Introduction to Algebraic Topology

Johnny Nicholson

University College London

https://www.ucl.ac.uk/~ucahjni/

Lecture 3. The fundamental group of the circle January 27th, 2021

Recap

Let X be a metric space and let $x_0 \in X$

A loop at x_0 is a map $\gamma : [0,1] \to X$ with $\gamma(0) = \gamma(1) = x_0$ We defined $\pi_1(X, x_0) := \{\text{loops at } x_0\} / \simeq$

► Two loops $\gamma, \gamma' : [0, 1] \to X$ have $\gamma \simeq \gamma'$ if there exists a homotopy $H_t : [0, 1] \to X$ such that $H_0 = \gamma$, $H_1 = \gamma'$ and $H_t(0) = H_t(1) = x_0$ (a based homotopy)

Theorem

If X is path-connected, then $\pi_1(X, x_0) \cong_{bij} \pi_1(X, x_1)$

• We let $\pi_1(X)$ denote the set up to equivalence of sets

Theorem

If $X\simeq Y$, then $\pi_1(X)\cong \pi_1(Y)$ are equivalent as sets

So $\pi_1(X)$ is a homotopy invariant

Definition

We say X is simply connected if $\pi_1(X) = 1$, i.e. if it is equivalent to the set of size one

The property of being simply connected is a homotopy invariant

Example: $\pi_1([0,1]) = \{c_0\}$ and so [0,1] is simply connected An alternate proof is that $[0,1] \simeq *$ and $\pi_1(*) = 1$

If X is a metric space with $\pi_1(X) \neq 1$, then $X \not\simeq *$

However, it is difficult to show that a space has $\pi_1(X) \neq 1$

Group theory

Definition

- A group is a set G and a map $\cdot: \operatorname{\mathsf{G}} \times \operatorname{\mathsf{G}} \to \operatorname{\mathsf{G}}$ such that
 - There is an element $1 \in G$ such that $g \cdot 1 = g = 1 \cdot g$
 - ▶ For all $g \in G$, there exists $h \in G$ such that $h \cdot g = 1 = g \cdot h$
 - ▶ If $g, h, k \in G$, then $(g \cdot h) \cdot k = g \cdot (h \cdot k)$ (associativity)

Example: $(\mathbb{R} \setminus \{0\}, \cdot)$ where \cdot is multiplication

- Let $x \in \mathbb{R} \setminus \{0\}$. Then $x \cdot 1 = x = 1 \cdot x$
- Let $x \in \mathbb{R} \setminus \{0\}$. Then $\frac{1}{x} \in \mathbb{R} \setminus \{0\}$ and $\frac{1}{x} \cdot x = 1 = x \cdot \frac{1}{x}$
- Associativity is clear

Example: $(\mathbb{Z}, +)$ is a group, where + is addition

▶ Let $n \in \mathbb{Z}$. Then n + 0 = 0 = 0 + n (so the '1' is 0)

▶ Let $n \in \mathbb{Z}$. Then $-n \in \mathbb{Z}$ and n + (-n) = 0 = (-n) + n

Example: $(\mathbb{Z}/n\mathbb{Z}, +)$ is a group Example: Let $(\mathbb{Z}/n\mathbb{Z})^{\times} = \{m : (n, m) = 1\} \subseteq \mathbb{Z}/n\mathbb{Z}$ If $m_1, m_2 \in (\mathbb{Z}/n\mathbb{Z})^{\times}$, then $m_1 \cdot m_2 \in (\mathbb{Z}/n\mathbb{Z})^{\times}$

Exercise: Show that $((\mathbb{Z}/n\mathbb{Z})^{\times}, \cdot)$ is a group

Definition

Let G and H are groups. Then a function $f : G \to H$ is a homomorphism if f(gh) = f(g)f(h) for all $g, h \in G$ and f(1) = 1.

