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Combinatorial description of TH
g,s

Confluences of holes and reductions of algebras of geodesic functions: from
skein relations to Ptolemy relations

Shear coordinates for bordered Riemann surfaces and new laminations:
closed curves and arcs.

From quantum shear coordinates to quantum cluster algebras and back.



Motivation

Monodromy manifolds of Painlevé equations

Confluence of singularities = confluence of holes in monodromy manifolds

How to catch the Stokes phenomenon in terms of fundamental group?

What is the character variety of a Riemann surface with Stokes lines on its
boundary?

Cusped character variety

The character variety of a Riemann surface with holes is well understood.

Use chewing-gum and cusp pull out moves to produce Stokes lines.

The cusped character variety is a cluster algebra! (LCh–M. Mazzocco– V. Rubtsov)



Combinatorial description of TH
g ,s—general construction

Fat graph description for Riemann surfaces with holes

A fat graph (a graph with the prescribed cyclic ordering of edges entering each
vertex) Γg,s is a spine of the Riemann surface Σg,s with g handles and s > 0
holes if

(a) this graph can be embedded without self-intersections in Σg,s ;

(b) all vertices of Γg,s are three-valent;

(c) upon cutting along all edges of Γg,s the Riemann surface Σg,s splits into s

polygons each containing exactly one hole.

We set a real number Zα [the Penner–Thurston h-lengths (logarithms of
cross-ratios)] into correspondence to the αth edge of Γg,s if it is not a loop. To
each edge that is a loop we set into correspondence the number

ωi =

{
2 cosh(Pi/2),
2 cos(π/pi)

where Pi ≥ 0 is the perimeter of the hole or pi ∈ {2, 3, . . . } the order of the
orbifold point inside the monogon



Combinatorial description of TH
g ,s—general construction

The Fuchsian group ∆g,s⊂PSL(2,R) and geodesic functions, Σg,s = H+
2 /∆g,s

closed geodesics on Σg,s

closed paths in Γg,s

conj. classes of π1(Σg,s)

conj. classes of ∆g,s

Every time the path homeomorphic to a (closed) geodesic γ passes along the
edge with the label α we insert [Fock] the edge matrix

XZα =

(
0 −eZα/2

e−Zα/2 0

)
;

every time we turn “right” or “left” at vertices, we introduce the turn matrices

R =

(
1 1
−1 0

)
, L = R

2 =

(
0 1
−1 −1

)
.



Combinatorial description of TH
g ,s—general construction

Passing along a loop

(a) . . .XXLXZFωXZLXY . . . ,
(b) . . .XXLXZ (−F 2

ω)XZRXX . . . ,
(c) . . .XYRXZ (F

3
ω)XZLXY . . . .

, Fi =

(
0 1
−1 −wi

)
.

X Y

Z

Fω

(a)

X Y

Z

−F 2
ω

(b)

X Y

Z

F 3
ω

(c)



Combinatorial description of TH
g ,s—general construction

A typical element of a Fuchsian group reads

Pγ = LXYnRXYn−1 · · ·RXY2LXZ1(−1)k+1
F

k
ωi
XZ1RXY1 ,

The main algebraic objects are geodesic functions:

Gγ ≡ tr Pγ = 2 cosh(ℓγ/2),

where ℓγ are actual lengths of the closed geodesics on Σg,s .
Positivity The combinations

RXY =

(
e−Y/2 −eY/2

0 eY/2

)
, LXY =

(
e−Y/2 0

−e−Y/2 eY /2

)
,

RXZFωXZ =

(
e−Z + ω −eZ

−ω eZ

)
, LXZFωXZ =

(
e−Z 0

−e−Z − ω eZ

)
,

RXZ (−F
−1

ω )XZ , LXZ (−F
−1

ω )XZ

as well as products of any number of these matrices have the sign structure(
+ −
− +

)
, so the trace of any of Pγ with first powers of Fω and/or −F−1

ω is

a sum of exponentials with positive integer coefficients.



