Introduction to Algebraic Topology

Johnny Nicholson

University College London

https://www.ucl.ac.uk/~ucahjni/

Lecture 4. Classification problems January 28th, 2021

Recap

Let X be a metric space

We showed that $\pi_1(X) := \{\text{loops at } x_0\}/\simeq \text{is a group under concatenation of loops } \gamma \cdot \gamma'$

Theorem $\pi_1(S^1) \cong \mathbb{Z}$

We showed that $\pi_1(T) \cong \mathbb{Z} \times \mathbb{Z}$ $\chi(T) = \chi(S^1) = 0$ and $\mathbb{Z} \cong \mathbb{Z} \times \mathbb{Z}$ as sets (both countable) However $\mathbb{Z} \ncong \mathbb{Z} \times \mathbb{Z}$ as groups and so $S^1 \nleftrightarrow T$

Hence the fundamental group π_1 contains new information

Applications of $\pi_1(S^1) \cong \mathbb{Z}$

Theorem (The Fundamental Theorem of Algebra) For every non-constant polynomial has a root, i.e. for every

$$f(x) = \sum_{k=0}^{n} a_k x^k,$$

with $n \ge 1$, $a_k \in \mathbb{C}$ and $a_n \ne 0$, there exists $z \in \mathbb{C}$ with f(z) = 0

Corollary

If $n \ge 1$, every degree n polynomial has at most n complex roots

Proof.

Use the Euclidean algorithm for polynomials and induction

Proof: Suppose f has no roots over \mathbb{C} and assume f is monic Then f is a continuous function $f : \mathbb{C} \to \mathbb{C} \setminus \{0\}$ Recall that there is a group homomorphism

$$egin{aligned} &f_*:\pi_1(\mathbb{C}) o\pi_1(\mathbb{C}\setminus\{0\}),\quad \gamma\mapsto f\circ\gamma.\ &\mathbb{C}\cong\mathbb{R}^2\simeq*\Rightarrow\pi_1(\mathbb{C})\cong\pi_1(*)=1\ &\mathbb{C}\setminus\{0\}\simeq S^1\Rightarrow\pi_1(\mathbb{C}\setminus\{0\})\cong\mathbb{Z} \end{aligned}$$

Hence f_* is the group homomorphism

$$f_*: \{0\} \to \mathbb{Z}, \quad 0 \mapsto 0$$

and so $f \circ \gamma \simeq c_{x_0}$ for all loops $\gamma : [0,1] \to \mathbb{C}$

We now want to obtain a contradiction by exhibiting a loop $\gamma : [0,1] \to \mathbb{C}$ for which $f \circ \gamma \not\simeq c_{x_0}$.

Recall from earlier that $\gamma_n : [0,1] \to S^1 \hookrightarrow \mathbb{C}$, $\theta \mapsto e^{2\pi i n \theta}$ is the loop which wraps around the circle *n* times

For r large, we have that

$$f\left(re^{i\theta}\right) = \sum_{k=0}^{n} a_{k}r^{k}e^{ik\theta} \approx r^{n}e^{in\theta}$$

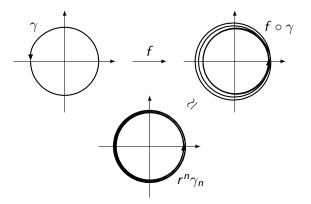
Let $\gamma = r\gamma_1$ be the loop which goes once around the circle of radius r anticlockwise

Then
$$f(\gamma(\theta)) = f(re^{2\pi i\theta}) \approx r^n e^{2\pi i n\theta} = r^n \gamma_n(\theta)$$
 for r large

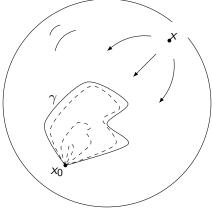
The ' \approx ' can be turned into a homotopy since we can move between the loops without passing through $0 \notin \mathbb{C} \setminus \{0\}$

Hence $f \circ \gamma \simeq r^n \gamma_n$.

