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Recap

Let X be a metric space and let x0 ∈ X

A loop at x0 is a map γ : [0, 1] → X with γ(0) = γ(1) = x0

We defined π1(X , x0) := {loops at x0}/ ≃
◮ Two loops γ, γ′ : [0, 1] → X have γ ≃ γ′ if there exists a

homotopy Ht : [0, 1] → X such that H0 = γ, H1 = γ′ and
Ht(0) = Ht(1) = x0 (a based homotopy)

Theorem
If X is path-connected, then π1(X , x0) ∼=bij π1(X , x1)

◮ We let π1(X ) denote the set up to equivalence of sets

Theorem
If X ≃ Y , then π1(X ) ∼= π1(Y ) are equivalent as sets

◮ So π1(X ) is a homotopy invariant



Definition
We say X is simply connected if π1(X ) = 1, i.e. if it is equivalent
to the set of size one

The property of being simply connected is a homotopy invariant

Example: π1([0, 1]) = {c0} and so [0, 1] is simply connected
An alternate proof is that [0, 1] ≃ ∗ and π1(∗) = 1

If X is a metric space with π1(X ) ∕= 1, then X ∕≃ ∗
However, it is difficult to show that a space has π1(X ) ∕= 1



Group theory

Definition
A group is a set G and a map · : G × G → G such that

◮ There is an element 1 ∈ G such that g · 1 = g = 1 · g
◮ For all g ∈ G , there exists h ∈ G such that h · g = 1 = g · h
◮ If g , h, k ∈ G , then (g · h) · k = g · (h · k) (associativity)

Example: (R \ {0}, ·) where · is multiplication

◮ Let x ∈ R \ {0}. Then x · 1 = x = 1 · x
◮ Let x ∈ R \ {0}. Then 1

x ∈ R \ {0} and 1
x · x = 1 = x · 1

x

◮ Associativity is clear

Example: (Z,+) is a group, where + is addition

◮ Let n ∈ Z. Then n + 0 = 0 = 0 + n (so the ‘1’ is 0)

◮ Let n ∈ Z. Then −n ∈ Z and n + (−n) = 0 = (−n) + n



Example: (Z/nZ,+) is a group

Example: Let (Z/nZ)× = {m : (n,m) = 1} ⊆ Z/nZ

If m1,m2 ∈ (Z/nZ)×, then m1 ·m2 ∈ (Z/nZ)×

Exercise: Show that ((Z/nZ)×, ·) is a group

Definition
Let G and H are groups. Then a function f : G → H is a
homomorphism if f (gh) = f (g)f (h) for all g , h ∈ G and f (1) = 1.

Example: f : Z → Z/nZ, m → m (mod n) is a homomorphism

We need to decide what it means for two groups to be equivalent



Definition
Two groups G , H are isomorphic (G ∼= H) if there are
homomorphisms f : G → H and g : H → G such that f ◦ g = idH
and g ◦ f = idG

We say f : G → H is an isomorphism

This should remind us of the definition of homeomorphism

Exercise: Prove that, if f : G → H is a bijective homomorphism,
then f is an isomorphism

Example: Consider (Z/5Z)× = {1, 2, 3, 4} (with multiplication)

Note that 22 = 4, 23 = 3, 24 = 1 so (Z/5Z)× = {1, 2, 22, 23}
f : Z/4Z → (Z/5Z)×, n → 2n is a bijective homomorphism

Hence f is an isomorphism and Z/4Z ∼= (Z/5Z)×



Group structure on π1(X )

If p and p′ are two paths, we previously defined p · p′

This works for loops since loops are paths

So, if γ, γ′ : [0, 1] → X are loops, then γ ·γ′ : [0, 1] → X is given by

(γ · γ′)(t) =

γ(2t) 0 ≤ t ≤ 1/2

γ′(2t − 1) 1/2 ≤ t ≤ 1.