Combinatorial description of TH
g ,s—general construction

Poisson structure

Theorem

In the coordinates Zα on any fixed spine corresponding to a surface with or
without orbifold points, the Weil–Petersson bracket BWP reads

{
f (Z), g(Z)

}
=

4g+2s+|δ|−4∑

3-valent
vertices α = 1

3 mod 3∑

i=1

(
∂f

∂Zαi

∂g

∂Zαi+1

−
∂g

∂Zαi

∂f

∂Zαi+1

)
,

where the sum ranges all three-valent vertices of a graph and αi are the labels
of the cyclically (clockwise) ordered (α4 ≡ α1) edges incident to the vertex
with the label α. This bracket gives rise to the Goldman bracket on the space
of geodesic length functions.

The central elements are perimeters of holes.
This structure is invariant w.r.t. the flip morphisms.



Combinatorial description of TH
g ,s—general construction

Flip morphisms of fat graphs

• Flipping inner edges.

A B

Z

CD
D − ϕ(−Z ) C + ϕ(Z )

B − ϕ(−Z )A+ ϕ(Z )

−Z

1
2

3

1 2

3



Combinatorial description of TH
g ,s—general construction

Lemma

Flip morphisms preserve the traces of products over paths (the geodesic
functions) simultaneously defining morphisms of the Poisson structures on the
shear coordinates.

The proof of this lemma is based on the following useful matrix equalities (they
correspond to three geodesic cases in the figure

XDRXZRXA = XÃRXD̃ ,

XDRXZLXB = XD̃LXZ̃RXB̃ ,

XCLXD = XC̃LXZ̃LXD̃ .



Combinatorial description of TH
g ,s—general construction

Flipping the edge incident to a loop

A

Z

B

{
w = 2 cos(π/p)

w = 2 cosh(P/2)

ω

{
B − ϕ(−Z + iπ/p)− ϕ(−Z − iπ/p)

B − ϕ(−Z + P/2) − ϕ(−Z − P/2)

{
A+ ϕ(Z + iπ/p) + ϕ(Z − iπ/p)

A+ ϕ(Z + P/2) + ϕ(Z − P/2)

−Z

ω

3

2

1
1

2

3

This flip again preserves the geodesic functions and is a morphism of the
Poisson structure.
The classical and Poisson algebras of geodesic functions are therefore invariant
w.r.t. the choice of the spine Γg,s .



Combinatorial description of TH
g ,s—general construction

Quantum MCG transformations: Zα → Z~

α—elements of a C∗ algebra

[Z~

α,Z
~

β ] = 2πi~{Zα,Zβ}, ∗-structure : (Z~

α)
∗ = Z

~

α.

[Ch, Fock] the quantum flip morphisms

{A,B,C ,D ,Z} → {A+ ϕ~(Z ),B − ϕ~(−Z ),C + ϕ~(Z ),D − ϕ~(−Z ),−Z}

:= {Ã, B̃, C̃ , D̃, Z̃},

ϕ~(z) = −
π~

2

∫

Ω

e−ipz

sinh(πp) sinh(π~p)
dp,

are morphisms of C∗ algebra.



Combinatorial description of TH
g ,s—general construction

Classical skein relation

G1 G2

GI

1·

GH

1·= +

Goldman brackets for geodesic functions

{G1,G2}k

γ1

γ2

GI

1

2

GH

1

2
= −

Quantum skein relation

G~

1 G
~

2

γ1

γ2

G~

I

q1/2

G~

H

q−1/2= + q = e−iπ~



Combinatorial description of TH
g ,s—general construction

Example: Σ1,1:

Z1 Z2

Z3

G12 =Tr(RXz1LXz2) = ez1/2+z2/2 + e−z1/2−z2/2 + e−z1/2+z2/2

G23 =Tr(RXz2LXz3) = ez2/2+z3/2 + e−z2/2−z3/2 + e−z2/2+z3/2

G13 =Tr(RXz3LXz1) = ez3/2+z1/2 + e−z3/2−z1/2 + e−z3/2+z1/2

Central element: 2 − ez1+z2+z3 − e−z1−z2−z3 = G 2
12 + G 2

13 + G 2
23 − G12G13G23,

{G12,G13} = G23 −
1

2
G12G13, [G~

12,G
~

13]q = (q − q−1)G~

23,

{G23,G12} = G13 −
1

2
G12G23, [G~

23,G
~

12]q = (q − q−1)G~

13,
{G13,G23} = G12 −

1

2
G13G23, [G~

13,G
~

23]q = (q − q−1)G~

12.