The picture is as follows:



By shrinking the radius, we have $r^n \gamma_n \simeq \gamma_n$ So $f \circ \gamma \simeq \gamma_n \in \pi_1(S^1)$ which, under $\pi_1(S^1) \cong \mathbb{Z}$, is $n \in \mathbb{Z}$ Since $n \ge 1$, $f \circ \gamma \simeq \gamma_n \not\simeq c_{x_0}$ This is a contradiction Example: $\pi_1(S^2) = 1$ If $\gamma : [0.1] \to S^2$ is a loop, pick $x \in S^2$ not in the image of γ Then $\gamma \simeq c_{x_0}$ by moving each point on γ towards x_0 along the arc from x_0 to x:



However, this proof does not work. Why?

There exists continuous surjective functions $f : [0, 1] \rightarrow S^2$ (!) Such a map is called a *space filling curve*

Example: we obtain a continuous surjection $f:[0,1] \rightarrow [0,1]^2$ as the limit of the following sequence of continuous functions

To fix the proof that $\pi_1(S^2) = 1$: we need to 'wiggle' γ so that it cannot be surjective

This requires some work

Does there exists spaces X and Y such that $\chi(X) = \chi(Y)$, $\pi_1(X) \cong \pi_1(Y)$ but $X \not\simeq Y$?

- We have $\pi_1(S^2) = 1$, $\chi(S^2) = 2$
- More generally $\pi_1(S^n) = 1$, $\chi(S^n) = 1 + (-1)^n$ for $n \ge 2$
- It can be shown that $S^n \simeq S^m$ if and only if n = m

Hence
$$\chi(S^2) = \chi(S^4)$$
 and $\pi_1(S^2) \cong \pi_1(S^4)$ but $S^2
eq S^4$

What about if we restrict to 2-complexes?

Question

Let X and Y be 2-complexes with $\chi(X) = \chi(Y)$ and $\pi_1(X) \cong \pi_1(Y)$. Is $X \simeq Y$?

If so, then these two invariants would be all we need to classify 2-dimensional cell complexes up to homotopy equivalence

We will break the classification of 1-complexes (graphs) into two distinct stages:

- Show that every graph is homotopy equivalent to a graph in 'standard form'
- Show that two graphs in standard form are homotopy equivalent if and only if they are the same graph

As usual, we will assume that the graphs are path-connected

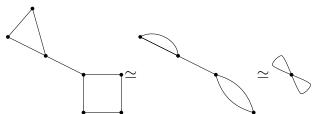
Definition

Let
$$X = (V, E)$$
 be a graph and $e = (v_1, v_2) \in E$

Define X/e to be the graph formed by deleting the edge e and combining the vertices v_1 and v_2 (this is *edge contraction*)

Exercise: Given a graph X with vertices $v_1 \neq v_2$ and $e = (v_1, v_2) \in E(X)$, then $X \simeq X/e$

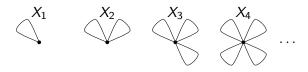
Example:



This suggests the following as our standard form for graphs:

Definition

The flower with *n* petals X_n will be the unique graph with a single vertex and $n \ge 0$ edges



Theorem

If X is a graph, then $X \simeq X_n$ for some $n \ge 0$

Proof.

If X has more than one vertex then, since X is path-connected, there exists an edge $e = (v_1, v_2)$ with $v_1 \neq v_2$

 $X \simeq X/e$ and X/e has one less vertex

By induction, $X \simeq \{ \text{graph with a single vertex} \}$

Lemma $X_n \simeq X_m$ if and only if n = m. Proof. If $X_n \simeq X_m$, then $\chi(X_n) = \chi(X_m)$ For all $n \ge 1$, we have $\chi(X_n) = 1 - n$ Hence 1 - n = 1 - m which implies that n = m

In particular, we have shown the following:

Theorem (Classification of 1-complexes) Let X and Y be 1-dimensional cell complexes Then $X \simeq Y$ if and only if $\chi(X) = \chi(Y)$

Classification of 2-dimensional cell complexes

We want to follow the same approach again

What does it mean to put a 2-complex into standard form?

Lemma

If X is a 2-complex, then $X \simeq X'$ where X' is a 2-complex with a single vertex

Proof.

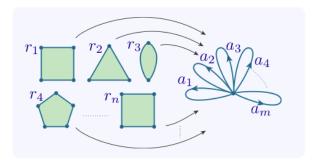
The proof amounts to checking that $X\simeq X/e$ is still true for edges $e=(v_1,v_2)$ with $v_1\neq v_2$

This allows us to restrict out attention to 2-complexes with a single vertex (!)