Exercise: If γ1 ≃ γ′1, then show γ1 · γ2 ≃ γ′1 · γ2 and γ2 · γ1 ≃ γ2 · γ′1
Hence this gives a well-defined operation on π1(X ):

Definition
If [γ], [γ′] ∈ π1(X ), then [γ] · [γ′] := [γ · γ′]



Theorem
π1(X ) a group with the operation [γ] · [γ′] := [γ · γ′]

Proof.
It is an exercise to check the following facts:

◮ We can take 1 := cx0 since [cx0 ] · [γ] = [γ] = [γ] · [cx0 ]
◮ If [γ] ∈ π1(X ), then [γ] · [γ−1] = [cx0 ]

◮ ([γ1] · [γ2]) · [γ3] = [γ1] · ([γ2] · [γ3])

The proofs amount to re-parametrisation: ‘slowing down and
speeding up time’

Since π1(X ) is a group, we would hope it contains more
information about X than the equivalence class of its underlying set



It turns out that the group structure is a homotopy invariant too:

Theorem
If X ≃ Y , then π1(X ) ∼= π1(Y ) are isomorphic as groups

Proof.
Our proof that there is bijection π1(X ) ∼= π1(Y ) involved showing
the following two maps are bijective:

◮ If p is a path from x0 to x1, then

p∗ : π1(X , x0) → π1(X , x1), γ → p−1 · γ · p

◮ If f : X → Y is a map and y0 = f (x0), then the map

f∗ : π1(X , x0) → π1(Y , y0), γ → f ◦ γ

It is easy to see that p∗ and f∗ are group homomorphisms

The result follows in a similar way



Computing π1(S
1)

We want to compute π1(S
1) as a group

Take S1 := {e iθ : θ ∈ [0, 2π]} ⊆ C and basepoint 1 ∈ S1

Consider the loop γ1 : [0, 1] → S1, γ1(θ) = e2πiθ which wraps
around S1 once anticlockwise

For each n ∈ Z, we have γn : [0, 1] → S1, γn(θ) = (e2πiθ)n which
wraps around n times anticlockwise (clockwise) for n ≥ 0 (n ≤ 0)

We have γn ≃ γn1 and, more generally, γn · γm ≃ γn+m



The main goal of this lecture is to prove:

Theorem
There is an isomorphism:

f : Z → π1(S
1), n → γn

In particular, π1(S
1) ∼= Z

In order to prove this, we need to show:

◮ If γ ∈ π1(S
1), then γ ≃ γn for some n ∈ Z (f is surjective)

◮ If n ∕= m, then γn ∕≃ γm (f is injective)

f is a group homomorphism since

f (n +m) = γn+m ≃ γn · γm = f (n) · f (m)

Hence, if these two things hold, then f is an isomorphism



Task 1: If γ ∈ π1(S
1), then γ ≃ γn for some n ∈ Z

How should we picture an arbitrary loop γ : [0, 1] → S1?

◮ S1 is homeomorphic to the graph V = {v}, E = {(v , v)}:

◮ Hence S1 ∼= [0, 1]/(0 ∼ 1), i.e. the interval [0, 1] but with the
points 0 and 1 identified

◮ In this model for S1, we take the basepoint to be 0 (= 1)



So we can view γ : [0, 1] → S1 as a map γ : [0, 1] → [0, 1]/(0 ∼ 1):

1

1

γ



A more useful way to draw this:

◮ Stack different copies of [0, 1] up the vertical axis

◮ Allow γ to pass into each region when it passes through 0 or 1

1

1

2

3

γ

Here the dashed lines correspond to possible starting points for γ



Recall that γ3 : [0, 1] → S1, θ → e6πiθ

This is the same as γ3 : [0, 1] → [0, 1]/(0 ∼ 1), θ → 3θ

The following picture shows that γ ≃ γ3:

1

1

2

3

γ3

γ

We now want to turn this into a rigorous argument



Formally, these drawing are maps γ : [0, 1] → R such that
p ◦ γ = γ where p : R → [0, 1], x → x (mod 1)

