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Abstract

These notes are written to accompany the lecture course ‘Introduction to Algebraic Topology’ that
was taught to advanced high school students during the Ross Mathematics Program in Columbus, Ohio
from July 15th-19th, 2019. The course was taught over five lectures of 1-1.5 hours and the students were
assumed to have some experience working with groups and rings, as well as some familiarity with the
definition of a metric space and a continuous function.

These notes were adapted from the notes taken down by Alex Feiner and Ojaswi Acharya. Special
thanks go to Alex for creating most of the diagrams. We would also like to thank Evan O’Dorney for
comments and corrections. Further comments and corrections may be sent to j.k.nicholson@ucl.ac.uk.
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1 Spaces and Equivalences

In order to do topology, we will need two things. Firstly, we will need a notation of ‘space’ that will allow
us to ask precise questions about objects like a sphere or a torus (the outside shell of a doughnut).

We will also need a notation of ‘equivalence’ of these spaces which, unlike in geometry, would say that a
square and a hexagon are equivalent since we can stretch one shape into the other if they were made out of
a flexible material.

=

Figure 1: We would like to view a square and a hexagon as equivalent spaces.

1.1 Notions of Space

One way we can define a space is as a subset of Rn. However, it does not suffice to consider these objects
merely as sets since this loses all the information about the way the elements are arranged.

One way we can give sets X and Y extra structure is to decide which functions f : X → Y are going to
be continuous (i.e. ’preserving the structure of X and Y as a space’). We will do this by asking that X and
Y are metric spaces:

Definition 1.1. A metric space is defined as a set X and a distance function d : X ×X → R>0 such that

i d(x, y) = 0 ⇐⇒ x = y

ii d(x, y) = d(y, x) for all x, y ∈ X

iii d(x, z) 6 d(x, y) + d(y, z) for all x, y, z ∈ X.

Definition 1.2. If X and Y are metric spaces, we can then declare a function f : X → Y to be continuous
if, for every ε > 0, there is a δ > 0 such that d(x, y) < δ implies d(f(x), f(y)) < ε.

Remark 1.3. It turns out that there is actually a more generally notation known as a ‘topological space’.
This definition is the answer to the question: what is the least amount of information we need to add to a
set in order to have a meaningful notion of continuous function? However, most spaces of interest are metric
spaces and so we will not consider general topological spaces in this course.

1.1.1 Subsets of Rn

In particular, any subset X ⊆ Rn, n ≥ 1 can be viewed as a metric space with the usual distance function

d((x1, . . . , xn), (y1, . . . , yn)) =

√√√√ n∑
i=1

(xi − yi)2.

This will allow us define some well-known spaces:

Example 1.4.

i The simplest example is n-dimensional space Rn

ii The n-sphere Sn =

{
(x0, . . . , xn) ⊆ Rn+1

∣∣∣∣ n∑
i=1

x2i = 1

}
⊆ Rn+1. S2 is a sphere and S1 is a circle (a

one-dimensional sphere)



Introduction to Algebraic Topology Page 2 of 28

iii The unit interval I = [0, 1] ⊆ R

iv The point space ∗ = {0} ⊆ R

We can build new spaces from old ones in all the usual ways. For example, if X ⊆ Rn and Y ⊆ Rm, then
X × Y ⊆ Rn+m. Some spaces can be viewed as products in this way:

Example 1.5.

i The square I2,

ii The cylinder S1 × I,

iii The torus S1 × S1.

S1 × I S1 × S1I2

Figure 2

This last example may require some thought. Every point on the torus can be uniquely specified in terms
of two points on the circle S1. However S1 × S1 ⊆ R4 we would usually think about the torus as a subset
of R3. With some work, one can eventually come up with the following explicit formula:

T =
{

((2 + cos θ) cosϕ, (2 + sin θ) cosϕ, sinϕ) ∈ R3
∣∣ 0 6 θ, ϕ < 2π

}
.

We will see later that S1 × S1 and T are equivalent spaces. Since the formula for T was very ad-hoc,
this is useful since we can talk about S1 × S1 instead.

In fact, we can go one step further and define a new notion of space for which turning a drawing or
intuitive picture of a space is much simpler.

1.1.2 Finite Cell Complexes

We will define n-complexes in the case n = 1, 2. This coincides with the definition of ‘finite n-dimensional
CW-complex’ in the literature.

Definition 1.6 (1-complex). A 1-complex is defined as a graph (V,E) where the vertex set V = {v1, . . . , vn}
for some n and the edge set E = {E1, . . . , Em} ⊆ V × V for some m.

Example 1.7. V = {v1, v2, v3, v4}, E = {{v1, v2}, {v2, v2}, {v2, v3}, {v1, v3}, {v3, v4}}.
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Figure 3: A 1-complex.

We can turn a 1-complex (V,E) into a metric space X using the diagram above. The set X will the the
union of intervals [0, 1] corresponding to the edges, who overlap at the vertices. Here distances should be
the shortest length of a path through the edges and vertices, i.e. if x, y ∈ X

d(x, y) = min{length(p) | p is a path from x to y}

where a ‘path’ is defined as a sequence of segments of edges Ei and each edge is given length one.

Definition 1.8 (2-complex). A 2-complex is defined as a triple (V,E, F ) consisting of a set of vertices
V = {v1, . . . , vn}, a set of edges E = {E1, . . . , Em} and a set of faces F = {F1, . . . , Fr} such that (V,E) is a
graph and the faces are defined in either of the following ways:

• As sequences of edges Fi = (Ei1 , . . . , Eik) where adjacent edges (Eit , Eit+1
) share a common vertex

for t = 1, . . . , k (taking ik+1 to be i1). We will think of this as ‘the face attached along the path
(Ei1 , . . . , Eik).

• As a single vertex vi. This will be the face attached at a single vertex vi by wrapping it up into the
shape of a sphere.
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p1 : x y p2 : x y

F4

Figure 4: A 2-complex.

This can be turned into a metric space X similarly to the case of 1-complexes. In order to define our
notion of distance in X, we will build the faces Fi attached along paths (Ei1 , . . . , Eik) as k-gons with unit
radius, and the faces Fi attached along vertices as spheres of unit radius with distance the length of arcs
along great circles.

1.2 Notions of Equivalence

We will now explore two different notions of equivalence. We will first consider homeomorphism: this can be
thought of as ‘topologically equivalent’ and means that the spaces are the same in as we can bend and push
the two shapes into each other. This is a relatively mild notion of equivalence since it ‘preserves dimension’
in the sense that Rn and Rm will not be homeomorphic unless n = m.

The second notion we will consider is homotopy equivalence which, in contrast, allows for much more
violent deformations of spaces. For example, we will see that Rn is homotopy equivalent to a point for all n.

1.2.1 Homeomorphism

For the rest of the course, all functions between spaces will be assumed to be continuous unless otherwise
stated.

Definition 1.9. We say that metric spaces X and Y are homeomorphic, denoted X ∼= Y , if there are maps
f : X → Y and g : Y → X such that f ◦g = idY , g◦f = idX . We say that such a map f is a homeomorphism
from X to Y .

