a method to prove that $X \not\simeq Y$ using *invariants*:

- An invariant is a quantity I(X) which we can attach to each space X such that, if X ≃ Y, then I(X) = I(Y)
- Hence, if $I(S^1) \neq I(\mathbb{R})$, then $S^1 \not\simeq \mathbb{R}$

One example is I(X) = X (the space itself). However this is a bad example since:

We want I(X) to be such that determining if I(X) = I(Y) is easier than determining if X ≃ Y

Typically this means that I(X) will be a quantity from algebra

The goal of this lecture will be to define two invariants:

- The Euler characteristic $\chi(X)$
- The fundamental group $\pi_1(X)$

Definition

Let X be an *n*-dimensional cell complex and let f_i denote the number of cells in dimension i

The Euler characteristic of X is
$$\chi(X) = \sum_{i=0}^{n} (-1)^{i} f_{i}$$

For low-dimensional examples, we will write:

- $V = f_0 =$ number of vertices
- $E = f_1 =$ number of edges
- $F = f_2 =$ number of faces

Examples:

- Let X be a loop with one vertex. Then: $\chi(X) = V - E = 1 - 1 = 0$

• Let C be a cube (hollow but with solid faces). Then: $\chi(C) = V - E + F = 8 - 12 + 6 = 2$

• Let *D* be a regular dodecahedron. Then: $\chi(D) = V - E + F = 20 - 30 + 12 = 2$

Note that $C \cong D \cong S^2$ are both homeomorphic to the sphere S^2 We also have $\chi(C) = \chi(D) = 2$ Does $X \cong Y$ imply $\chi(X) = \chi(Y)$? In fact, even more is true:

Theorem

 χ is a homotopy invariant, i.e. if X and Y are cell complexes and $X \simeq Y$, then $\chi(X) = \chi(Y)$

The proof is beyond the scope of this course

Challenge problem: Prove that χ is a homotopy invariant on the class of 2-dimensional cell complexes. You may assume that, if $X \simeq *$, then $\chi(X) = 1$

Since χ is a homotopy invariant, we can extend the definition of χ to metric spaces which are homotopy equivalent to cell complexes:

Definition

If X is a metric space and Y is a cell complex such that $X \simeq Y$, then define $\chi(X) := \chi(Y)$

Examples:

- $\mathbb{R}^n \cong *$. Hence $\chi(\mathbb{R}^n) = 1$
- $S^1 \cong X$ where X is a loop with one vertex. Hence $\chi(S^1) = 0$

This implies that $S^1 \not\simeq \mathbb{R}$ which would be difficult to prove by other means

If $S^1 \cong \mathbb{R}$, then $S^1 \simeq \mathbb{R}$. Hence we also have $S^1 \ncong \mathbb{R}$

• $S^2 \cong C$ where C is the cube. Hence $\chi(S^2) = 2$

If X is the surface of a polyhedra, then $X \simeq S^2$ and so $\chi(X) = 2$

If X has V vertices, E edges and F faces, then V - E + F = 2This was first discovered by Leonhard Euler in 1758 If T is a torus, then T is homeomorphic to either of the following cell complexes

The first example shows $\chi(T) = V - E + F = 1 - 2 + 1 = 0$ Since $\chi(S^1) = 0$, we cannot distinguish S^1 and T using χ So how can we prove that $T \not\simeq S^1$?

Summary of the Euler characteristic as an invariant:

- Hard to prove that it is a homotopy invariant
- Easy to compute
- Only consists of an integer value, so can only distinguish a limited number of spaces

The fundamental group

We will now define a new invariant $\pi_1(X)$

This time, homotopy will appear in the definition of our invariant and so it will be:

- Easy to prove that it is a homotopy invariant
- Hard to compute

Furthermore:

It will have the structure of a group, and so has the power to distinguish between a larger number of spaces Let X be a metric space and let $x_0 \in X$ (known as the basepoint) Consider all paths in X which start and end at x_0 :

{loops at x_0 } = { $\gamma : [0,1] \rightarrow X \mid \gamma(0) = \gamma(1) = x_0, \gamma \text{ continuous}$ }

Definition

We say that loops $\gamma, \gamma' : [0, 1] \to X$ are homotopy equivalent $(\gamma \simeq \gamma')$ if there exists a continuously varying one-parameter family of loops $H_t : [0, 1] \to X$ such that $H_0 = \gamma$, $H_1 = \gamma'$.

