Introduction to Algebraic Topology

Johnny Nicholson
University College London
https://www.ucl.ac.uk/~ucahjni/

Lecture 3. The fundamental group of the circle January 27th, 2021

Recap

Let X be a metric space and let $x_{0} \in X$
A loop at x_{0} is a map $\gamma:[0,1] \rightarrow X$ with $\gamma(0)=\gamma(1)=x_{0}$
We defined $\pi_{1}\left(X, x_{0}\right):=\left\{\right.$ loops at $\left.x_{0}\right\} / \simeq$

- Two loops $\gamma, \gamma^{\prime}:[0,1] \rightarrow X$ have $\gamma \simeq \gamma^{\prime}$ if there exists a homotopy $H_{t}:[0,1] \rightarrow X$ such that $H_{0}=\gamma, H_{1}=\gamma^{\prime}$ and $H_{t}(0)=H_{t}(1)=x_{0}$ (a based homotopy)

Theorem
If X is path-connected, then $\pi_{1}\left(X, x_{0}\right) \cong_{b i j} \pi_{1}\left(X, x_{1}\right)$

- We let $\pi_{1}(X)$ denote the set up to equivalence of sets

Theorem
If $X \simeq Y$, then $\pi_{1}(X) \cong \pi_{1}(Y)$ are equivalent as sets

- So $\pi_{1}(X)$ is a homotopy invariant

Definition

We say X is simply connected if $\pi_{1}(X)=1$, i.e. if it is equivalent to the set of size one

The property of being simply connected is a homotopy invariant
Example: $\pi_{1}([0,1])=\left\{c_{0}\right\}$ and so $[0,1]$ is simply connected An alternate proof is that $[0,1] \simeq *$ and $\pi_{1}(*)=1$

If X is a metric space with $\pi_{1}(X) \neq 1$, then $X \not 千 *$
However, it is difficult to show that a space has $\pi_{1}(X) \neq 1$

Group theory

Definition

A group is a set G and a map $\cdot: G \times G \rightarrow G$ such that

- There is an element $1 \in G$ such that $g \cdot 1=g=1 \cdot g$
- For all $g \in G$, there exists $h \in G$ such that $h \cdot g=1=g \cdot h$
- If $g, h, k \in G$, then $(g \cdot h) \cdot k=g \cdot(h \cdot k)$ (associativity)

Example: $(\mathbb{R} \backslash\{0\}, \cdot)$ where \cdot is multiplication

- Let $x \in \mathbb{R} \backslash\{0\}$. Then $x \cdot 1=x=1 \cdot x$
- Let $x \in \mathbb{R} \backslash\{0\}$. Then $\frac{1}{x} \in \mathbb{R} \backslash\{0\}$ and $\frac{1}{x} \cdot x=1=x \cdot \frac{1}{x}$
- Associativity is clear

Example: $(\mathbb{Z},+)$ is a group, where + is addition

- Let $n \in \mathbb{Z}$. Then $n+0=0=0+n$ (so the ' 1 ' is 0)
- Let $n \in \mathbb{Z}$. Then $-n \in \mathbb{Z}$ and $n+(-n)=0=(-n)+n$

Example: $(\mathbb{Z} / n \mathbb{Z},+)$ is a group
Example: Let $(\mathbb{Z} / n \mathbb{Z})^{\times}=\{m:(n, m)=1\} \subseteq \mathbb{Z} / n \mathbb{Z}$
If $m_{1}, m_{2} \in(\mathbb{Z} / n \mathbb{Z})^{\times}$, then $m_{1} \cdot m_{2} \in(\mathbb{Z} / n \mathbb{Z})^{\times}$
Exercise: Show that $\left((\mathbb{Z} / n \mathbb{Z})^{\times}, \cdot\right)$ is a group

Definition

Let G and H are groups. Then a function $f: G \rightarrow H$ is a homomorphism if $f(g h)=f(g) f(h)$ for all $g, h \in G$ and $f(1)=1$.

Example: $f: \mathbb{Z} \rightarrow \mathbb{Z} / n \mathbb{Z}, m \mapsto m(\bmod n)$ is a homomorphism
We need to decide what it means for two groups to be equivalent

Definition

Two groups G, H are isomorphic $(G \cong H)$ if there are homomorphisms $f: G \rightarrow H$ and $g: H \rightarrow G$ such that $f \circ g=\mathrm{id}_{H}$ and $g \circ f=\operatorname{id}_{G}$

We say $f: G \rightarrow H$ is an isomorphism
This should remind us of the definition of homeomorphism
Exercise: Prove that, if $f: G \rightarrow H$ is a bijective homomorphism, then f is an isomorphism

