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Recap

Let X be a metric space

We showed that 7m1(X) := {loops at xp}/ ~ is a group under
concatenation of loops v -~/

Theorem
m(SY) 27

We showed that m(T) = Z x Z
X(T) = x(S') =0 and Z = Z x Z as sets (both countable)
However Z £ Z x Z as groups and so S' % T

Hence the fundamental group 71 contains new information



Applications of 7(S!) = Z

Theorem (The Fundamental Theorem of Algebra)

For every non-constant polynomial has a root, i.e. for every

f(x)= Z arxk,
k=0

with n > 1, a, € C and a, # 0, there exists z € C with f(z) =0

Corollary
If n > 1, every degree n polynomial has at most n complex roots

Proof.

Use the Euclidean algorithm for polynomials and induction



Proof: Suppose f has no roots over C and assume f is monic
Then f is a continuous function f : C — C\ {0}

Recall that there is a group homomorphism
f : m1(C) = m(C\ {0}), v+ fon.
> C%Rzz*ém((ﬁ)%m(*):l
> C\ {0} ~ S = m(C\{0}) =Z
Hence f, is the group homomorphism
f..:{0} -Z, 0—0

and so f oy =~ ¢, for all loops v : [0,1] — C

We now want to obtain a contradiction by exhibiting a loop
v :[0,1] — C for which f oy 2 ¢y,.



Recall from earlier that 7, : [0,1] — S < C, 0 + €™ is the
loop which wraps around the circle n times

For r large, we have that
n
f (re’9> = Z akrke’ke ~ e
k=0

Let v = ry; be the loop which goes once around the circle of
radius r anticlockwise

Then f(7(0)) = f(re?™ %) ~ r"e?in0 — rn~, (0) for r large

The ‘~' can be turned into a homotopy since we can move
between the loops without passing through 0 ¢ C \ {0}

Hence f oy >~ rvy,.



The picture is as follows:

(N L Y.
N

n

r“yn

By shrinking the radius, we have r"y, >~ ~,
So f oy ~n~, € m(S!) which, under 71(S*) 2 Z, is n € Z
Since n > 1, foy >~ v, % ¢y

This is a contradiction



Example: 71(S?%) =1
If v:[0.1] — S? is a loop, pick x € S2 not in the image of y

Then 7y ~ ¢, by moving each point on «y towards xp along the arc
from xgp to x:

X0

However, this proof does not work. Why?



There exists continuous surjective functions f : [0,1] — S2 (!)
Such a map is called a space filling curve

Example: we obtain a continuous surjection f : [0,1] — [0,1]? as
the limit of the following sequence of continuous functions

B |

To fix the proof that m1(S5?) = 1: we need to ‘wiggle’ 7 so that it
cannot be surjective

This requires some work



Does there exists spaces X and Y such that x(X) = x(Y),
7T1(X) = 7T1(Y) but X i Y?

» We have 71(52%) =1, x(5%) =2

» More generally 71(5") =1, x(8") =1+ (—1)" forn > 2

» It can be shown that S" ~ S™ if and only if n =m
Hence x(52) = x(S*) and 71(5?) = m1(S*) but §% % S*
What about if we restrict to 2-complexes?

Question
Let X and Y be 2-complexes with x(X) = x(Y) and
m(X) Zm(Y). IsX ~Y?

If so, then these two invariants would be all we need to classify
2-dimensional cell complexes up to homotopy equivalence



Classification of 1-dimensional cell complexes

We will break the classification of 1-complexes (graphs) into two
distinct stages:

» Show that every graph is homotopy equivalent to a graph in
‘standard form’

» Show that two graphs in standard form are homotopy
equivalent if and only if they are the same graph

As usual, we will assume that the graphs are path-connected



Definition
Let X = (V,E) be a graph and e = (vi, ) € E

Define X /e to be the graph formed by deleting the edge e and
combining the vertices v; and v, (this is edge contraction)

Exercise: Given a graph X with vertices v; # v» and
e=(v1,w) € E(X), then X ~ X/e

Example:




This suggests the following as our standard form for graphs:

Definition
The flower with n petals X,, will be the unique graph with a single
vertex and n > 0 edges

X1 X2 X3 X4
Theorem

If X is a graph, then X ~ X,, for some n > 0
Proof.

If X has more than one vertex then, since X is path-connected,
there exists an edge e = (v1, v2) with vi # vy

X =~ X /e and X/e has one less vertex

By induction, X ~ {graph with a single vertex} O



Lemma
Xn >~ X if and only if n = m.

Proof.
If X, ~ Xpm, then x(X5) = x(Xm)

For all n > 1, we have x(X,) =1—n

Hence 1 — n =1 — m which implies that n = m

In particular, we have shown the following:

Theorem (Classification of 1-complexes)

Let X and Y be 1-dimensional cell complexes

Then X ~ Y if and only if x(X) = x(Y)



Classification of 2-dimensional cell complexes

We want to follow the same approach again
What does it mean to put a 2-complex into standard form?

Lemma
If X is a 2-complex, then X ~ X' where X' is a 2-complex with a
single vertex

Proof.
The proof amounts to checking that X ~ X/e is still true for
edges e = (v1, v2) with vi # v, O

This allows us to restrict out attention to 2-complexes with a
single vertex (!)