Example: $f : \mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$, $m \mapsto m \pmod{n}$ is a homomorphism

We need to decide what it means for two groups to be equivalent

Definition

Two groups G, H are isomorphic $(G \cong H)$ if there are homomorphisms $f : G \to H$ and $g : H \to G$ such that $f \circ g = id_H$ and $g \circ f = id_G$

We say $f: G \rightarrow H$ is an *isomorphism*

This should remind us of the definition of homeomorphism

Exercise: Prove that, if $f : G \rightarrow H$ is a bijective homomorphism, then f is an isomorphism

Example: Consider $(\mathbb{Z}/5\mathbb{Z})^{\times} = \{1, 2, 3, 4\}$ (with multiplication) Note that $2^2 = 4, 2^3 = 3, 2^4 = 1$ so $(\mathbb{Z}/5\mathbb{Z})^{\times} = \{1, 2, 2^2, 2^3\}$ $f : \mathbb{Z}/4\mathbb{Z} \to (\mathbb{Z}/5\mathbb{Z})^{\times}, n \mapsto 2^n$ is a bijective homomorphism Hence f is an isomorphism and $\mathbb{Z}/4\mathbb{Z} \cong (\mathbb{Z}/5\mathbb{Z})^{\times}$

Group structure on $\pi_1(X)$

If p and p' are two paths, we previously defined $p \cdot p'$ This works for loops since loops are paths

So, if $\gamma,\gamma':[0,1]\to X$ are loops, then $\gamma\cdot\gamma':[0,1]\to X$ is given by

$$(\gamma\cdot\gamma')(t)=egin{cases} \gamma(2t) & 0\leq t\leq 1/2\ \gamma'(2t-1) & 1/2\leq t\leq 1. \end{cases}$$

Exercise: If $\gamma_1 \simeq \gamma'_1$, then show $\gamma_1 \cdot \gamma_2 \simeq \gamma'_1 \cdot \gamma_2$ and $\gamma_2 \cdot \gamma_1 \simeq \gamma_2 \cdot \gamma'_1$ Hence this gives a well-defined operation on $\pi_1(X)$:

Definition If $[\gamma], [\gamma'] \in \pi_1(X)$, then $[\gamma] \cdot [\gamma'] := [\gamma \cdot \gamma']$

Theorem

 $\pi_1(X)$ a group with the operation $[\gamma] \cdot [\gamma'] := [\gamma \cdot \gamma']$

Proof.

It is an exercise to check the following facts:

• We can take $1 := c_{x_0}$ since $[c_{x_0}] \cdot [\gamma] = [\gamma] = [\gamma] \cdot [c_{x_0}]$

▶ If
$$[\gamma] \in \pi_1(X)$$
, then $[\gamma] \cdot [\gamma^{-1}] = [c_{x_0}]$

$$\blacktriangleright ([\gamma_1] \cdot [\gamma_2]) \cdot [\gamma_3] = [\gamma_1] \cdot ([\gamma_2] \cdot [\gamma_3])$$

The proofs amount to re-parametrisation: 'slowing down and speeding up time'

Since $\pi_1(X)$ is a group, we would hope it contains more information about X than the equivalence class of its underlying set

It turns out that the group structure is a homotopy invariant too:

Theorem

If $X \simeq Y$, then $\pi_1(X) \cong \pi_1(Y)$ are isomorphic as groups

Proof.

Our proof that there is bijection $\pi_1(X) \cong \pi_1(Y)$ involved showing the following two maps are bijective:

• If p is a path from x_0 to x_1 , then

$$p_*: \pi_1(X, x_0) \to \pi_1(X, x_1), \quad \gamma \mapsto p^{-1} \cdot \gamma \cdot p$$

• If $f: X \to Y$ is a map and $y_0 = f(x_0)$, then the map

$$f_*: \pi_1(X, x_0) \to \pi_1(Y, y_0), \quad \gamma \mapsto f \circ \gamma$$

It is easy to see that p_* and f_* are group homomorphisms The result follows in a similar way

Computing $\pi_1(S^1)$

We want to compute $\pi_1(S^1)$ as a group Take $S^1 := \{e^{i\theta} : \theta \in [0, 2\pi]\} \subseteq \mathbb{C}$ and basepoint $1 \in S^1$ Consider the loop $\gamma_1 : [0, 1] \to S^1$, $\gamma_1(\theta) = e^{2\pi i \theta}$ which wraps around S^1 once anticlockwise