[A,B]q := q1/2AB − q−1/2BA.



Confluences of holes: new geodesic laminations

“Chewing gums” and degenerations of geodesic algebras
1. The result of a confluence of two holes of a Riemann surface Σg,s,n of genus
g with s holes/orbifold points, and n bordered cusps is a Riemann surface of
the same genus g , s − 1 holes/orbifold points, and n + 2 bordered cusps, and
the hole obtained by the confluence of two original holes now contains two new
bordered cusps:



Confluences of holes: new geodesic laminations

The result of confluence of sides of the same hole depends on whether breaking
the chewing gum will result in one or two disjoint components.
2a. When breaking the chewing gum constituted by sides of the same hole in
Σg,s,n results in a one-component surface, the new surface Σg−1,s+1,n+2 will
have genus lesser by one (so, originally, g > 0), the hole will split into two
holes each containing one new bordered cusp.



Confluences of holes: new geodesic laminations

2b. When breaking the chewing gum constituted by sides of the same hole in
Σg,s,n results in a two-component surface, these new surfaces, Σg1,s1,n1 and
Σg2,s2,n2 , must be stable and such that g1 + g2 = g , s1 + s2 = s + 1, and
n1 + n2 = n + 2 with n1 > 0 and n2 > 0



Confluences of holes: new geodesic laminations

“Chewing gum” and limiting geodesics

1
2

3

1

1 + ε

εℓ1 εℓ2

We introduce the limit:
Gγ → Gγe

−D̂γ/2,

where D̂γ is the (total) geodesic length of the part(s) of the geodesic function

passing through the chewing gum. In the limit as ε → 0, all D̂γ are the same,
that is parts of all geodesics confined between two collars have the same
(infinite) length! In the limit as ε → 0, collars become horocycles of a new R.s.
New shear coordinate eπi := ℓi , then

e
D12/2 = (ε)−1

e
−π1/2−π2/2,



Confluences of holes: new geodesic laminations

New geodesic functions: arcs a = eℓγ/2, where ℓγ is the length of the finite part
confined between two horocycles of a geodesic starting and terminating at
bordered cusp(s).

In the limit, we obtain the Ptolemy relation:

γ̃a

γ̃c

γ̃b γ̃d

γ̃eγ̃f

γ̃f γ̃e = γ̃aγ̃c + γ̃bγ̃d



Combinatorial description of TH
g ,s,n

Definition

T
H
g,s,n = R

6g−6+3s+2n is the Teichmüller space of Riemann surfaces of genus g

with s > 0 holes, and n > 0 decorated bordered cusps. Every bordered cusp is
associated to one of the holes, and we have a natural cyclic ordering of
bordered cusps associated to the same hole due to the orientation of the
Riemann surface. The space T

H
g,s,n is the space of shear coordinates of a spine

Γg,s,n representing the corresponding Riemann surface.

A fat graph Γg,s,n is a spine of the Riemann surface Σg,s,n if

(a) this graph can be embedded without self-intersections in Σg,s,n ;

(b) all vertices of Γg,s,n are three-valent except exactly n one-valent vertices
placed at the corresponding bordered cusps;

(c) upon cutting along all edges of Γg,s,n the Riemann surface Σg,s,n splits
into s polygons each containing exactly one hole (or orbifold point);

(d) the above polygons are monogons for all orbifold points and all holes to
which no bordered cusps are associated.



Combinatorial description of TH
g ,s,n

Definition

We call a geometric geodesic lamination (GL) on a bordered Riemann surface a
set of nondirected curves up to a homotopical equivalence such that

(a) these curves are either closed curves (γ) or arcs (a) that start and
terminate at bordered cusps (which can be the same cusp);

(b) these curves have no (self)intersections inside the Riemann surface (but
can be incident to the same bordered cusp); they are neither empty loops
nor empty loops starting and terminating at the same cusp.