A 2-complex X with a single vertex has the following description:

» Take the flower with n petals X, and label each petal with the
symbols xi, ..., Xy

» The attaching paths for the faces then correspond to words
Wi, - -+, Wp in the symbols

-1 -1 -1
{xl,xl 2y X2y Xy y ety Xny Xp }




Example: For the torus T be have

X1
X2

X0 =

3
So T can be specified by the data:

> xi, x2 (labels for the edges)
> Wy = x2x1x2_1x1_1 (attaching maps for the faces)

This should remind us of group presentations
(if we have seen them before)



Group presentations

Let xq, -+, x, be formal labels and let wy,--- , w, be words in
-1 —1 -1 _ 1 +1
{xl,xl X2, Xy Tyttt Xny X } e.g w1 =X; X

We can construct a group out of this data as follows:

» Let S be the set of words in {xl,xfl,xz,xgl, e 7x,,,x,,_l}
> Let ~ be the unique equivalence relation on S such that
w; ~ 1, x,-xl._lwland a~b, c~dimpliesa-c~b-d

» Then the equivalence classes S/ ~ is a group under -
We let S/ ~ be denoted by P = (x1,--- ,Xxp | w1, -+, Wm)

We call P a group presentation

Let Xp denote the 2-complex with xi, - -, x, (labels for the edges)
and wy, - -+ , W, (attaching maps for the faces)



Example: Let S be the set of words in {xl,xl_l,x2,x2_1}
We want to determine G = (xy, x2 | X2X1X2_1X1_1> as a group

Firstly, xlexglel ~ 1 is equivalent to xpx; ~ x1Xx0
(multiply both sides on the right by x1x)

= The order of multiplication of x; and x» doesn't matter

= Every w € § has w ~ x{'xJ" for some n,m € Z
Exercise: Check that there is a group isomorphism

fiZxZ— (x1,% | xaxixy xg Yy, (n,m) e x{xg

Hence (x1,x2 | X2X1X2_1X1_1> 27X Z=m(T)



This phenomena is completely general:

Theorem

Let X be a 2-complex with a single vertex which is specified by
> x1,---,Xp (labels for the edges)
> wi,- -, Wy, (attaching maps for the faces)

Then w1(X) = (x1, -+ ,Xn | Wi, -+ ,wm) and x(X)=1—n+m
Does x(X) = x(Y) and m1(X) = m1(Y) imply X ~ Y?

Definition
We say that a pair of group presentations

P:<X17"'7Xn‘wla"'7wm>v ’P/:<X{,"-,X;,/|W{,'--,W,,n/>

are exotic if P = P’ as groups, n— m=n'—m’ and Xp % Xp



Question
Do exotic presentations exist?

» If P and P’ are exotic presentations, then x(Xp) = x(Xp’)
and m1(Xp) = m1(Xpr) but Xp % Xp/

» Hence exotic presentations exist if and only if if is not true
that "x(X) = x(Y) and m1(X) = 71(Y) implies X ~ Y”

Despite being considered by J. H. C. Whitehead in the 1940s, it
wasn't until 1976 that the first examples were found



We will write z% to mean w—lzw

Theorem (Martin Dunwoody, 1976)

There are exotic presentations
P=(x, x| xix > 1), P ={ | )
= 1, X2 X1X2 N s = (X1, X2 | W1, W»

where wy = x?x5 3(xZxy > )4 (x12x2*3)xl2 and
-3 -3 —3\x2 —3\x3
w2 = x{x, (X )2 (XX 7) 2 (xfxg 7) 2

Theorem (Wolfgang Metzler, 1976)
3 .3 .3 -1 -1 -1 -1 -1 -1
P = (x1,X0, X3 | X{, X5, X3, X1X20X] X5 =, X0X3Xy * X3 =, X3X1X3 X{ )
/ 3. 3.3 2 -2 -1 -1 -1 -1, -1
P = (x1,X0,X3 | X{, X5, X3, X{ XoX{ “X5 =, X0X3X5 "X3 ~, X3X1X3 ~X{ )
are exotic presentations for the group Z/5 x Z/5 x Z/5

Hence the answer to our question is no



What information about 2-complexes does x(X), m1(X) contain?

Definition
If X and Y are cell complexes, then X V Y is the cell complex
formed by attaching X and Y at vertices vy € X and vy € Y

» This is independent of the choice of vx, vy (up to homotopy)

Example: If X = T is the torus and Y = S? is the sphere, then
T Vv 52 is a ‘torus with a pimple’



Definition
Two 2-complexes X and Y are stable homotopy equivalent
(X ~ Y) if there exists r > 0 for which

XVS2yv...vS2~YyS2y...y§2
—— S———

(Note: this is not the same as ‘stable homotopy theory’)

Theorem
Let X and Y be 2-complexes. Then x(X) = x(Y) and
m1(X) =Zm(Y) ifand only if X ~ Y

The existence of exotic presentations shows that X ~ Y does not
imply X >~ Y



Conclusion

In this course, we introduced invariants x(X), 71(X) and showed:
» x(X) determines 1-complexes up to homotopy equivalence

» x(X), m1(X) determines 2-complexes up to stable homotopy
equivalence (but not up to homotopy equivalence)

What other invariants do we need to determine 2-complexes up to
homotopy equivalence?

What about for cell complexes in higher dimensions?
Example of other invariants:

» mp(X) for n > 1 (the higher homotopy groups)

» H;(X) for i > 0 (the homology groups)

> H*(X) = @50 H'(X) (the cohomology ring)
This is just the start of a long and interesting story...

Thank you for listening!