Definition
If γ : [0, 1] → S1 is a loop, then a map γ : I → R is a lift of γ if
p ◦ γ = γ

Lemma (Lifting)

Every loop γ : [0, 1] → S1 has a unique lift γ : [0, 1] → R with
γ(0) = 0

R

[0, 1] S1

p

γ

∃!γ

Proof: By analysis, γ crosses the basepoint only finitely many times

We can define γ piecewise between each crossing point

Uniqueness follows similarly



So let γ ∈ π1(S
1) and let γ : [0, 1] → R be its lift

Since p(γ(1)) = γ(1) = 0, we have that γ(1) = n ∈ Z

We now want to formalise the second picture to show that γ ≃ γn
where γn(x) = nx

We defined ‘≃’ for loops. A similar definition works for all paths:

Definition
Two paths p, p′ : [0, 1] → X are based homotopy equivalent
(p ≃ p′) if there exists a continuously varying one-parameter family
of maps Ht : [0, 1] → X such that H0 = p, H1 = p′,
and Ht(0), Ht(1) are fixed for all t ∈ [0, 1]



We want to find a based homotopy γ ≃ γn
Define Ht : [0, 1] → R by:

Ht(x) = (1− t)γ(x) + tγn(x)

so that H0 = γ, H1 = γn and Ht(0) = 0, Ht(1) = n for all t ∈ [0, 1]

Hence γ ≃ γn
Then Ht = p ◦ Ht : [0, 1] → S1 has H0 = p0 ◦ γ = γ,
H1 = p ◦ γn = γn and Ht(0) = 0 for all t ∈ [0, 1]

Hence γ ≃ γn, i.e. they are equivalent as loops



Task 2: If n ∕= m, then γn ∕≃ γm

This can be proven using the same idea

γn ≃ γm and let γn and γm be lifts. Is γn ≃ γm?

Recall that a homotopy Ht : [0, 1] → X for t ∈ [0, 1] is really a
map H : [0, 1]× [0, 1] → X with H(t, x) = Ht(x)

Lemma (Homotopy lifting)

Every based homotopy H : [0, 1]× [0, 1] → S1 has a unique lift
H : [0, 1]× [0, 1] → R which is a based homotopy

R

[0, 1]× [0, 1] S1

p

H

∃! H

This implies γn ≃ γm
Since H(t, 0) = 0, H(t, 1) are fixed: n = γn(1) = γm(1) = m



So π1(S
1) ∼= Z and S1 is not simply connected

We saw previously that χ(S1) = χ(T ) = 0 where T is the torus

Is S1 ≃ T?

By an earlier exercise, T ∼= S1 × S1

Exercise: Show that the map

ψ : π1(X )× π1(Y ) → π1(X × Y ), (γ, γ′) → γ × γ′

is a group isomorphism, where (γ× γ′)(x) = (γ(x), γ′(x)) ∈ X ×Y

Hence π1(T ) ∼= π1(S
1 × S1) ∼= π1(S

1)× π1(S
1) ∼= Z× Z

(this is a the group with (a, b) + (c , d) := (a+ c , b + d))



Lemma
Z ∕∼= Z× Z as groups

Proof.
Let f : Z → Z× Z is a group isomorphism and let (a, b) = f (1)

Since f is a homomorphism, we have f (n) = n · f (1) = (na, nb)

Since f is bijective (1, 0), (0, 1) ∈ Im(f )

◮ (1, 0) ∈ Im(f ) ⇒ (1, 0) = (na, nb) for some n ∈ Z ⇒ a = 0

◮ (0, 1) ∈ Im(f ) ⇒ (0, 1) = (na, nb) for some n ∈ Z ⇒ b = 0

Hence f (1) = (0, 0) which is a contradiction

If S1 ≃ T , then Z ∼= π1(S
1) ∼= π1(T ) ∼= Z× Z

Hence S1 ∕≃ T by the lemma above


