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Recap
Let X be a metric space and let xg € X
A loop at xg is a map 7 : [0,1] — X with 4(0) = (1) = xo
We defined 71 (X, xp) := {loops at xp}/ ~

» Two loops 7,7 : [0,1] — X have v ~ 4/ if there exists a
homotopy H; : [0,1] — X such that Hy =+, H; =+ and
H:(0) = H¢(1) = xo (a based homotopy)

Theorem
If X is path-connected, then m1(X, x0) Zpjj m1(X, x1)

» We let m1(X) denote the set up to equivalence of sets

Theorem
If X =Y, then m1(X) = m1(Y') are equivalent as sets

» So m1(X) is a homotopy invariant



Definition
We say X is simply connected if m1(X) =1, i.e. if it is equivalent
to the set of size one

The property of being simply connected is a homotopy invariant

Example: 71([0,1]) = {co} and so [0, 1] is simply connected
An alternate proof is that [0,1] ~ % and 71(x) =1

If X is a metric space with 71(X) # 1, then X %

However, it is difficult to show that a space has 71(X) # 1



Group theory

Definition
A group is a set G and a map - : G X G — G such that
» Thereis an element 1 € Gsuchthatg-1=g=1-g
» For all g € G, there exists he G suchthat h-g=1=g-h

» If g,h,k € G, then (g- h)-k =g - (h- k) (associativity)

Example: (R \ {0}, -) where - is multiplication
» Let x€ R\ {0}. Thenx-1=x=1-x
> Let xe R\ {0}. Then 2 e R\ {0} and L . x=1=x-1
P Associativity is clear

Example: (Z,+) is a group, where + is addition

» Let n€Z. Thenn+0=0=0+ n (so the ‘1" is 0)
» Let n€Z. Then —n€ Z and n+ (—n) =0=(—n)+n



Example: (Z/nZ,+) is a group

Example: Let (Z/nZ)* ={m: (n,m) =1} CZ/nZ
If mi, my € (Z/nZ)*, then my - my € (Z/nZ)*
Exercise: Show that ((Z/nZ)*,-) is a group
Definition

Let G and H are groups. Then a function f : G — H is a
homomorphism if f(gh) = f(g)f(h) for all g,h € G and f(1) = 1.

Example: f : Z — Z/nZ, m — m(mod n) is a homomorphism

We need to decide what it means for two groups to be equivalent



Definition

Two groups G, H are isomorphic (G = H) if there are
homomorphisms f : G — H and g : H — G such that f o g = idy
and go f= idG

We say f : G — H is an isomorphism

This should remind us of the definition of homeomorphism

Exercise: Prove that, if f : G — H is a bijective homomorphism,
then f is an isomorphism

Example: Consider (Z/5Z)* = {1,2,3,4} (with multiplication)
Note that 22 = 4,23 = 3,2* = 1 so (Z/5Z)* = {1,2,22,2%}
f:Z/AZ — (Z/5Z)*,n— 2" is a bijective homomorphism
Hence f is an isomorphism and Z/4Z = (Z/5Z)*



Group structure on 1(X)

If p and p’ are two paths, we previously defined p - p’
This works for loops since loops are paths

So, if 7,7 : [0,1] — X are loops, then 7.+ : [0,1] — X is given by

y(2t) 0<t<1/2
=17,

Y(2t—-1) 1/2<t<1.
Exercise: If v1 ~ 7}, then show 71 - 72 ~~f -y2 and y2 71 ~ 72 -7}
Hence this gives a well-defined operation on 71 (X):

Definition
If [v], ['] € m1(X), then [7] - [v'] := [y - 7]



Theorem
m1(X) a group with the operation [y] - [y'] := [y - 7]

Proof.
It is an exercise to check the following facts:

» We can take 1 := ¢, since [c,] - [7] = [7] = [7] - [cx]

> If [y] € m1(X), then [v] - [y71] = [cx]

> ([l - Del) - sl = [l - (2l - [al) O
The proofs amount to re-parametrisation: ‘slowing down and
speeding up time'

Since m1(X) is a group, we would hope it contains more
information about X than the equivalence class of its underlying set



It turns out that the group structure is a homotopy invariant too:

Theorem
If X =Y, then m1(X) = m1(Y) are isomorphic as groups

Proof.
Our proof that there is bijection 71(X) = m1(Y) involved showing
the following two maps are bijective:

> If pis a path from xp to x, then
peim(X,x0) = m(X,x1), y—=pl-y-p
» If f: X — Y isamap and yp = f(xp), then the map
fo: m(X,x0) = m(Y, %), v foy

It is easy to see that p, and f, are group homomorphisms

The result follows in a similar way O



Computing 71(S?)

