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Recap

Let X be a metric space

We showed that π1(X ) := {loops at x0}/ ' is a group under
concatenation of loops γ · γ′

Theorem
π1(S1) ∼= Z

We showed that π1(T ) ∼= Z× Z

χ(T ) = χ(S1) = 0 and Z ∼= Z× Z as sets (both countable)

However Z 6∼= Z× Z as groups and so S1 6' T

Hence the fundamental group π1 contains new information



Applications of π1(S1) ∼= Z

Theorem (The Fundamental Theorem of Algebra)

For every non-constant polynomial has a root, i.e. for every

f (x) =
n∑

k=0

akx
k ,

with n > 1, ak ∈ C and an 6= 0, there exists z ∈ C with f (z) = 0

Corollary

If n ≥ 1, every degree n polynomial has at most n complex roots

Proof.
Use the Euclidean algorithm for polynomials and induction



Proof: Suppose f has no roots over C and assume f is monic

Then f is a continuous function f : C→ C \ {0}

Recall that there is a group homomorphism

f∗ : π1(C)→ π1(C \ {0}), γ 7→ f ◦ γ.

I C ∼= R2 ' ∗ ⇒ π1(C) ∼= π1(∗) = 1

I C \ {0} ' S1 ⇒ π1(C \ {0}) ∼= Z

Hence f∗ is the group homomorphism

f∗ : {0} → Z, 0 7→ 0

and so f ◦ γ ' cx0 for all loops γ : [0, 1]→ C

We now want to obtain a contradiction by exhibiting a loop
γ : [0, 1]→ C for which f ◦ γ 6' cx0 .



Recall from earlier that γn : [0, 1]→ S1 ↪→ C, θ 7→ e2πinθ is the
loop which wraps around the circle n times

For r large, we have that

f
(
re iθ
)

=
n∑

k=0

ak r
ke ikθ ≈ rne inθ

Let γ = rγ1 be the loop which goes once around the circle of
radius r anticlockwise

Then f (γ(θ)) = f (re2πiθ) ≈ rne2πinθ = rnγn(θ) for r large

The ‘≈’ can be turned into a homotopy since we can move
between the loops without passing through 0 6∈ C \ {0}

Hence f ◦ γ ' rnγn.



The picture is as follows:

γ

f

f ◦ γ

'

rnγn

By shrinking the radius, we have rnγn ' γn
So f ◦ γ ' γn ∈ π1(S1) which, under π1(S1) ∼= Z, is n ∈ Z

Since n ≥ 1, f ◦ γ ' γn 6' cx0

This is a contradiction



Example: π1(S2) = 1

If γ : [0.1]→ S2 is a loop, pick x ∈ S2 not in the image of γ

Then γ ' cx0 by moving each point on γ towards x0 along the arc
from x0 to x :

x0

γ

x

However, this proof does not work. Why?



There exists continuous surjective functions f : [0, 1]→ S2 (!)

Such a map is called a space filling curve

Example: we obtain a continuous surjection f : [0, 1]→ [0, 1]2 as
the limit of the following sequence of continuous functions

To fix the proof that π1(S2) = 1: we need to ‘wiggle’ γ so that it
cannot be surjective

This requires some work



Does there exists spaces X and Y such that χ(X ) = χ(Y ),
π1(X ) ∼= π1(Y ) but X 6' Y ?

I We have π1(S2) = 1, χ(S2) = 2

I More generally π1(Sn) = 1, χ(Sn) = 1 + (−1)n for n ≥ 2

I It can be shown that Sn ' Sm if and only if n = m

Hence χ(S2) = χ(S4) and π1(S2) ∼= π1(S4) but S2 6' S4

What about if we restrict to 2-complexes?

Question
Let X and Y be 2-complexes with χ(X ) = χ(Y ) and
π1(X ) ∼= π1(Y ). Is X ' Y ?