This is **not the same** as a homotopy between $\gamma, \gamma' : [0, 1] \rightarrow X$ considered as functions between metric spaces

Here H_t is a loop for all t, i.e. $H_t(0) = H_t(1) = x_0$ for all $t \in [0, 1]$. This is also known as a *based homotopy*

To picture a homotopy:

- ▶ View two loops as stretchy pieces of string attached at $x_0 \in X$
- Two loops are equivalent if you can stretch one piece of string into the other while keeping x₀ fixed

Example: Consider loops γ_0 , γ'_0 , γ_1 and γ_2 on the torus T

Let $c_{x_0}: [0,1] \to X$, $t \mapsto x_0$ denote the constant loop Then $\gamma_1 \simeq \gamma'_1$, $\gamma_0 \simeq c_{x_0}$. Are γ_0 , γ_1 and γ_2 homotopy equivalent? If S is a set and \equiv is an equivalence relation of S, then we write S/\equiv for the equivalence classes of \equiv , i.e. "the set S modulo \equiv "

Example: if $S = \mathbb{Z}$ and $a \simeq b$ if $a \equiv b \mod n$, then $\mathbb{Z}/\simeq \cong \mathbb{Z}/n\mathbb{Z}$ are isomorphic as rings

Definition $\pi_1(X, x_0) := \{\text{loops at } x_0\}/\simeq$ If $\gamma : [0, 1] \to X$ is a loop at x_0 , then we often write $[\gamma] \in \pi_1(X, x_0)$

Example: $\pi_1(T, x_0) = \{[c_{x_0}], [\gamma_1], [\gamma_2], \cdots \}/ \simeq$

If we could show $\gamma_1 \not\simeq c_{x_0}$, then $\pi_1(T, x_0)$ would contain more than one element

Example: X = [0, 1], $x_0 = 0$. We want to compute $\pi_1(X, x_0)$ Let $\gamma : [0, 1] \to X$ be a loop with $\gamma(0) = \gamma(1) = 0$ We claim that $\gamma \simeq c_0$

This is achieved by the based homotopy $H_t(x) = (1-t)\gamma(x)$ which has $H_0 = \gamma$, $H_1 = 0$, and is a loop for all $t \in [0, 1]$ since $H_t(0) = 0$

At time t increases, every point on γ is pushed towards 0:

Hence $\pi_1(X, x_0) = \{c_0\}.$

Homotopy invariance of $\pi_1(X, x_0)$

What would it mean to say that $\pi_1(X, x_0)$ is a homotopy invariant?

- Two sets are 'equal' if there is a bijection between them
- If $X \simeq Y$, then we need a bijection $\pi_1(X, x_0) \rightarrow \pi_1(Y, y_0)$
- ▶ Is this true for *all* choices of *x*₀, *y*₀ or just some choices?

We say that a metric space X is *path-connected* if, for all $x_0, x_1 \in X$, there exists a path from x_0 to x_1 , i.e. there exists a continuous function $p : [0, 1] \to X$ with $p(0) = x_0$, $p(1) = x_1$

Theorem

Let X be a path-connected metric space and let $x_0, x_1 \in X$ If p is a path from x_0 to x_1 , then there exists a bijection

$$p_*:\pi_1(X,x_0)\to\pi_1(X,x_1)$$

Proof: If $\gamma \in \pi_1(X, x_0)$, then define $p_*(\gamma) := p^{-1} \cdot \gamma \cdot p$ This is the loop at x_1 which travels $x_1 \xrightarrow{p^{-1}} x_0 \xrightarrow{\gamma} x_0 \xrightarrow{p} x_1$:

Explicitly, this has the form:

$$(p^{-1} \cdot \gamma \cdot p)(t) = egin{cases} p^{-1}(3t) & t \leqslant 1/3 \ \gamma(3t-1) & 2/3 \leqslant t \leqslant 2/3 \ p(3t-2) & 2/3 \leqslant t \leqslant 1. \end{cases}$$