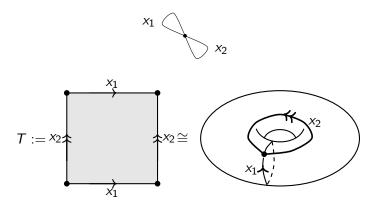
A 2-complex X with a single vertex has the following description:

- ► Take the flower with n petals X_n and label each petal with the symbols x₁,..., x_n
- ► The attaching paths for the faces then correspond to words w₁, · · · , w_m in the symbols

$$\{x_1, x_1^{-1}, x_2, x_2^{-1}, \dots, x_n, x_n^{-1}\}$$



Example: For the torus T be have



So T can be specified by the data:

- ▶ x₁, x₂ (labels for the edges)
- $w_1 := x_2 x_1 x_2^{-1} x_1^{-1}$ (attaching maps for the faces)

This should remind us of group presentations (if we have seen them before)

Group presentations

Let x_1, \dots, x_n be formal labels and let w_1, \dots, w_n be words in $\{x_1, x_1^{-1}, x_2, x_2^{-1}, \dots, x_n, x_n^{-1}\}$, e.g. $w_1 = x_{i_1}^{\pm 1} \cdots x_{i_k}^{\pm 1}$

We can construct a group out of this data as follows:

- Let S be the set of words in $\{x_1, x_1^{-1}, x_2, x_2^{-1}, \dots, x_n, x_n^{-1}\}$
- Let ~ be the unique equivalence relation on S such that w_i ~ 1, x_ix_i⁻¹ ~ 1 and a ~ b, c ~ d implies a · c ~ b · d
- \blacktriangleright Then the equivalence classes S/\sim is a group under \cdot

We let S/\sim be denoted by $\mathcal{P} = \langle x_1, \cdots, x_n \mid w_1, \cdots, w_m \rangle$ We call \mathcal{P} a group presentation

Let $X_{\mathcal{P}}$ denote the 2-complex with x_1, \dots, x_n (labels for the edges) and w_1, \dots, w_m (attaching maps for the faces) Example: Let S be the set of words in $\{x_1, x_1^{-1}, x_2, x_2^{-1}\}$ We want to determine $G = \langle x_1, x_2 | x_2 x_1 x_2^{-1} x_1^{-1} \rangle$ as a group Firstly, $x_2 x_1 x_2^{-1} x_1^{-1} \sim 1$ is equivalent to $x_2 x_1 \sim x_1 x_2$ (multiply both sides on the right by $x_1 x_2$)

 \Rightarrow The order of multiplication of x_1 and x_2 doesn't matter

$$\Rightarrow$$
 Every $w \in S$ has $w \simeq x_1^n x_2^m$ for some $n, m \in \mathbb{Z}$

Exercise: Check that there is a group isomorphism

$$f: \mathbb{Z} \times \mathbb{Z} \to \langle x_1, x_2 \mid x_2 x_1 x_2^{-1} x_1^{-1} \rangle, \quad (n, m) \mapsto x_1^n x_2^m$$

Hence $\langle x_1, x_2 \mid x_2 x_1 x_2^{-1} x_1^{-1} \rangle \cong \mathbb{Z} \times \mathbb{Z} \cong \pi_1(T)$

This phenomena is completely general:

Theorem

Let X be a 2-complex with a single vertex which is specified by

►
$$x_1, \dots, x_n$$
 (labels for the edges)
► w_1, \dots, w_m (attaching maps for the faces)
Then $\pi_1(X) \cong \langle x_1, \dots, x_n \mid w_1, \dots, w_m \rangle$ and $\chi(X) = 1 - n + m$

Does
$$\chi(X) = \chi(Y)$$
 and $\pi_1(X) \cong \pi_1(Y)$ imply $X \simeq Y$?