Exercise 1.10. Prove that ∼= is an equivalence relation.

The following result from analysis often makes life easier:

Lemma 1.11. Let X and Y be cell complexes. Then if f : X → Y is a continuous bijection there is a
g : Y → X such that f ◦ g = idY and g ◦ f = idX .
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Remark 1.12. In fact this holds for a larger class of metric spaces, namely those which are compact.

Example 1.13. X = [0, 1] and Y = [0, 2]. Let f(x) = 2x and g(x) = 1
2x.

Example 1.14. X = R and Y = (0, 1). Let f(x) = 1
1+e−x , the sigmoid function. This has an explicit inverse

g(x) = − log
(
1
x − 1

)
. One can check both of these functions are continuous using the standard techniques

from a first course in analysis.

y = 1
f(x) = 1

1+e−x

Figure 5: The sigmoid function.

Example 1.15. Let X = Rn for n ≥ 1 and Y = ∗. Suppose there exists a homeomorphism f : Rn → ∗.
Then there exists g : ∗ → Rn for which f ◦ g = id∗ and g ◦ f = idRn . However, we must have that f(x) = 0
for all x ∈ Rn and g(0) = x0 for some x0 ∈ Rn. In particular, g(f(x)) = x0 for all x ∈ Rn and so g◦f 6= idRn .
This is a contradiction and so Rn 6∼= ∗.

In fact, as mentioned earlier, a much stronger statement is true:

Fact 1.16. Rn ∼= Rm if and only if n = m.

This can be proven using techniques from algebraic topology, though the proof is difficult and well beyond
the scope of this course.

1.2.2 Homotopy Equivalence

We would like to pick our definition of homotopy equivalent to allow for deformations which do not preserve
dimension. It turns out that it will be easiest to first talk about homotopy equivalence of maps rather than
spaces.

Definition 1.17. We say that two maps f, g : [0, 1] → [0, 1] are homotopy equivalent, denoted f ' g, if
there is a one-parameter family of maps Ht : [0, 1] → [0, 1] for 0 6 t 6 1 which vary continuously in t and
are such that H0 = f and H1 = g. We say that H is a homotopy from f to g.

Remark 1.18. Here by ‘vary continuously in t’, we simply mean that the induced function H : [0, 1]×[0, 1]→
[0, 1], (x, t) 7→ Ht(x) is continuous.

The picture we should have in our head is as follows. We views the function f as fading into the shape
of the function g as time t flows from 0 to 1.
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1

1

H1 = g

H0 = f

Figure 6: Two functions f and g which are homotopy equivalent via H.

Once we have this definition, it can be easily generalized as follows to other metric spaces.

Definition 1.19. We say that two maps f, g : X → Y are homotopy equivalent, denoted f ' g, if there is
a one-parameter family of maps Ht : X → Y , for 0 6 t 6 1, which is continuous in t and has the property
that H0 = f and H1 = g.

We can now define homotopy equivalence of spaces by taking our definition of homeomorphism but now
only requiring that f and g are inverses up to homotopy equivalence.

Definition 1.20. Two metric spaces X and Y are homotopy equivalent, denoted X ' Y , if there exists
functions f : X → Y and g : Y → X such that f ◦ g ' idY and g ◦ f ' idX .

Exercise 1.21. Prove that ' is an equivalence relation.

We will refer to the equivalence class of a space X up to homotopy as the homotopy type of X. As
expected, the definition implies that X ∼= Y =⇒ X ' Y .

Example 1.22. We will show that Rn ' ∗. Define functions f : Rn → ∗, x 7→ 1 and g : ∗ → Rn, 1 7→ 0.
Then f ◦ g : ∗ → ∗, 1 7→ 1, meaning that f ◦ g = id∗. We also have that g ◦ f : Rn → Rn, x 7→ 0.

The real work now amount to showing that g ◦ f ' idRn . If Ht(x) = tx, then H0 = 0 = g ◦ f and
H1 = idRn . Hence g ◦ f ' idRn , which implies that Rn ' ∗.

Example 1.23. We will show that the circle S1 is homotopy equivalent to the punctured complex plane
C \ {0}. The intuition is that you take the complex numbers and push everything inside S1 outwards and
everything outside S1 inwards. As is often the case in these types of proofs, there are only two sensible
choices for f and g:

• f : S1 → C \ {0}, eiθ 7→ eiθ,

• g : C \ {0} → S1, reiθ 7→ eiθ.

It is easy to see that g ◦ f = idS1 . We now claim that f ◦ g ' idC\{0}. Since f
(
g
(
reiθ

))
= eiθ, we need to

find a one-parameter family of maps Ht : C \ {0} → C \ {0} such that

H0

(
reiθ

)
= reiθ, H1

(
reiθ

)
= eiθ.

This is achieved by the function Ht

(
reiθ

)
= r1−teiθ satisfies this. Thus S1 ' C \ {0}.
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H1

(
reiθ

)
= eiθ

H0

(
reiθ

)
= reiθ

Ht
(
eiθ

)
= r1−teiθ

Figure 7: The homotopy H between f ◦ g and idC\{0}.

It is worth taking some time coming to terms with the diagram for the homotopy H. As time passes
from 0 to 1, the point reiθ moves towards the point eiθ along a radial line.
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2 Invariants

Example 2.1. Are the spaces S1 and ∗ homotopy equivalent? The only possible maps between these spaces
are as follows, where x0 ∈ S1:

• f : S1 → ∗, eiθ 7→ 0,

• g : ∗ → S1, 0 7→ x0.

We have that f ◦ g = id∗ and cx0 = g ◦ f : S1 → S1, eiθ 7→ x0. Is cx0 ' id∗?

We could try searching for a while for a homotopy between cx0
and id∗ but we would not find one. How

can we prove that a homotopy equivalence does not exist?
The basic idea is to construct an invariant, namely a way to assign quantities I(X) to spaces X in such

a way that X ' Y implies that I(X) and I(Y ) are equal. If we have such an invariant and we can show that
I(X) and I(Y ) are not equal, then we show that X 6' Y . This applies to any equivalence relation on spaces.

2.1 The Euler Characteristic

Our first example of an invariant will be the Euler characteristic.

Definition 2.2. Let X be a n-complex and let fi denote the number of cells in dimension i. Then the Euler

characteristic of X is χ(X) =
n∑
i=0

(−1)ifi.

So f0 denotes the number of vertices, f1 denotes the number of edges and f2 denotes the number of faces.
For low-dimensional examples, we will write V = f0, E = f1 and F = f2.

Example 2.3. We can compute the Euler characteristic for a few familiar figures:

i χ(∗) = 1

ii χ(loop with one point) = V − E = 1− 1 = 0,

iii χ(loop with two points︸ ︷︷ ︸
'S1

) = V − E = 2− 2 = 0

iv χ(hollow cube with solid faces︸ ︷︷ ︸
'S2

) = V − E + F = 8− 12 + 6 = 2

v χ(dodecahedron) = 2

From these examples, we might be tempted to conjecture that, if two spaces are homeomorphic, then they
have the same Euler characteristic. In fact, much more is true:

Theorem 2.4. Let X and Y be cell complexes. Then X ' Y implies that χ(X) = χ(Y ), i.e. χ is a
homotopy invariant.