For each $n \in \mathbb{Z}$, we have $\gamma_n : [0, 1] \to S^1$, $\gamma_n(\theta) = (e^{2\pi i \theta})^n$ which wraps around *n* times anticlockwise (clockwise) for $n \ge 0$ ($n \le 0$)

We have $\gamma_n \simeq \gamma_1^n$ and, more generally, $\gamma_n \cdot \gamma_m \simeq \gamma_{n+m}$

The main goal of this lecture is to prove:

Theorem

There is an isomorphism:

$$f: \mathbb{Z} \to \pi_1(S^1), \quad n \mapsto \gamma_n$$

In particular, $\pi_1(S^1) \cong \mathbb{Z}$

In order to prove this, we need to show:

If γ ∈ π₁(S¹), then γ ≃ γ_n for some n ∈ Z (f is surjective)
If n ≠ m, then γ_n ≄ γ_m (f is injective)

f is a group homomorphism since

$$f(n+m) = \gamma_{n+m} \simeq \gamma_n \cdot \gamma_m = f(n) \cdot f(m)$$

Hence, if these two things hold, then f is an isomorphism

Task 1: If $\gamma \in \pi_1(S^1)$, then $\gamma \simeq \gamma_n$ for some $n \in \mathbb{Z}$

How should we picture an arbitrary loop $\gamma: [0,1] \rightarrow S^1$?

S¹ is homeomorphic to the graph $V = \{v\}$, $E = \{(v, v)\}$:

- Hence S¹ ≅ [0, 1]/(0 ~ 1), i.e. the interval [0, 1] but with the points 0 and 1 identified
- In this model for S^1 , we take the basepoint to be 0 (= 1)

A more useful way to draw this:

- Stack different copies of [0, 1] up the vertical axis
- \blacktriangleright Allow γ to pass into each region when it passes through 0 or 1

Here the dashed lines correspond to possible starting points for γ

Recall that $\gamma_3 : [0,1] \to S^1$, $\theta \mapsto e^{6\pi i \theta}$ This is the same as $\gamma_3 : [0,1] \to [0,1]/(0 \sim 1)$, $\theta \mapsto 3\theta$

The following picture shows that $\gamma \simeq \gamma_3$:

We now want to turn this into a rigorous argument

Formally, these drawing are maps $\widetilde{\gamma} : [0,1] \to \mathbb{R}$ such that $p \circ \widetilde{\gamma} = \gamma$ where $p : \mathbb{R} \to [0,1]$, $x \mapsto x \pmod{1}$

Definition

If $\gamma:[0,1]\to S^1$ is a loop, then a map $\widetilde{\gamma}:I\to\mathbb{R}$ is a *lift* of γ if $p\circ\widetilde{\gamma}=\gamma$

Lemma (Lifting)

Every loop $\gamma: [0,1] \to S^1$ has a unique lift $\tilde{\gamma}: [0,1] \to \mathbb{R}$ with $\tilde{\gamma}(0) = 0$

Proof: By analysis, γ crosses the basepoint only finitely many times We can define $\tilde{\gamma}$ piecewise between each crossing point Uniqueness follows similarly So let $\gamma \in \pi_1(S^1)$ and let $\widetilde{\gamma} : [0,1] \to \mathbb{R}$ be its lift

Since $p(\widetilde{\gamma}(1)) = \gamma(1) = 0$, we have that $\widetilde{\gamma}(1) = n \in \mathbb{Z}$

We now want to formalise the second picture to show that $\tilde{\gamma} \simeq \tilde{\gamma}_n$ where $\tilde{\gamma}_n(x) = nx$

We defined ' \simeq ' for loops. A similar definition works for all paths:

Definition

Two paths $p, p' : [0, 1] \to X$ are based homotopy equivalent $(p \simeq p')$ if there exists a continuously varying one-parameter family of maps $H_t : [0, 1] \to X$ such that $H_0 = p$, $H_1 = p'$, and $H_t(0)$, $H_t(1)$ are fixed for all $t \in [0, 1]$