Definition

We say that a pair of group presentations

$$\mathcal{P} = \langle x_1, \cdots, x_n \mid w_1, \cdots, w_m \rangle, \quad \mathcal{P}' = \langle x'_1, \cdots, x'_{n'} \mid w'_1, \cdots, w'_{m'} \rangle$$

are exotic if $\mathcal{P}\cong\mathcal{P}'$ as groups, n-m=n'-m' and $X_{\mathcal{P}}
ot\simeq X_{\mathcal{P}'}$

Question

Do exotic presentations exist?

- If *P* and *P'* are exotic presentations, then χ(X_P) = χ(X_{P'}) and π₁(X_P) ≃ π₁(X_{P'}) but X_P ≄ X_{P'}
- Hence exotic presentations exist if and only if if is not true that "χ(X) = χ(Y) and π₁(X) ≅ π₁(Y) implies X ≃ Y"

Despite being considered by J. H. C. Whitehead in the 1940s, it wasn't until 1976 that the first examples were found

We will write z^w to mean $w^{-1}zw$

Theorem (Martin Dunwoody, 1976) There are exotic presentations

$$\mathcal{P} = \langle x_1, x_2 \mid x_1^2 x_2^{-3}, 1 \rangle, \quad \mathcal{P}' = \langle x_1, x_2 \mid w_1, w_2 \rangle$$

where $w_1 = x_1^2 x_2^{-3} (x_1^2 x_2^{-3})^{x_1} (x_1^2 x_2^{-3})^{x_1^2}$ and $w_2 = x_1^2 x_2^{-3} (x_1^2 x_2^{-3})^{x_2} (x_1^2 x_2^{-3})^{x_2^2} (x_1^2 x_2^{-3})^{x_2^3}$

Theorem (Wolfgang Metzler, 1976)

 $\mathcal{P} = \langle x_1, x_2, x_3 \mid x_1^3, x_2^3, x_3^3, x_1x_2x_1^{-1}x_2^{-1}, x_2x_3x_2^{-1}x_3^{-1}, x_3x_1x_3^{-1}x_1^{-1} \rangle$ $\mathcal{P}' = \langle x_1, x_2, x_3 \mid x_1^3, x_2^3, x_3^3, x_1^2x_2x_1^{-2}x_2^{-1}, x_2x_3x_2^{-1}x_3^{-1}, x_3x_1x_3^{-1}x_1^{-1} \rangle$

are exotic presentations for the group $\mathbb{Z}/5\times\mathbb{Z}/5\times\mathbb{Z}/5$

Hence the answer to our question is no

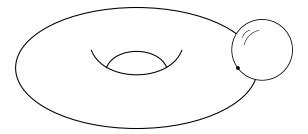
What information about 2-complexes does $\chi(X)$, $\pi_1(X)$ contain?

Definition

If X and Y are cell complexes, then $X \lor Y$ is the cell complex formed by attaching X and Y at vertices $v_x \in X$ and $v_Y \in Y$

• This is independent of the choice of v_X , v_Y (up to homotopy)

Example: If X = T is the torus and $Y = S^2$ is the sphere, then $T \vee S^2$ is a 'torus with a pimple'



Definition

Two 2-complexes X and Y are stable homotopy equivalent $(X \sim Y)$ if there exists $r \ge 0$ for which

$$X \lor \underbrace{S^2 \lor \cdots \lor S^2}_r \simeq Y \lor \underbrace{S^2 \lor \cdots \lor S^2}_r$$

(Note: this is not the same as 'stable homotopy theory')

Theorem

Let X and Y be 2-complexes. Then $\chi(X) = \chi(Y)$ and $\pi_1(X) \cong \pi_1(Y)$ if and only if $X \sim Y$

The existence of exotic presentations shows that $X \sim Y$ does not imply $X \simeq Y$

Conclusion

In this course, we introduced invariants $\chi(X)$, $\pi_1(X)$ and showed:

- $\chi(X)$ determines 1-complexes up to homotopy equivalence

What other invariants do we need to determine 2-complexes up to homotopy equivalence?

What about for cell complexes in higher dimensions?

Example of other invariants:

- $\pi_n(X)$ for $n \ge 1$ (the higher homotopy groups)
- $H_i(X)$ for $i \ge 0$ (the homology groups)
- $H^*(X) = \bigoplus_{i \ge 0} H^i(X)$ (the cohomology ring)

This is just the start of a long and interesting story...

Thank you for listening!