This gives us a way to define Euler characteristic for metric spaces which do not come with the structure
of a cell complex but which are simply homotopy equivalent to a cell complex. For example, we can define
χ(S1) to be χ(X) for either of the two examples considered above.

Example 2.5. If S1 ' ∗, then χ
(
S1
)︸ ︷︷ ︸

=0

= χ(∗)︸︷︷︸
=1

. Thus S1 6' ∗.

We will not prove this theorem since it is tricky. We instead set the following as a challenge:

Challenge 2.6. Prove the χ is a homotopy invariant, but you may assume it is true in the case where
X ' ∗, i.e. you may assume that X ' ∗ =⇒ χ(X) = χ(∗) = 1.

So the Euler characteristic is an invariant which is easy to compute but for which it is difficult to prove
that it is homotopy invariant. Another drawback is that the invariant is integer valued and unlikely to
contain much information.
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2.2 The Fundamental Group

We would now like to construct a new invariant which is different to the Euler characteristic in these three
respects. This time, homotopy will appear in the definition of our invariant. This will allow us to throw away
enough information in our definition to ensure that homotopy equivalent of spaces have the same invariant.
However, since homotopy appears in the definition itself, it will be hard to compute (at least from first
principles).

Let X be a metric space (whenever topologists think about a space they think about a torus). Fix a
single point x0 ∈ X and consider all the paths in the space where you traverse the space and return to the
point, formally we want to consider the set:

{loops at x0} = {γ : I → X | γ(0) = γ(1) = x0, γ is a map}.

The point x0 is known as the basepoint, and we will often simply talk about ‘loops’ with the understanding
that there is some basepoint which is fixed. We would like to use our homotopy to compare loops.

Definition 2.7. We say that loops γ, γ′ : I → X are homotopy equivalent, written γ ' γ′, if there exists a
continuously varying one-parameter family of loops Ht : I → X such that H0 = γ, H1 = γ′.

Remark 2.8. Note that this is not quite the same as a homotopy between γ, γ′ : I → X considered merely
as functions. Here we require that the homotopy Ht is a loop for all t, i.e. that Ht(0) = Ht(1) = x0 for all
0 6 t 6 1. This is often referred to as a based homotopy.

To picture a homotopy, we should view two loops as stretchy pieces of string. We say they are equivalent
if you can stretch that piece of stretchy string into the other while keeping its contact point fixed. In the
diagram below γ0 ' γ′0, γ1 ' cx0 .

x0

γ0

γ′0

γ1

γ2

Figure 8: A torus with multiple different paths drawn around its surface.

It is also true that γ0, γ1 and γ2 are not homotopy equivalent, though this will require some work to
prove.

Our new invariant will be defined as the homotopy classes of these loops:

Definition 2.9. π1(X,x0) := {loops at x0}/ '.

Remark 2.10. If S is a set and ' is an equivalence relation of S, then we write S/ ' for the equivalence
classes of ', i.e. the set S modulo '.

Example 2.11. Let X = I = [0, 1], x0 = 0. Consider an arbitrary loop γ : I → I with γ(0) = γ(1) = 0. We
claim that γ ' c0. Recall that c0 : I → I, x 7→ 0. Consider the function Ht(x) = (1− t)γ(x). We have that
H0 = γ and H1 = 0. Thus π1(I, 0) = {c0}.
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This shows how violent the deformations induced by a homotopy can be: we are allowed to destroy
things, which we can’t do with a homeomorphism. We can picture this using the following diagram. At time
t = 0, every point on γ in pushed vertically downwards and reached the horizontal axis at the t− 1.

0 1

H0 = γ

H1 = c0

Figure 9: The homotopy H between γ and c0

Example 2.12. Consider one loop in S1 given by γ1 : I → S1,

γ1(θ) = e2πiθ.

We could also have
γn(θ) = (e2πiθ)n

which wraps around the circle n times and γ0(θ) = c1 is the constant path.
We can ask a similar question to the one we asked earlier about path on S1, namely:

Question 2.13. Is γ1 ' γ0?

In the other direction, we could also ask whether or not these loops are all there is:

Question 2.14. Let γ be a loop. Then is γ ' γn for some n ∈ Z?

How should we picture an arbitrary path from γ : I → S1? We can take the horizontal axis to be I and
can also picture the vertical axis as I as long as we allow maps to pass freely between 0 and 1 (corresponding
to the fact that S1 is the path as I = [0, 1] with the endpoints identified). The picture is as follows:

1

1

γ

Figure 10

However, much more useful is to stack different copies of I up the vertical axis and allow the curve γ to
pass into each region whenever it passes through 0 or 1. The picture is on the left below, with the dashed
lines corresponding to other possible starting points for γ:
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1

1

2

3

γ

1

1

2

3

γ3

γ

Figure 11: The path γ : I → S1 and homotopy from γ to γ3

If we understand this picture well enough, it it easy to see that γ ' γ3. We show the homotopy in the
diagram on the right above. We can picture γ being made a highly elastic piece of string and snapping to
the vertical line connecting (0, 0) to (1, 3). This argument suffices to prove that, for any loop γ, γ ' γn for
some n. We will return to this later.

2.2.1 Homotopy Invariance

For sets S, S′, we will write S 'bij S
′ if there exists a bijection f : S → S′. This is an equivalence relation

and we would like to show that this set is a homotopy invariant up to bijection.
From now on, we will assume all spaces X are path-connected, i.e. for all x, y ∈ X, there exists a map

p : I → X such that p(0) = x and p(1) = y. We will say that p is a path from x to y and write p : x y.
We will now show that, assuming all spaces are path-connected, the set π1(X,x0) is independent of the

choice of basepoint up to bijection.

Lemma 2.15. Let X be a metric space and x0, x1 ∈ X. Then π1(X,x0) 'bij π1(X,x1).

Proof. Let x0, x1 ∈ X. The key idea is that a path p : x0  x1 induces a map p∗ : π1(X,x0) → π1(X,x1),
ga 7→ p−1 · γ · p where p−1 · γ · p denotes the path formed by first moving along p−1 (p in reverse), then
moving along γ and finally along p. Explicitly, we can write this as:

(p−1 · γ · p)(t) =


p−1(3t) t 6 1/3

γ(3t− 1) 2/3 6 t 6 2/3

p(3t− 2) 2/3 < t 6 1.

We can picture this re-parametrisation as asking that time flows at three times the usual speed to allow for
moving along three curves.
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x0 x1p : x0  x1

p−1 : x1  x0

γ

Figure 12

In order to show that p∗ is a bijection, it will suffice to check that (p−1)∗ ◦ p∗ : π1(X,x0)→ π1(X,x0) is
equal to idπ1(X,x0). Note that (p−1)∗ ◦ p∗ : γ 7→ p · p∗(γ) · p−1 = (p · p−1) · γ · (p · p−1).