If so, then these two invariants would be all we need to classify
2-dimensional cell complexes up to homotopy equivalence



Classification of 1-dimensional cell complexes

We will break the classification of 1-complexes (graphs) into two
distinct stages:

I Show that every graph is homotopy equivalent to a graph in
‘standard form’

I Show that two graphs in standard form are homotopy
equivalent if and only if they are the same graph

As usual, we will assume that the graphs are path-connected



Definition
Let X = (V ,E ) be a graph and e = (v1, v2) ∈ E

Define X/e to be the graph formed by deleting the edge e and
combining the vertices v1 and v2 (this is edge contraction)

Exercise: Given a graph X with vertices v1 6= v2 and
e = (v1, v2) ∈ E (X ), then X ' X/e

Example:

' '



This suggests the following as our standard form for graphs:

Definition
The flower with n petals Xn will be the unique graph with a single
vertex and n ≥ 0 edges

X4

. . .

X3X2X1

Theorem
If X is a graph, then X ' Xn for some n > 0

Proof.
If X has more than one vertex then, since X is path-connected,
there exists an edge e = (v1, v2) with v1 6= v2

X ' X/e and X/e has one less vertex

By induction, X ' {graph with a single vertex}



Lemma
Xn ' Xm if and only if n = m.

Proof.
If Xn ' Xm, then χ(Xn) = χ(Xm)

For all n ≥ 1, we have χ(Xn) = 1− n

Hence 1− n = 1−m which implies that n = m

In particular, we have shown the following:

Theorem (Classification of 1-complexes)

Let X and Y be 1-dimensional cell complexes

Then X ' Y if and only if χ(X ) = χ(Y )



Classification of 2-dimensional cell complexes

We want to follow the same approach again

What does it mean to put a 2-complex into standard form?

Lemma
If X is a 2-complex, then X ' X ′ where X ′ is a 2-complex with a
single vertex

Proof.
The proof amounts to checking that X ' X/e is still true for
edges e = (v1, v2) with v1 6= v2

This allows us to restrict out attention to 2-complexes with a
single vertex (!)



A 2-complex X with a single vertex has the following description:

I Take the flower with n petals Xn and label each petal with the
symbols x1, . . . , xn

I The attaching paths for the faces then correspond to words
w1, · · · ,wm in the symbols{

x1, x
−1
1 , x2, x

−1
2 , . . . , xn, x

−1
n

}



Example: For the torus T be have

x1

x2

T :=

x1

x1

x2 x2∼=
x2

x1

So T can be specified by the data:

I x1, x2 (labels for the edges)

I w1 := x2x1x
−1
2 x−11 (attaching maps for the faces)

This should remind us of group presentations
(if we have seen them before)



Group presentations

Let x1, · · · , xn be formal labels and let w1, · · · ,wn be words in{
x1, x

−1
1 , x2, x

−1
2 , · · · , xn, x−1n

}
, e.g. w1 = x±1i1

· · · x±1ik

We can construct a group out of this data as follows:

I Let S be the set of words in
{
x1, x

−1
1 , x2, x

−1
2 , . . . , xn, x

−1
n

}
I Let ∼ be the unique equivalence relation on S such that

wi ∼ 1, xix
−1
i ∼ 1 and a ∼ b, c ∼ d implies a · c ∼ b · d

I Then the equivalence classes S/ ∼ is a group under ·

We let S/ ∼ be denoted by P = 〈x1, · · · , xn | w1, · · · ,wm〉

We call P a group presentation

Let XP denote the 2-complex with x1, · · · , xn (labels for the edges)
and w1, · · · ,wm (attaching maps for the faces)



Example: Let S be the set of words in
{
x1, x

−1
1 , x2, x

−1
2

}
We want to determine G = 〈x1, x2 | x2x1x−12 x−11 〉 as a group

Firstly, x2x1x
−1
2 x−11 ∼ 1 is equivalent to x2x1 ∼ x1x2

(multiply both sides on the right by x1x2)

⇒ The order of multiplication of x1 and x2 doesn’t matter

⇒ Every w ∈ S has w ' xn1 x
m
2 for some n,m ∈ Z

Exercise: Check that there is a group isomorphism

f : Z× Z→ 〈x1, x2 | x2x1x−12 x−11 〉, (n,m) 7→ xn1 x
m
2

Hence 〈x1, x2 | x2x1x−12 x−11 〉 ∼= Z× Z ∼= π1(T )



This phenomena is completely general:

Theorem
Let X be a 2-complex with a single vertex which is specified by

I x1, · · · , xn (labels for the edges)

I w1, · · · ,wm (attaching maps for the faces)

Then π1(X ) ∼= 〈x1, · · · , xn | w1, · · · ,wm〉 and χ(X ) = 1− n + m

Does χ(X ) = χ(Y ) and π1(X ) ∼= π1(Y ) imply X ' Y ?