Example: Consider $(\mathbb{Z} / 5 \mathbb{Z})^{\times}=\{1,2,3,4\}$ (with multiplication)
Note that $2^{2}=4,2^{3}=3,2^{4}=1$ so $(\mathbb{Z} / 5 \mathbb{Z})^{\times}=\left\{1,2,2^{2}, 2^{3}\right\}$
$f: \mathbb{Z} / 4 \mathbb{Z} \rightarrow(\mathbb{Z} / 5 \mathbb{Z})^{\times}, n \mapsto 2^{n}$ is a bijective homomorphism Hence f is an isomorphism and $\mathbb{Z} / 4 \mathbb{Z} \cong(\mathbb{Z} / 5 \mathbb{Z})^{\times}$

Group structure on $\pi_{1}(X)$

If p and p^{\prime} are two paths, we previously defined $p \cdot p^{\prime}$
This works for loops since loops are paths
So, if $\gamma, \gamma^{\prime}:[0,1] \rightarrow X$ are loops, then $\gamma \cdot \gamma^{\prime}:[0,1] \rightarrow X$ is given by

$$
\left(\gamma \cdot \gamma^{\prime}\right)(t)=\left\{\begin{array}{l}
\gamma(2 t) \quad 0 \leq t \leq 1 / 2 \\
\gamma^{\prime}(2 t-1) \quad 1 / 2 \leq t \leq 1
\end{array}\right.
$$

Exercise: If $\gamma_{1} \simeq \gamma_{1}^{\prime}$, then show $\gamma_{1} \cdot \gamma_{2} \simeq \gamma_{1}^{\prime} \cdot \gamma_{2}$ and $\gamma_{2} \cdot \gamma_{1} \simeq \gamma_{2} \cdot \gamma_{1}^{\prime}$ Hence this gives a well-defined operation on $\pi_{1}(X)$:
Definition
If $[\gamma],\left[\gamma^{\prime}\right] \in \pi_{1}(X)$, then $[\gamma] \cdot\left[\gamma^{\prime}\right]:=\left[\gamma \cdot \gamma^{\prime}\right]$

Theorem

$\pi_{1}(X)$ a group with the operation $[\gamma] \cdot\left[\gamma^{\prime}\right]:=\left[\gamma \cdot \gamma^{\prime}\right]$
Proof.
It is an exercise to check the following facts:

- We can take $1:=c_{x_{0}}$ since $\left[c_{x_{0}}\right] \cdot[\gamma]=[\gamma]=[\gamma] \cdot\left[c_{x_{0}}\right]$
- If $[\gamma] \in \pi_{1}(X)$, then $[\gamma] \cdot\left[\gamma^{-1}\right]=\left[c_{x_{0}}\right]$
- $\left(\left[\gamma_{1}\right] \cdot\left[\gamma_{2}\right]\right) \cdot\left[\gamma_{3}\right]=\left[\gamma_{1}\right] \cdot\left(\left[\gamma_{2}\right] \cdot\left[\gamma_{3}\right]\right)$

The proofs amount to re-parametrisation: 'slowing down and speeding up time'

Since $\pi_{1}(X)$ is a group, we would hope it contains more information about X than the equivalence class of its underlying set

It turns out that the group structure is a homotopy invariant too:
Theorem
If $X \simeq Y$, then $\pi_{1}(X) \cong \pi_{1}(Y)$ are isomorphic as groups
Proof.
Our proof that there is bijection $\pi_{1}(X) \cong \pi_{1}(Y)$ involved showing the following two maps are bijective:

- If p is a path from x_{0} to x_{1}, then

$$
p_{*}: \pi_{1}\left(X, x_{0}\right) \rightarrow \pi_{1}\left(X, x_{1}\right), \quad \gamma \mapsto p^{-1} \cdot \gamma \cdot p
$$

- If $f: X \rightarrow Y$ is a map and $y_{0}=f\left(x_{0}\right)$, then the map

$$
f_{*}: \pi_{1}\left(X, x_{0}\right) \rightarrow \pi_{1}\left(Y, y_{0}\right), \quad \gamma \mapsto f \circ \gamma
$$

It is easy to see that p_{*} and f_{*} are group homomorphisms
The result follows in a similar way