In order to show that (p · p−1) · γ · (p · p−1) ' γ, it will suffice to prove that p · p−1 ' cx0
. We can picture

this as follows:

x0 x1
p · p−1 : x0  x0

Figure 13

Recall that p · p−1 is defined as:

(p · p−1)(x) =

{
p(2x) 0 6 x 6 1/2

p−1(2x− 1) 1/2 6 x 6 1.

Explicitly, the diagram above corresponds to taking the homotopy:

Ht(x) =

{
(1− t)p(2x) 0 6 x 6 1/2

(1− t)p−1(2x− 1) 1/2 6 x 6 1.

�

Since we have this lemma, we can now write π1(X) without referring to the basepoint (although one
basepoint does still have to be chosen).

Theorem 2.16. Let X and Y be metric spaces. Then X ' Y implies that π1(X) 'bij π1(Y ), i.e. π1 is a
homotopy invariant.
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Proof. Let f : X → Y, x0 7→ y0 and assume for simplicity that there exists g : Y → X, y0 7→ x0 such that
f ◦ g ' idY and g ◦ f ' idX (in general, g would map y0 7→ x1 where x0 6= x1).

The idea of the proof is similar to the previous lemma in that we define a map

f∗ : π1(X,x0)→ π1(Y, y0),

γ︸︷︷︸
γ:I→X

7→ f ◦ γ︸ ︷︷ ︸
f◦γ:I→Y

and we would like to show it is a bijection. It will suffice to show that the composition

g∗ ◦ f∗ : π1(X,x0)→ π1(X,x0)

is equal to the identity idπ1(X,x0) and also that f∗ ◦ g∗ = idπ1(Y,y0) which will imply that f∗ and g∗ are
invertible and hence bijections.

Note the following:

Lemma 2.17. Suppose we have a function f : X → X s.t. f ' idX . Then f∗ = idπ1(X,x0).

This follow from that fact that, if Ht is a homotopy from f to idX , then H̃t = Ht ◦ γ is a homotopy from
f ◦ γ to γ and hence f∗(γ) = γ.

In particular, since g∗ ◦ f∗ = (g ◦ f)∗ (they both send γ 7→ g ◦ f ◦ γ) and g ◦ f ' idX , we have that
(g ◦ f)∗ = idπ1(X,x0). It follows similarly that (f ◦ g)∗ = idπ1(Y,y0). �

In the above proof, we assumed that g(y0) = x0. To prove the general case, we would need to prove a
slightly more general lemma which we leave as an exercise.

Exercise 2.18. Show that, if f : X → X,x0 7→ x1 has f ' idX , then f∗ is bijective. Hence finish the proof
of Theorem 2.16.

We will return once again to our motivating example of the circle.

Example 2.19. Consider π1(S1) with the loops

γn : I → S1, θ 7→
(
e2πiθ

)n
.

We sketched a proof that π1(S1) = {γn | n ∈ Z}/ ' and we conjectured that γn ' γm if and only if n = m
which would imply that π1(S1) = {γn | n ∈ Z} = Z.

This identification with Z suggests that π1(S1) may contain more structure than that of a set. Namely
Z has an operation (n,m) 7→ n+m which should correspond to an operation (γn, γm) 7→ γn+m. Using our
notation earlier, this corresponds to concatenation γn+m ' γn · γm.

It turns out that this definition works for general metric spaces X.

Definition 2.20. If γ, γ′ ∈ π1(X), then we define the product γ · γ′ ∈ π1(X) to be the loop γ · γ′ : I → X
with

(γ · γ′)(t) =

{
γ(2t) 0 ≤ t ≤ 1/2

γ′(2t− 1) 1/2 ≤ t ≤ 1.

This is the curve formed by ‘doing γ then γ′.

This operation has some special properties. Recall the definition of a group.

Definition 2.21. A group is a set G and a map · : G×G→ G such that

i Identity: There is an element 1 ∈ G such that g · 1 = g = 1 · g,

ii Inverse: For all g ∈ G, there exists g−1 such that g−1 · g = 1 = g · g−1.

iii Associativity: For all g, h, k ∈ G, (g · h) · k = g · (h · k).
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Remark 2.22. Note that commutativity is not a requirement to be a group. Groups that have the property
are called abelian groups.

Definition 2.23. If G and H are groups and f : G→ H is a function then we say that f a homomorphism
if f(gh) = f(g)f(h) for all g, h ∈ G and f(1) = 1. We say that G are H are isomorphic, written G ∼= H, if
there are homomorphisms f : G→ H and g : H → G such that f ◦ g = idH and g ◦ f = idG.

This should remind us of the definition of continuous function and homeomorphism of spaces.
It turns out that we need not ever find an inverse to show that two groups are isomorphic. We leave the

following as an exercise:

Exercise 2.24. Let G and H be groups. If there exists a group homomorphism f : G→ H that is bijective,
then G ∼= H.

Theorem 2.25. π1(X) is a group.

Proof. Consider the constant map c0. Then we can check that

c0 · γ ' γ ' γ · c0.

If γ−1(t) = γ(1− t), we showed earlier that

γ · γ−1 ' c0 ' γ−1 · γ.

We also have associativity, i.e. that
(γ · γ′) · γ′′ ' γ · (γ′ · γ′′).

�

The proofs in the first and third case just amount to re-parametrisation (i.e. ‘slowing down and speeding
up time’) and a careful proof simply requires finding the right formula for the homotopy.

It turns out that the group structure is homotopy equivalent too:

Theorem 2.26. Let X and Y be metric spaces. Then X ' Y implies that π1(X) ∼= π1(Y ), i.e. π1 is a
homotopy invariant as a group.

Proof. By the exercise above, all we need to show is that, if p : x0  x1 is a path and f : X → Y is a map,
then the maps p∗ : π1(X,x0) → π1(X,x1), γ 7→ p−1 · γ · p and f∗ : π1(X,x0) → π1(Y, y0), γ 7→ f ◦ γ are
group homomorphisms. �

We will finally give a name to our new invariant.

Definition 2.27. π1(X) is called the fundamental group.

2.2.2 The Fundamental Group of S1

We will finally finish off our computation of π1(S1). Recall the idea that we used in Figure 11 to draw loops
γ : I → S1. Formally, these drawing were functions γ̃ : I → R which reduce back to γ when maps are
composed with a canonical map R→ S1. We can clarify this idea with the following definition:

Definition 2.28. Define the map
p : R→ S1, x 7→ e2πix.

If γ : I → S1 is a loop, then we say a map γ̃ : I → R is a lift of γ if γ̃(0) = 0 and p ◦ γ̃ : I 7→ S1.

Definition 2.29. We will say that lifts γ̃ and γ̃′ will be homotopy equivalent if there exists a continuously
varying one-parameter family of homotopies Ht : I → R such that H0 = γ̃, H1 = γ̃′ and Ht(0), Ht(1) are
fixed for all 0 ≤ t ≤ 1.

Note that we require both endpoints to be fixed throughout the homotopy.
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Theorem 2.30. π1(S1) ∼= (Z,+).

Proof. We want to take the γn : I → S1, θ 7→ e2πinθ and show that these are the only loops up to homotopy.
We then have to show that none of these loops are homotopy equivalent to eachother, i.e. we must show:

i For all loops γ, we need γ ' γn for some n.

ii γn ' γm iff n = m.