Definition
We say that a pair of group presentations

P = 〈x1, · · · , xn | w1, · · · ,wm〉, P ′ = 〈x ′1, · · · , x ′n′ | w ′1, · · · ,w ′m′〉

are exotic if P ∼= P ′ as groups, n −m = n′ −m′ and XP 6' XP ′



Question
Do exotic presentations exist?

I If P and P ′ are exotic presentations, then χ(XP) = χ(XP ′)
and π1(XP) ∼= π1(XP ′) but XP 6' XP ′

I Hence exotic presentations exist if and only if if is not true
that “χ(X ) = χ(Y ) and π1(X ) ∼= π1(Y ) implies X ' Y ”

Despite being considered by J. H. C. Whitehead in the 1940s, it
wasn’t until 1976 that the first examples were found



We will write zw to mean w−1zw

Theorem (Martin Dunwoody, 1976)

There are exotic presentations

P = 〈x1, x2 | x21x−32 , 1〉, P ′ = 〈x1, x2 | w1,w2〉

where w1 = x21x
−3
2 (x21x

−3
2 )x1(x21x

−3
2 )x

2
1 and

w2 = x21x
−3
2 (x21x

−3
2 )x2(x21x

−3
2 )x

2
2 (x21x

−3
2 )x

3
2

Theorem (Wolfgang Metzler, 1976)

P = 〈x1, x2, x3 | x31 , x32 , x33 , x1x2x−11 x−12 , x2x3x
−1
2 x−13 , x3x1x

−1
3 x−11 〉

P ′ = 〈x1, x2, x3 | x31 , x32 , x33 , x21x2x−21 x−12 , x2x3x
−1
2 x−13 , x3x1x

−1
3 x−11 〉

are exotic presentations for the group Z/5× Z/5× Z/5

Hence the answer to our question is no



What information about 2-complexes does χ(X ), π1(X ) contain?

Definition
If X and Y are cell complexes, then X ∨ Y is the cell complex
formed by attaching X and Y at vertices vx ∈ X and vY ∈ Y

I This is independent of the choice of vX , vY (up to homotopy)

Example: If X = T is the torus and Y = S2 is the sphere, then
T ∨ S2 is a ‘torus with a pimple’



Definition
Two 2-complexes X and Y are stable homotopy equivalent
(X ∼ Y ) if there exists r > 0 for which

X ∨ S2 ∨ · · · ∨ S2︸ ︷︷ ︸
r

' Y ∨ S2 ∨ · · · ∨ S2︸ ︷︷ ︸
r

(Note: this is not the same as ‘stable homotopy theory’)

Theorem
Let X and Y be 2-complexes. Then χ(X ) = χ(Y ) and
π1(X ) ∼= π1(Y ) if and only if X ∼ Y

The existence of exotic presentations shows that X ∼ Y does not
imply X ' Y



Conclusion

In this course, we introduced invariants χ(X ), π1(X ) and showed:

I χ(X ) determines 1-complexes up to homotopy equivalence

I χ(X ), π1(X ) determines 2-complexes up to stable homotopy
equivalence (but not up to homotopy equivalence)

What other invariants do we need to determine 2-complexes up to
homotopy equivalence?

What about for cell complexes in higher dimensions?

Example of other invariants:

I πn(X ) for n ≥ 1 (the higher homotopy groups)

I Hi (X ) for i ≥ 0 (the homology groups)

I H∗(X ) =
⊕

i≥0H
i (X ) (the cohomology ring)

This is just the start of a long and interesting story...

Thank you for listening!