Computing $\pi_{1}\left(S^{1}\right)$

We want to compute $\pi_{1}\left(S^{1}\right)$ as a group
Take $S^{1}:=\left\{e^{i \theta}: \theta \in[0,2 \pi]\right\} \subseteq \mathbb{C}$ and basepoint $1 \in S^{1}$
Consider the loop $\gamma_{1}:[0,1] \rightarrow S^{1}, \gamma_{1}(\theta)=e^{2 \pi i \theta}$ which wraps around S^{1} once anticlockwise
For each $n \in \mathbb{Z}$, we have $\gamma_{n}:[0,1] \rightarrow S^{1}, \gamma_{n}(\theta)=\left(e^{2 \pi i \theta}\right)^{n}$ which wraps around n times anticlockwise (clockwise) for $n \geq 0(n \leq 0)$
We have $\gamma_{n} \simeq \gamma_{1}^{n}$ and, more generally, $\gamma_{n} \cdot \gamma_{m} \simeq \gamma_{n+m}$

The main goal of this lecture is to prove:
Theorem
There is an isomorphism:

$$
f: \mathbb{Z} \rightarrow \pi_{1}\left(S^{1}\right), \quad n \mapsto \gamma_{n}
$$

In particular, $\pi_{1}\left(S^{1}\right) \cong \mathbb{Z}$
In order to prove this, we need to show:

- If $\gamma \in \pi_{1}\left(S^{1}\right)$, then $\gamma \simeq \gamma_{n}$ for some $n \in \mathbb{Z}$ (f is surjective)
- If $n \neq m$, then $\gamma_{n} \nsim \gamma_{m}$ (f is injective)
f is a group homomorphism since

$$
f(n+m)=\gamma_{n+m} \simeq \gamma_{n} \cdot \gamma_{m}=f(n) \cdot f(m)
$$

Hence, if these two things hold, then f is an isomorphism

Task 1: If $\gamma \in \pi_{1}\left(S^{1}\right)$, then $\gamma \simeq \gamma_{n}$ for some $n \in \mathbb{Z}$

How should we picture an arbitrary loop $\gamma:[0,1] \rightarrow S^{1}$?

- S^{1} is homeomorphic to the graph $V=\{v\}, E=\{(v, v)\}$:

- Hence $S^{1} \cong[0,1] /(0 \sim 1)$, i.e. the interval $[0,1]$ but with the points 0 and 1 identified
- In this model for S^{1}, we take the basepoint to be $0(=1)$

So we can view $\gamma:[0,1] \rightarrow S^{1}$ as a map $\gamma:[0,1] \rightarrow[0,1] /(0 \sim 1)$:

A more useful way to draw this:

- Stack different copies of $[0,1]$ up the vertical axis
- Allow γ to pass into each region when it passes through 0 or 1

Here the dashed lines correspond to possible starting points for γ

Recall that $\gamma_{3}:[0,1] \rightarrow S^{1}, \theta \mapsto e^{6 \pi i \theta}$
This is the same as $\gamma_{3}:[0,1] \rightarrow[0,1] /(0 \sim 1), \theta \mapsto 3 \theta$
The following picture shows that $\gamma \simeq \gamma_{3}$:

We now want to turn this into a rigorous argument

Formally, these drawing are maps $\widetilde{\gamma}:[0,1] \rightarrow \mathbb{R}$ such that $p \circ \widetilde{\gamma}=\gamma$ where $p: \mathbb{R} \rightarrow[0,1], x \mapsto x(\bmod 1)$

Definition

If $\gamma:[0,1] \rightarrow S^{1}$ is a loop, then a map $\widetilde{\gamma}: I \rightarrow \mathbb{R}$ is a lift of γ if $p \circ \widetilde{\gamma}=\gamma$

Lemma (Lifting)
Every loop $\gamma:[0,1] \rightarrow S^{1}$ has a unique lift $\widetilde{\gamma}:[0,1] \rightarrow \mathbb{R}$ with $\widetilde{\gamma}(0)=0$

Proof: By analysis, γ crosses the basepoint only finitely many times
We can define $\widetilde{\gamma}$ piecewise between each crossing point Uniqueness follows similarly

So let $\gamma \in \pi_{1}\left(S^{1}\right)$ and let $\widetilde{\gamma}:[0,1] \rightarrow \mathbb{R}$ be its lift
Since $p(\widetilde{\gamma}(1))=\gamma(1)=0$, we have that $\widetilde{\gamma}(1)=n \in \mathbb{Z}$
We now want to formalise the second picture to show that $\widetilde{\gamma} \simeq \widetilde{\gamma}_{n}$ where $\widetilde{\gamma}_{n}(x)=n x$
We defined ' \simeq ' for loops. A similar definition works for all paths:

Definition

Two paths $p, p^{\prime}:[0,1] \rightarrow X$ are based homotopy equivalent ($p \simeq p^{\prime}$) if there exists a continuously varying one-parameter family of maps $H_{t}:[0,1] \rightarrow X$ such that $H_{0}=p, H_{1}=p^{\prime}$, and $H_{t}(0), H_{t}(1)$ are fixed for all $t \in[0,1]$