We sketched a proof of the first claim earlier and we will now make this argument more precise. Let
γ : I → S1 be a loop. We need the following:

Lemma 2.31. Every loop γ : I → S1 has a unique lift γ̃ : I → R.

R

I S1

p

γ

∃!γ̃

Proof. The entire proof is contained in the figure on the left below (which we reproduce from Figure 11).
In particular, we can prove existence by piece-wise defining the function based on all the points at that

it meets the basepoint in the sphere (we can show this happens finitely many times using some basic results
from analysis). Uniqueness follows similarly. �

1

1

2

3

γ

1

1

2

3

γ3

γ

Figure 14: The path γ : I → S1 and homotopy from γ to γ3

We can now pick a lift γ̃ : I → R, i,e. a map with γ̃(0) = 0 and p ◦ γ̃ = γ. Let n = γ̃(1). This is an
integer since γ̃ is a lift, i.e. since e2πin = p(n) = p(γ̃) = γ(1) = 1.
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Note that γ̃n(θ) = nθ is the lift of γn. It is now easy to see that γ̃ ' γ̃n from the figure on the right
above (we can define a homotopy analogously to in Figure ??).

Does this imply that γ ' γn? We want to prove something along the lines of if two lifts are homotopic
then the original things are homotopic. The fact that γ̃ ' γ̃n means that there is a homotopy H̃t : I → R
such that H̃0 = γ̃ and H̃1 = γ̃n. We want a a map Ht : I → S1 such H0 = γ and H1 = γn. It suffices to
take Ht = p ◦ H̃t since H0 = p0 ◦ γ̃ = γ and H1 = p ◦ γ̃n = γn. This finishes the proof of the first claim.

The proof of the second claim will be similar. Suppose that γn ' γm.
Note that γ̃n ' γ̃m implies that n = γ̃(1) = γ̃′(1) = m since homotopies of lifts must fix endpoints.

Hence n = m and so it will suffice to prove that γ̃n ' γ̃m. This can be done using an explicit homotopy.
This finishes the proof of the second claim.

This implies that π1(S1) = {γn : n ∈ Z} ∼= Z since we know that γn · γm = γn+m. �

Some of the above discussion can also be phrased in terms of the following results which says that
homotopies themselves can be lifted uniqely:

Lemma 2.32. If Ht : I → S1 is a homotopy of loops, then there is a unique homotopy of lifts H̃t : I → R
such that p ◦ H̃ = H.

Generalising this proof to other spaces is the beginning of a long and interesting story.

Example 2.33. What if we want the fundamental group of the torus T ∼= S1 × S1? We can use methods
similar to what we did for S1 to find π1(T ). A torus is somehow a bit like R2 but just folded down. We can
play a similar gsme with p : R2 → T to show that π1(T ) ∼= Z× Z.

In the general setting, the map p : R → S1 is called a covering map and the space R lying over S1 is
known as a covering space.

2.3 Other Invariants

Are χ and π1 the only invariants of interest? We know that

X ' Y =⇒ χ(X) = χ(Y ), π1(X) ∼= π1(Y )

but is it true that
χ(X) = χ(Y ), π1(X) ∼= π1(Y ) =⇒ X ' Y ?

This turns out to be false:

Example 2.34. We claim that π1(S2) = {1}. If γ : I → S2 is a loop, we would like to show that it is
homotopic to the constant loop cx0

by picking a point x ∈ S2 which is not in the image of γ and projecting
γ towards x0 along the arc connecting x0 to x. We can picture this as follows:
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x0

γ

x

Figure 15

However this proof does not work since, surprisingly, there are continuous surjective function f : I → S2.
These things are called space filling curves. An an example, we can get a continuous surjection f : I → I2

as the limit of the following sequence of continuous function f1, f2, f3, f4, f5 . . . .

Figure 16: Hilbert’s space filling curve.

This proof can be made to work: one needs to prove that you can ‘wiggle’ γ in some way to make it not
surjective, though it requires many additional details.

We can show similarly that π1
(
S4
)

= {1}. Since χ(S2) = χ(S4) = 0, both spaces have the same χ and
π1. But are these spaces homotopy invariant? The answer is no but to prove this we will, of course, need
even more invariants.
There are two main types of homotopy invariant. Firstly we have the homotopy groups:

π1(X), π2(X), π3(X), . . . .

These ‘higher’ homotopy groups are defined analogously to π1(X) in that πn(X) is the homotopy classes of
maps Sn → X which send a point on Sn to a fixed basepoint in X. For values of i > 2 we have that πi(X)
is an abelian group. These are important though π1(X) contains more information in general since abelian
groups can be classified and only take one of a few forms.

We also have the homology groups which are all abelian:

H0(X), H1(X), H2(X), H3(X), . . .

These can be defined in a clever way using linear algebra. The definition is easy in the case of cell complexes
(though it is hard to prove it is homotopy invariant with this definition) and the analogous definition for
general spaces is more difficult (though it is, perhaps, a little easier to prove it is homotopy invariant). It
turns out that the Euler characteristic can be computed from the homology groups.
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Fact 2.35. Every (finitely-generated) abelian group A is of the form

A ∼= Zn × F,

where F is finite. We define rank(A) = n.

Theorem 2.36. The Euler characteristic can be expressed as

χ(X) =
∑
i

(−1)irank(Hi(X)).

Therefore the fact that χ(X) is a homotopy invariant is implied by the fact that Hi(X) is a homotopy
invariant, and this is the usual way to prove this fact.



Introduction to Algebraic Topology Page 19 of 28

3 Applications

We will now give two applications of the fact that π1(S1) ∼= Z to algebra and analysis.

3.1 The Fundamental Theorem of Algebra

Theorem 3.1 (The Fundamental Theorem of Algebra). For every non-constant polynomial

f(x) =

n∑
k=0

akx
k,

with n > 1 and ak ∈ C, there exists z ∈ C such that f(z) = 0.

Proof. Suppose f has no roots over C and assume, without any loss of generality, that f is monic. Then
f : C→ C \ {0} is continuous. We now have this continuous function and need to study it a bit more. The
fact that it exists should be enough to get a contradiction. Recall that we have a map

f∗ : π1(C)→ π1(C \ 0),

γ 7→ f ◦ γ.

Before we move on we should identify what π1(C) and π1(C \ {0}) are.
Note that Rn ' ∗. Letting n = 2, we get that R2 ∼= C as spaces, which implies C ' ∗. We also know

that C \ {0} ' S1. Thus, by homotopy of π1, we get that

π1(C) ∼= π1(∗) = {1}, π1(C \ {0}) ∼= Z.

We thus have a group homomorphism

f∗ : {1} → Z, 1 7→ 0

and so f ◦ γ ' c0 for all γ : I → C. We would now like to get a contradiction by exhibiting a loop γ : I → C
for which f ◦ γ 6' c0.

Note that, for r sufficiently large, we have that

f
(
reiθ

)
=

n∑
k=0

akr
keikθ ≈ rneinθ.