We want to find a based homotopy $\widetilde{\gamma} \simeq \widetilde{\gamma}_n$ Define $\widetilde{H}_t : [0, 1] \to \mathbb{R}$ by:

$$\widetilde{H}_t(x) = (1-t)\widetilde{\gamma}(x) + t\widetilde{\gamma}_n(x)$$

so that $\widetilde{H}_0 = \widetilde{\gamma}$, $\widetilde{H}_1 = \widetilde{\gamma}_n$ and $\widetilde{H}_t(0) = 0$, $\widetilde{H}_t(1) = n$ for all $t \in [0, 1]$ Hence $\widetilde{\gamma} \simeq \widetilde{\gamma}_n$ Then $H_t = p \circ \widetilde{H}_t : [0, 1] \to S^1$ has $H_0 = p_0 \circ \widetilde{\gamma} = \gamma$, $H_1 = p \circ \widetilde{\gamma}_n = \gamma_n$ and $H_t(0) = 0$ for all $t \in [0, 1]$

Hence $\gamma \simeq \gamma_n$, i.e. they are equivalent as loops

Task 2: If $n \neq m$, then $\gamma_n \not\simeq \gamma_m$

This can be proven using the same idea

 $\gamma_n \simeq \gamma_m$ and let $\widetilde{\gamma}_n$ and $\widetilde{\gamma}_m$ be lifts. Is $\widetilde{\gamma}_n \simeq \widetilde{\gamma}_m$?

Recall that a homotopy $H_t : [0,1] \to X$ for $t \in [0,1]$ is really a map $H : [0,1] \times [0,1] \to X$ with $H(t,x) = H_t(x)$

Lemma (Homotopy lifting)

Every based homotopy $H : [0,1] \times [0,1] \rightarrow S^1$ has a unique lift $\widetilde{H} : [0,1] \times [0,1] \rightarrow \mathbb{R}$ which is a based homotopy

$$\begin{bmatrix} \exists : \widetilde{H} & & \\ & \downarrow^{p} \\ [0,1] \times [0,1] & \xrightarrow{H} & S^{1} \end{bmatrix}$$

This implies $\tilde{\gamma}_n \simeq \tilde{\gamma}_m$ Since $\tilde{H}(t,0) = 0$, $\tilde{H}(t,1)$ are fixed: $n = \tilde{\gamma}_n(1) = \tilde{\gamma}_m(1) = m$ So $\pi_1(S^1) \cong \mathbb{Z}$ and S^1 is not simply connected We saw previously that $\chi(S^1) = \chi(T) = 0$ where T is the torus Is $S^1 \simeq T$?

By an earlier exercise, $T \cong S^1 imes S^1$

Exercise: Show that the map

$$\psi: \pi_1(X) \times \pi_1(Y) \to \pi_1(X \times Y), \quad (\gamma, \gamma') \mapsto \gamma \times \gamma'$$

is a group isomorphism, where $(\gamma imes \gamma')(x) = (\gamma(x), \gamma'(x)) \in X imes Y$

Hence $\pi_1(T) \cong \pi_1(S^1 \times S^1) \cong \pi_1(S^1) \times \pi_1(S^1) \cong \mathbb{Z} \times \mathbb{Z}$ (this is a the group with (a, b) + (c, d) := (a + c, b + d)) Lemma $\mathbb{Z} \not\cong \mathbb{Z} \times \mathbb{Z}$ as groups

Proof.

Let $f : \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$ is a group isomorphism and let (a, b) = f(1)Since f is a homomorphism, we have $f(n) = n \cdot f(1) = (na, nb)$ Since f is bijective $(1,0), (0,1) \in \text{Im}(f)$ $\blacktriangleright (1,0) \in \text{Im}(f) \Rightarrow (1,0) = (na, nb)$ for some $n \in \mathbb{Z} \Rightarrow a = 0$ $\blacktriangleright (0,1) \in \text{Im}(f) \Rightarrow (0,1) = (na, nb)$ for some $n \in \mathbb{Z} \Rightarrow b = 0$ Hence f(1) = (0,0) which is a contradiction If $S^1 \simeq T$, then $\mathbb{Z} \cong \pi_1(S^1) \cong \pi_1(T) \cong \mathbb{Z} \times \mathbb{Z}$

Hence $S^1 \not\simeq T$ by the lemma above