We want to compute 71(S') as a group
Take S' := {e"? : 0 € [0,27]} C C and basepoint 1 € S*

Consider the loop 71 : [0,1] — S, 41(#) = €™ which wraps
around S! once anticlockwise

For each n € Z, we have v, : [0,1] — S%, 7,(0) = (e>)" which
wraps around n times anticlockwise (clockwise) for n >0 (n < 0)

We have v, >~ ~{ and, more generally, v, - Ym =~ Yn+m



The main goal of this lecture is to prove:

Theorem
There is an isomorphism:

f:7 —m(SY), ne 7y,
In particular, 1 (S') = Z

In order to prove this, we need to show:
» If v € m1(S?), then v ~ v, for some n € Z (f is surjective)
» If n % m, then v, % vm (f is injective)

f is a group homomorphism since
f(n+ m) =Yn+m = Vn"VYm = f(n) : f(m)

Hence, if these two things hold, then f is an isomorphism



Task 1: If v € m1(S?), then y ~ ~, for some n € Z

How should we picture an arbitrary loop 7 : [0,1] — S1?

» Sl is homeomorphic to the graph V = {v}, E = {(v,v)}:

Q

» Hence S 22[0,1]/(0 ~ 1), i.e. the interval [0,1] but with the
points 0 and 1 identified

» In this model for S, we take the basepoint to be 0 (= 1)



So we can view v : [0,1] — S! as a map v : [0,1] — [0,1]/(0 ~ 1):




A more useful way to draw this:

» Stack different copies of [0, 1] up the vertical axis

» Allow « to pass into each region when it passes through 0 or 1

Here the dashed lines correspond to possible starting points for ~y



Recall that y3 : [0,1] — S, 6 > 570
This is the same as 73 : [0,1] — [0,1]/(0 ~ 1), 6 — 36

The following picture shows that v ~ v3:

—q

1

We now want to turn this into a rigorous argument



Formally, these drawing are maps 7 : [0, 1] — R such that
poy =~ where p: R —[0,1], x — x(mod 1)

Definition

If v:[0,1] — S* is a loop, then a map 7 : | — R is a lift of 7 if
poy=r

Lemma (Lifting)

Every loop 7y : [0,1] — St has a unique lift 5 : [0,1] — R with
7(0) =0

R

ay 7
v l"

[0,1] —— S!

Proof: By analysis, « crosses the basepoint only finitely many times
We can define 7 piecewise between each crossing point

Uniqueness follows similarly O



So let v € m1(St) and let 7 : [0,1] — R be its lift
Since p(7(1)) = (1) =0, we have that ¥(1) =n€ Z

We now want to formalise the second picture to show that ¥ ~ 7,
where 7,(x) = nx

We defined ‘~' for loops. A similar definition works for all paths:

Definition

Two paths p, p’ : [0,1] — X are based homotopy equivalent

(p ~ p') if there exists a continuously varying one-parameter family
of maps H; : [0,1] — X such that Hy = p, H; = p/,

and H.(0), H¢(1) are fixed for all ¢t € [0, 1]



We want to find a based homotopy 7 ~ 7,
Define H; : [0,1] — R by:

He(x) = (1 — t)7(x) + t7a(x)
so that Hy = 7, Hy = 7, and H¢(0) = 0, H(1) = nfor all t € [0,1]
Hence v ~ 7,

Then Ht:poﬁt:[o’l]—}sl has l"lo:pooazv/v
Hiy = podn =7, and H:(0) = 0 for all t € [0, 1]

Hence v ~ ~,, i.e. they are equivalent as loops U



Task 2: If n # m, then v, 2 vm

This can be proven using the same idea

Yn >~ Ym and let ¥, and 7, be lifts. Is ¥, ~ 5,7

Recall that a homotopy H; : [0,1] — X for t € [0,1] is really a
map H :[0,1] x [0,1] — X with H(t,x) = H¢(x)

Lemma (Homotopy lifting)

Every based homotopy H : [0,1] x [0,1] — St has a unique lift
H :[0,1] x [0,1] — R which is a based homotopy

JH - l
/// P
[0,1] x [0,1] —— s1
This implies ¥, >~ 7
Since H(t,0) =0, H(t,1) are fixed: n=7,(1) =3,(1)=m O



So 71(St) 22 Z and S is not simply connected
We saw previously that x(S!) = x(T) = 0 where T is the torus
Is St~ T7?

By an earlier exercise, T = St x S1
Exercise: Show that the map
P rm(X) x m(Y) = m(X xY), (v.7) =y xo
is a group isomorphism, where (7 x 7')(x) = (y(x),7'(x)) € X x Y

Hence mi(T) = m(St x S1) 2 m(SY) x m(SY) X Z x Z
(this is a the group with (a, b) + (c,d) := (a+ ¢, b+ d))



Lemma
727 X 7 as groups

Proof.

Let f : Z — Z x Z is a group isomorphism and let (a, b) = (1)
Since f is a homomorphism, we have f(n) = n- f(1) = (na, nb)
Since f is bijective (1,0),(0,1) € Im(f)

» (1,0) € Im(f) = (1,0) = (na, nb) for some n€ Z = a=0
» (0,1) € Im(f) = (0,1) = (na, nb) for some ne€ Z = b =0
Hence (1) = (0,0) which is a contradiction O
If St~ T, then Z= m (S 2 m(T)XZ xZ

Hence S! ¢ T by the lemma above