In particular, if γ = rγ1 is the path which goes once around the circle of radius r then, provided r is
sufficiently large, there is a homotopy f ◦ γ ' rnγn. The ‘approximately equal to’ can be turned into a
homotopy of loops since we can move between the two paths without passing through the origin (which is
not in the space). The picture is as follows:

Figure 17

Since rnγn ' γn, by shrinking the radius, we get that f ◦ γ 7→ n ∈ Z ∼= π1(S1) under the group
isomorphism π1(C \ {0}) → π1(S1) established previously. Since n ≥ 1, f ◦ γ 6' c1 which completes the
proof. �

Using the Euclidean algorithm for polynomials, we can state this theorem in another form.

Corollary 3.2. Polynomials factorize over C.
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3.2 Brouwer Fixed Point Theorem

Consider the disc
D2 =

{
(x, y) ∈ R2

∣∣ x2 + y2 6 1
}
.

Theorem 3.3 (Brouwer Fixed Point Theorem). If f : D2 → D2 is continuous, then f has a fixed point, i.e.
there exists x ∈ D2 for which f(x) = x.

Proof. Suppose f does not have a fixed point. How are we going to apply algebraic topology to this? We
want to find a way to encode the non-existence of a fixed point into the existence of a continuous function
with certain properties and then use the fundamental group in a similar way to how we did previously.

One thing we can do, which we could not be if f has a fixed point, is to consider the unique line that
connects x and f(x). This defines a map g : D2 → S1 where x maps to the point on the same side of x on
the line connecting x and f(x). One can check that g is continuous by, for example, finding a formula for it
by solving for the intersection points.

f(x)

x

g(x)

Figure 18: An illustration of the function g.

Now consider the function
g∗ : π1(D2)→ π1(S1), γ 7→ g ◦ γ.

Recall that π1(S1) ∼= Z. We also have that D2 ' ∗, meaning that π1(D2) ∼= π1(∗) = {1}. This implies that
g ◦ γ ' c1 for all γ ∈ π1(D2).

Note that, if x ∈ D2 is already on the boundary circle, then g(x) = x. In particular g|S1 = idS1 . Consider
the loop γn : I → D2, θ 7→ (e2πiθ)n. Then

g(γn(θ)) = g
(
e2πinθ

)
= e2πinθ,

because e2πinθ is on the circle and g|S1 : S1 → S1. This is a contradiction since g ◦ γn corresponds to the
element n ∈ Z ∼= π1(S1) and so is not homotopic to the constant path for any choice of n 6= 1. �

A more slick way to do the last part of this argument is to consider

S1 i
↪−→ D2 g−→ S1

where i : S1 ↪→ D2 is the inclusion map. We can then apply π1 to get

π1(S1)
i∗−→ π1(D2)

g∗−→ π1(S1).
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The definition of g implies that g(x) = x if x is already on the boundary circle, i.e. g ◦ i = idS1 .
Since g∗ ◦ i∗ = (g ◦ i)∗, this implies that the composition

g∗ ◦ i∗ : Z→ {1} → Z

equals the function idπ1(S1) : Z → Z which is bijective. However g∗ ◦ i∗ is not bijective since it maps
everything to 0 ∈ Z, which is a contradiction.

Remark 3.4. This approach can be viewed as relying on the ‘functoriality’ of π1. We say that π1 is a
functor since it does two things. Firstly, it assigns groups to spaces

π1 : {Spaces} → {Groups}, X 7→ π1(X)

and, secondly, it assigns maps between groups (group homomorphisms) to maps between spaces (continuous
functions)

π1 : {X → Y continuous} → {π1(X)→ π1(Y ) homomorphism}, f 7→ f∗

in such a way that we have nice properties such that (f ◦ g)∗ = f∗ ◦ g∗ and (idX)∗ = idπ1(X).

A good reference for the further applications of this sort is Daniel Shapiro’s book on sums of squares.
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4 Classification Problems

4.1 Classification of 1-Complexes

We want to focus on classifying complexes. Classifying 1-complexes is doable, but classifying 2-complexes is a
good deal harder. We can model classification of other more complicated things off of classifying 1-complexes.
As usual, we will assume that all complexes are path-connected.

We will break the classification of 1-complexes down into two distinct stages which are reminiscent of our
proof that π1(S1) ∼= Z.

(i) Show that every graph can be placed uniquely in some kind of ‘standard form’

(ii) Show that two graphs in standard form are homotopy equivalent if and only if they are the same graph.

We begin by focusing on this first stage. Consider the graph below on the left. To put this in a standard
form, we consider how to alter the graph to a homotopy equivalent one which is simpler. We do this by
successively shrinking edges with distinct vertices to a point.

' '

Figure 19: An example of contracting the edges on a graph to reduce it down to standard form.

This suggests that the standard form we want might be the graphs with a single vertex. We make the
following definition.

Definition 4.1. The flower with n petals Xn will be the unique graph with a single vertex and n ≥ 0 edges.

X4

. . .

X3X2X1

Figure 20: X1, X2, X3, and X4.

Definition 4.2. Let X be a 1-complex and e = (v1, v2) ∈ E(X). Then X/e is the graph formed by deleting
the edge e and combining the vertices v1 and v2. We refer to this process as edge contraction.

Exercise 4.3. Given a 1-complex X with vertices v1 6= v2 and e = (v1, v2) ∈ E(X), then X ' X/e.

Theorem 4.4. Let X be a 1-complex. Then X ' Xn for some n > 0.

Proof. We will use Induction. We can start with a 1 complex with more than 1 vertex, and then reduce it
using Exercise 4.3 to work it down to Xn. �
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We can ado this using the fact from graph theory that every graph has a spanning tree T with T ⊆ X
and T containing no loops. It is then easy to see that X ' X/T = Xn for some n > 0 and that X/T can be
attained as a sequence of edge contractions of the above form.

We now prove the second part, namely that these standard forms are distinct.

Lemma 4.5. Xn ' Xm if and only if n = m.

Proof. If Xn ' Xm, then χ(Xn) = χ(Xm). However χ(Xn) = 1 − n and so 1 − n = 1 −m which implies
that n = m. �

In particular, we have shown the following:

Theorem 4.6. (Classification of 1-complexes) If X and Y are 1-complexes, then X ' Y if and only if
χ(X) = χ(Y ).

Remark 4.7. In contract to the examples of S2 and S4 which showed that χ and π1 are not enough to
classify spaces, this result shows that even just χ is enough to classify 1-complexes.

4.2 Classification of 2-Complexes

We would like to do a similar thing for 2-complexes.

Definition 4.8. Let X(i) = {cells of dimension i}. This is called the i-skeleton

Example 4.9. How can we describe the torus T = S1 × S1?

T (0) = T (1) =

T =

x

x

y y ∼=

y

x

Figure 21

This is quite simple since T (1) is in standard form as a 1-complex. It turns out this is always possible.

Lemma 4.10. If X is a 2-complex then X ' X ′, where X ′ is a 2-complex with a single vertex.

Proof. The proof amounts to checking that X ' X/e is still true for edges e = (v1, v2) with v1 6= v2. �

This lemma allows us to put 2-complexes in some sort of standard form, though it will not be quite as
restrictive as the case of 1-complexes.