In order to show that p_* is a bijection, it will suffice to check that $(p^{-1})_* \circ p_* : \pi_1(X, x_0) \to \pi_1(X, x_0)$ is equal to $\mathrm{id}_{\pi_1(X, x_0)}$

Note that $(p^{-1})_* \circ p_* : \gamma \mapsto p \cdot p_*(\gamma) \cdot p^{-1} = (p \cdot p^{-1}) \cdot \gamma \cdot (p \cdot p^{-1})$

Hence we need to show that $(p \cdot p^{-1}) \cdot \gamma \cdot (p \cdot p^{-1}) \simeq \gamma$

It suffices to prove that $p \cdot p^{-1} \simeq c_{x_0}$

The proof that $p \cdot p^{-1} \simeq c_{x_0}$ is the following picture:

Recall that $p \cdot p^{-1}$ is defined as:

$$(p \cdot p^{-1})(x) = \begin{cases} p(2x) & 0 \leq x \leq 1/2 \\ p^{-1}(2x-1) & 1/2 \leq x \leq 1. \end{cases}$$

Explicitly, the diagram above corresponds to taking the homotopy:

$$H_t(x) = \begin{cases} p(t \cdot 2x) & 0 \le x \le 1/2\\ p^{-1}(1 + 2t \cdot (x - 1)) & 1/2 \le x \le 1 \end{cases}$$

We say that two sets A, B are equivalent if there is a bijection $f: A \rightarrow B$

This is an equivalence relation on the class of sets

If X is a metric space and $x_0, x_1 \in X$, then $\pi_1(X, x_0)$ and $\pi_1(X, x_1)$ are equivalent as sets

Definition

Let $\pi_1(X)$ denote the set equivalence class containing $\pi_1(X, x_0)$ (for any choice of $x_0 \in X$)

From now on, we will assume that all spaces are path-connected metric spaces

Theorem (π_1 is a homotopy invariant) If $X \simeq Y$, then $\pi_1(X) \cong \pi_1(Y)$ are equivalent as sets This will follow from:

Theorem

If $f : X \to Y$ is a homotopy equivalence, $x_0 \in X$ and $y_0 = f(x_0)$, then there is a bijection

$$f_*: \pi_1(X, x_0) \to \pi_1(Y, y_0), \quad \gamma \mapsto f \circ \gamma$$

Proof: Suppose there is a map $g: Y \to X$ such that $f \circ g \simeq id_Y$, $g \circ f \simeq id_X$ and $g(y_0) = x_0$ (in general, $g(y_0) \neq x_0$)

It will suffice to show that the composition

$$(g \circ f)_* = g_* \circ f_* : \pi_1(X, x_0) \to \pi_1(X, x_0), \gamma \mapsto (g \circ f) \circ \gamma$$

is equal to $\operatorname{id}_{\pi_1(X,x_0)}$ (and similarly $f_*\circ g_*=\operatorname{id}_{\pi_1(Y,y_0)})$

This would imply that f_* and g_* are invertible and hence bijections

It suffices to prove:

Lemma

Let $f : X \to X$ be a map such that $f \simeq id_X$ and $f(x_0) = x_0$ Then $f_* = id_{\pi_1(X,x_0)}$, i.e. $f \circ \gamma \simeq \gamma$ for all $\gamma \in \pi_1(X,x_0)$

Proof.

Let $H_t: X \to X$ be a homotopy from f to id_X Then $\widetilde{H}_t = H_t \circ \gamma : [0, 1] \to X$ is a based homotopy $f \circ \gamma \simeq \gamma$

This completes the proof since:

•
$$f \circ g \simeq \operatorname{id}_Y$$
 implies $f_* \circ g_* = (f \circ g)_* = \operatorname{id}_{\pi_1(Y,y_0)}$

•
$$g \circ f \simeq \operatorname{id}_X$$
 implies $g_* \circ f_* = (g \circ f)_* = \operatorname{id}_{\pi_1(X, x_0)}$

However, in the proof we assumed that $g(y_0) = x_0$

Exercise: Show that, if $f : X \to X$ is a map such that $f \simeq id_X$, then f_* is bijective. That is, finish the proof of the Theorem.