We want to find a based homotopy $\widetilde{\gamma} \simeq \widetilde{\gamma}_{n}$
Define $\widetilde{H}_{t}:[0,1] \rightarrow \mathbb{R}$ by:

$$
\widetilde{H}_{t}(x)=(1-t) \widetilde{\gamma}(x)+t \widetilde{\gamma}_{n}(x)
$$

so that $\widetilde{H}_{0}=\widetilde{\gamma}, \widetilde{H}_{1}=\widetilde{\gamma}_{n}$ and $\widetilde{H}_{t}(0)=0, \widetilde{H}_{t}(1)=n$ for all $t \in[0,1]$
Hence $\widetilde{\gamma} \simeq \widetilde{\gamma}_{n}$
Then $H_{t}=p \circ \widetilde{H}_{t}:[0,1] \rightarrow S^{1}$ has $H_{0}=p_{0} \circ \widetilde{\gamma}=\gamma$, $H_{1}=p \circ \widetilde{\gamma}_{n}=\gamma_{n}$ and $H_{t}(0)=0$ for all $t \in[0,1]$

Hence $\gamma \simeq \gamma_{n}$, i.e. they are equivalent as loops

Task 2: If $n \neq m$, then $\gamma_{n} \not 千 \gamma_{m}$

This can be proven using the same idea
$\gamma_{n} \simeq \gamma_{m}$ and let $\widetilde{\gamma}_{n}$ and $\widetilde{\gamma}_{m}$ be lifts. Is $\widetilde{\gamma}_{n} \simeq \widetilde{\gamma}_{m}$?
Recall that a homotopy $H_{t}:[0,1] \rightarrow X$ for $t \in[0,1]$ is really a map $H:[0,1] \times[0,1] \rightarrow X$ with $H(t, x)=H_{t}(x)$

Lemma (Homotopy lifting)
Every based homotopy $H:[0,1] \times[0,1] \rightarrow S^{1}$ has a unique lift $\widetilde{H}:[0,1] \times[0,1] \rightarrow \mathbb{R}$ which is a based homotopy

This implies $\widetilde{\gamma}_{n} \simeq \widetilde{\gamma}_{m}$
Since $\widetilde{H}(t, 0)=0, \widetilde{H}(t, 1)$ are fixed: $n=\widetilde{\gamma}_{n}(1)=\widetilde{\gamma}_{m}(1)=m$

So $\pi_{1}\left(S^{1}\right) \cong \mathbb{Z}$ and S^{1} is not simply connected
We saw previously that $\chi\left(S^{1}\right)=\chi(T)=0$ where T is the torus Is $S^{1} \simeq T$?

By an earlier exercise, $T \cong S^{1} \times S^{1}$
Exercise: Show that the map

$$
\psi: \pi_{1}(X) \times \pi_{1}(Y) \rightarrow \pi_{1}(X \times Y), \quad\left(\gamma, \gamma^{\prime}\right) \mapsto \gamma \times \gamma^{\prime}
$$

is a group isomorphism, where $\left(\gamma \times \gamma^{\prime}\right)(x)=\left(\gamma(x), \gamma^{\prime}(x)\right) \in X \times Y$
Hence $\pi_{1}(T) \cong \pi_{1}\left(S^{1} \times S^{1}\right) \cong \pi_{1}\left(S^{1}\right) \times \pi_{1}\left(S^{1}\right) \cong \mathbb{Z} \times \mathbb{Z}$
(this is a the group with $(a, b)+(c, d):=(a+c, b+d)$)

Lemma

$\mathbb{Z} \not \not \mathbb{Z} \times \mathbb{Z}$ as groups
Proof.
Let $f: \mathbb{Z} \rightarrow \mathbb{Z} \times \mathbb{Z}$ is a group isomorphism and let $(a, b)=f(1)$
Since f is a homomorphism, we have $f(n)=n \cdot f(1)=(n a, n b)$
Since f is bijective $(1,0),(0,1) \in \operatorname{Im}(f)$

- $(1,0) \in \operatorname{Im}(f) \Rightarrow(1,0)=(n a, n b)$ for some $n \in \mathbb{Z} \Rightarrow a=0$
- $(0,1) \in \operatorname{Im}(f) \Rightarrow(0,1)=(n a, n b)$ for some $n \in \mathbb{Z} \Rightarrow b=0$

Hence $f(1)=(0,0)$ which is a contradiction
If $S^{1} \simeq T$, then $\mathbb{Z} \cong \pi_{1}\left(S^{1}\right) \cong \pi_{1}(T) \cong \mathbb{Z} \times \mathbb{Z}$
Hence $S^{1} \not \nsim T$ by the lemma above