Up to homotopy equivalence, 2-complexes can be described by the following data:
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(i) Flower with n petals. We can label each petal with the symbols x1, . . . , xn.

(ii) The attaching paths for the edges then correspond to words in the symbols{
x1, x

−1
1 , x2, x

−1
2 , . . . , xn, x

−1
n

}
.

Note that the trivial word 1 is also allowed which corresponds to attachment of a sphere at a vertex (one
can show that the choice of vertex does not affect the resulting homotopy type).

Example 4.11. The torus can be described by loops labelled by x, y and an attaching path xyx−1y−1. This
should be clear from the picture on the left though a little harder to see from the picture on the right.

This data may remind you of something from group theory.

4.2.1 Group Presentations

A group presentation is a way of writing a group G in a form like

G = 〈x, y | xy = yx〉

where the elements of the group are generated by x and y (i.e. are words in {x, y, x−1, y−1}) subject to the
equation xy = yx.

Example 4.12.

(i) Suppose we have Z/pZ, which is a group under addition. We can find a generator under addition as

Z/pZ =
{

1, x, x2, . . . , xp−1
}

, where xn =
n∑
i=1

x. We write this as Z/pZ = 〈x | xp = 1〉.

(ii) We have Z = {. . . ,−1, 0, 1, . . . } as a group under addition. This is the same as Z = {. . . , x−1, 1, x1, . . . }
for x = 1 and xn =

n∑
i=1

x as above, and we can write this as Z = 〈x | ·〉 where ‘·’ denotes the fact that

there are no relations (other than requiring that x · x−1 = 1 which is assumed).

(iii) Consider G =
〈
x, y

∣∣ x3 = y2 = 1, xy = yx
〉
. Then we can show that G =

{
1, x, x2, y, xy, x2y

}
. It is

straightfoward to show that arbitary words can be put into one of these six forms, though showing these
words are not the same requires a slightly more delicate argument. We have that G ∼= Z/2Z× Z/3Z.

We claim that there is a one-to-one correspondence between group presentations and 2-complexes.

Example 4.13. The circle S1 can be described by the flower with one petal. It therefore has a single edge
x and no attaching paths. We have that

π1(S1) ∼= Z =
{
. . . , x−1, 1, x1, . . .

}
= 〈x | ·〉.

Example 4.14. The torus T can be described by edges x, y and a face attached along the path xyx−1y−1.
We would like to convince ourselves that:

π1(T ) ∼=
〈
x, y

∣∣ xyx−1y−1 = 1
〉
.

First consider π1
(
T (1), ·

)
where T (1) = X2 is the flower with two petals. Similarly to the case of the

circle, it can be shown that the edge paths x and y are not homotopic, i.e.

π1(T (1), ·) = {loops at ·} / '
=
{

words in
{
x, x−1, y, y−1

}}
/ ' .

Attaching the face along the path xyx−1y−1 forces this path to be homotopic to the constant path: we
can simply move through the square down to the basepoint. It turns out that this is the only new relation
this introduces to the fundamental group, hence:

π1(T ) ∼=
〈
x, y

∣∣ xyx−1y−1 = 1
〉
.
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Definition 4.15. If P = 〈x1, · · · , xn | r1, · · · , rm〉 is a presentation for a group G, where the ri are words
in the xi, x

−1
i . Then the presentation complex for P, denoted XP , is the 2-complex defined by taking a

flower with n-petals labelled by x1, · · · , xn and attaching faces along the paths corresponding the the relation
r1, · · · , rm.

Note that χ(XP) = 1− n+m.

Theorem 4.16. If P is a presentation for the group G, then π1(XP) ∼= G.

We will not prove this here as a proof would require knowing far more about π1 than we already do.
The above discussion now implies that there is a one-one correspondence

{2 complexes X such that π1(X) ∼= G} ↔ {Presentations P for G}.

This has two nice consequences.

Definition 4.17. We say a group G is finitely-presented if it can be described by a presentation P with
finitely many generators and relations.

This includes all finite groups and probably all infinite groups we have come across before. The above
theorem implies:

Corollary 4.18. If G is a finitely-presented group, then there exists a 2-complex X with π1(X) ∼= G.

In particular, classifying 2-complexes in general is at least as hard as classifying finitely-presented groups.
One can prove theorems which imply that finitely-presented groups can never be classified. A more concrete
issue is that even classifying finite groups is well beyond the realm of what most mathematicians think is
possible.

Perhaps surprisingly, this gives us a formula for the fundamental group of any cell complex. We need the
following lemma.

Lemma 4.19. If X is a cell complex, then π1(X) ∼= π1(X(2)).

This can be shown by proving that attaching cells of dimension ≥ 3 does not alter the fundamental group.
This is related to this fact that π1(Sn) = {1} for all n ≥ 2 (we saw the case n = 2 earlier).

In particular, if X is a cell complex, then we can compute π1(X) by finding a 2-complex X ′ with a single
vertex which is homotopy equivalent to X(2) (for example, by contracting a spanning tree) and then writing
down the presentation P corresponding to X(2).

It may now seem as though fundamental groups are actually very easy to compute. However, determining
the isomorphism class (or even just the size) of a group from a presentation is very difficult. It can be shown,
for example, that there is no single algorithm that can determine whether two presentations P1,P2 represent
the same group.

4.2.2 Stable Equivalence of 2-Complexes

We now consider the question of whether or not χ(X) and π1(X) are enough to determine the 2-complex X.
In order to answer this question, we consider a certain principle for classification problems: to first classify
with respect to a stronger equivalence relation.

Definition 4.20 (Wedge). If X and Y are 2-complexes, then define their wedge, X∨Y , to be the 2-complex
set with vertex set V = V (X) ∪ V (Y ) with two vertices vX ∈ V (X) and vY ∈ V (Y ) identified, and edge set
E = E(X) t E(Y ).

We can picture this as the spaces X and Y glued together at a single point. One can check the the
homotopy type of X ∨ Y is independent of the choice of vertices.

Example 4.21. If X = T is the torus and Y = S2 is the sphere, then T ∨ S2 is a ‘torus with a pimple’ as
drawn below.
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Figure 22

We will use this to define an equivalence relation which is stronger than homotopy.

Definition 4.22 (Stable homotopy). Two 2-complexes X and Y are stably homotopic, denoted X ∼ Y , if
there exists r > 0 for which

X ∨ S2 ∨ · · · ∨ S2︸ ︷︷ ︸
r

' Y ∨ S2 ∨ · · · ∨ S2︸ ︷︷ ︸
r

.

Remark 4.23. Note that ‘stable homotopy’ is often used to refer to a different concept in the literature.

From now on, we will abbreviate X ∨ S2 ∨ · · · ∨ S2︸ ︷︷ ︸
r

to X ∨ rS2.

We would now ask the weaker question of whether or not χ(X) and π1(X) determine X up to stable
homotopy. However, we need to first check that χ and π1 stable homotopy invariants.

Lemma 4.24. If X and Y are 2-complexes, then X ∼ Y implies that χ(X) = χ(Y ) and π1(X) ∼= π1(Y ),
i.e. χ and π1 are stable homotopy invariants.

Proof. Suppose that X ∼ Y , i.e. X∨rS2 ' Y ∨rS2 for some r ≥ 0. Since χ and π1 are homotopy invariants,
we have that

χ
(
X ∨ rS2

)
= χ

(
Y ∨ rS2

)
, π1

(
X ∨ rS2

) ∼= π1
(
Y ∨ rS2

)
.

But χ
(
X ∨ rS2

)
= χ(X) + r and χ

(
Y ∨ rS2

)
= χ(Y ) + r, and so χ(X) = χ(Y ).

We can also show that π1
(
X ∨ rS2

) ∼= π1(X) and π1
(
Y ∨ rS2

) ∼= π1(Y ). To see this note that, if
X = XP for some presentation

P = 〈x1, . . . , xn | r1, . . . , rm〉,

then XP ∨ S2 ∼= XP′ for
P ′ = 〈x1, . . . , xn | r1, . . . , rm, 1〉.

This represents the same group as P and so π1(XP ∨ S2) ∼= π1(XP′). �

The above proof illustrates an important method for proving things about 2-complexes. Since 2-complexes
correspond to group presentations, we can interpret operations on 2-complexes in terms of operations on
group presentations (and vice versa). This often makes proofs significantly easier, though depends on The-
orem 4.16 which we did not prove.

Remark 4.25. This also means that we can not use χ and π1 to find some X 6' Y with X ∼ Y .

Challenge 4.26. Prove that, if χ(X) = χ(Y ) and π1(X) ∼= π1(Y ), then X ∼ Y .

The proof should involve turning two presentations for the same group G into each other by a sequence
of operations of presentations, and then carefully considering how each of these operations changes the
homotopy type of the underlying complex.
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4.2.3 The Cancellation Problem for 2-Complexes

We will now deal with the problem of classifying 2-complexes in general.
We saw above that χ

(
X ∨ S2

)
= χ(X) + 1. Pick two 2-complexes over G, i.e. π1(X) ∼= π1(Y ) ∼= G.

Suppose that χ(X) = a and χ(Y ) = b. Then χ
(
X ∨ bS2

)
= a + b = χ

(
Y ∨ aS2

)
, which implies that

X ∨ bS2 ∼ Y ∨ aS2. Thus if c = r + a and d = r + a, then X ∨ cS2 ' Y ∨ dS2.
In particular, any two 2-complexes over G are connected by a series of wedges with S2. This allows us

to represent the set of homotopy types of 2-complexes over G in the following way:

Definition 4.27. Let G be a finitely-presented group and define H(G) to be the graph whose vertices are
the homotopy types of 2-complexes over G, and whose edge connect X to X ∨ S2.

The discussion above implies that H(G) is path-connected. We can also show:

Exercise 4.28. H(G) is a tree.

We will refer to H(G) as the tree of homotopy types of 2-complexes over G.
This follows easily from the fact that H(G) can be drawn as follows, where two vertices are at the same

height in the graph if and only if they have the same Euler characteristic:

...

X

X ∨ S2

Y

Y ∨ S2

Z

Figure 23

In this example, the vertices X ∨ S2 and Y ∨ S2 both connect to Z since Z ' X ∨ S2 and Z ' Y ∨ S2,
i.e. X ∨ S2 ' Y ∨ S2.

Fix a group G and let X and Y be 2-complexes over G.

Question 4.29. Does X ∨ S2 ' Y ∨ S2 imply that X ' Y ?

This question was known to J.H.C. Whitehead when he developed the homotopy theory of cell complexes
in the early 20th century. However, it was not until 1976 that the first example of non-cancellation was
discovered.

Example 4.30. Let n > 3 and let p be a prime. Then, for each i ≥ 1 with (i, p) = 1, define the presentation

P(i) :=
〈
x1, . . . , xn

∣∣ xp1 = · · · = xpn = 1, xi1x2 = x2x
i
1, xaxb = xbxa, 1 ≤ a < b ≤ n, (a, b) 6= (1, 2)

〉
.

It is easy to see that P(1) is a presentation for (Z/pZ)n. Also, by changing generator from x1 to xi1, we see
that P(i) are also presentations for (Z/pZ)n.

Let X(i) = XP(i). Then π1(X(i)) ∼= (Z/pZ)n and, by the definition of XP(i), we have that

χ(X(i)) = 1− n︸︷︷︸
number of 1-cells

+ n+

(
n

2

)
︸ ︷︷ ︸

number of two cells

which is independent of i.
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From the example, we get the following theorem.

Theorem 4.31. X(a) = X(b) if and only if ab−1 ≡ ±kn−1 (mod p), for some k ∈ (Z/pZ)×.

Proving this is quite difficult and involves finding an invariant of the homotopy type which is not an
invariant of the stable homotopy type.

In the other direction, it is possible to prove the following cancellation theorem in the case of finite
fundamental group:

Theorem 4.32. Suppose G is finite and X and Y are 2-complexes over G with χ(X) = χ(Y ). Then
X ∨ S2 ' Y ∨ S2.

This show that the trees of homotopy types of 2-complexes over finite groups G take the following form:

...

Figure 24

4.3 Other Classification Problems

We will end the course by briefly mention other classification problems in topology.
Consider the case of n-manifolds. These are spaces which look like Dn at every point. It turns out that

a nice thing to do is instead of just classifying manifolds up to homeomorphism or homotopy, we can instead
try and classify them up to stable homeomorphism or stable homotopy.

A good notion of stable classification has, so far, only been found for even-dimensional spaces.

Definition 4.33. If M and N are 2n-manifolds, then we define the connected sum M#N by cutting out
discs D2n

1 ⊆ M and Dn
2 ⊆ N and attaching M \ D2n

1 and N \ Dn
2 along a higher dimensional cylinder

S2n−1 × I (which works since the discs have boundary S2n−1).

We can now define our notions of stable equivalence on 2n-manifolds.

Definition 4.34. We say that 2n-manifolds M and N are stably homeomorphic if there exists r ≥ 0 for
which M#r(Sn × Sn) ∼= N#r(Sn × Sn). Similarly we say that M and N are stably homotopy equivalent if
there exists r ≥ 0 for which M#r(Sn × Sn) ' N#r(Sn × Sn).

Here we write M#r(Sn × Sn) to mean M# (Sn × Sn)# · · ·#(Sn × Sn)︸ ︷︷ ︸ r.
In these cases, it is often possible to classify 2n-manifolds up to stable homotopy or homeomorphism.

This then reduces the classification of these manifolds to a cancellation problem similar to the one considered
above.

It turns out the cancellation problem for n-complexes is closely related to the cancellation problem for
2n-manifolds. Every n-complex X is homotopy equivalent to an n-complex X ′ which can be viewed as a
subset of R2n+1 (this is a typical ‘embedding theorem’). This complex can be ‘thickened’ inside of R2n+1 to
give a (2n+1)-dimensional manifold-with-boundary N(X). The boundary of N(X) is a 2n-manifold M(X),
and this is well-defined up to homotopy. It is possible to show that M(X ∨ Sn) 'M(X)#(Sn × Sn), which
gives the connection between these classification problems.
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