The algebraic GL is

∏

γ∈GL

(2 cosh(lγ/2))
∏

a∈GL

e
la/2 :=

∏

γ∈GL

Gγ

∏

a∈GL

Ga

where lγ are geodesic lengths of closed curves and la are signed geodesic
lengths of parts of arcs a contained between two horocycles; Gγ = 2 cosh(lγ/2)
and Ga = e la/2 are the corresponding geodesic functions.

Note that in thus defined GL sets of ends of arcs entering the same bordered
cusp are linearly ordered w.r.t. the orientation of the Riemann surface.



Combinatorial description of TH
g ,s,n

We endow all edges that are not loops with real numbers Zα (for internal
edges) and πj (for “pending” edges).
We then construct geodesic functions for closed geodesics as before, whereas
those for Ga are given by traces

Ga = Tr[KXπ1LXZα · · ·XZr LFωi
LXZr · · ·XZβRXπ2 ],

where XZα and Xπj
are the edge matrices XA =

[
0 −eA/2

e−A/2 0

]
; A is

either Zα or πj , the turn matrices are the same as before, R =

[
1 1
−1 0

]
,

L =

[
0 1
−1 −1

]
, and the new matrix

K =

[
0 0
−1 0

]
.



Combinatorial description of TH
g ,s,n

Relation between shear coordinates and λ-lengths

The very important remark is that thus defined arcs are nothing but λ-lengths
on the corresponding bordered Riemann surface [S.Fomin, M.Shapiro,
D.Thurston]; for inner edges:

λa

λb

Z
λe

�

�

λc

λd

λa

λb

λc

�
�λd

−Z
λf

e
Z =

λbλd

λaλc

; mutation: λf =
λaλc + λbλd

λe



Combinatorial description of TH
g ,s,n

for loops:

�

�

�

�

�

�

λa

λb

Z

ω

λc

λa

λb

−Z

ω

λd

e
Z =

λb

λa

; mutation: λd =
λ2
a + λ2

b + ωλaλb

λc

[Ch.,Shapiro]



Combinatorial description of TH
g ,s,n

for decorated cusps:

�

Zb Za

πi

λaλb

λc

πi
ith cusp

e
πi =

λcλb

λa

; no mutation of border arcs are allowed

Lemma

For any Σg,s,n with n > 0 we have a complete lamination comprising exactly
6g − 6 + 3s + 2n − sω arcs λr , where sω is the number of momogons or
holes/orbifold points without bordered cusps (with the corresponding
parameters ωi). The shear coordinates {Zα, πj , ωi} on Γg,s,n dual to this set of
arcs are in 1-1 correspondence with {λr , ωi}.



Combinatorial description of TH
g ,s,n

Laurent property and positivity

arcs= cluster varieties

complete GLs of arcs=seeds

Given a seed, we have the set of Zα and πj expressed as monomials of λr ; any
other arc, or cluster variety of any other seed, is a positive Laurent polynomial
of the shear coordinates thus being a Laurent polynomial with positive integer
coefficients of the original λr . We thus obtain the positivity and Laurent
property for λ-lengths.



Combinatorial description of TH
g ,s,n. Example: Σ0,1,4

Z

π1

π2

π3

π4

γ1

γ2

∼

λa

λb

λe

λc

λd

�

�

�

�

�

�

Z

π1

π2

π3

π4

Gγ1 = e
π1/2+π3/2+Z/2 + e

π1/2+π3/2−Z/2, Gγ2 = e
π2/2+π4/2+Z/2



Poisson and quantum cluster algebras for TH
g ,s,n

Theorem

In the coordinates Zα, πj of TH
g,s,n on any fixed spine Γg,s,n corresponding to a

surface with at least one bordered cusp, the Weil–Petersson bracket BWP reads

{
f (Y), g(Y)

}
=

4g+2s+|δ|−4∑

3-valent
vertices α = 1

3 mod 3∑

i=1

(
∂f

∂Yαi

∂g

∂Yαi+1

−
∂g

∂Yαi

∂f

∂Yαi+1

)
,

where the sum ranges all three-valent vertices of a graph that are not adjacent
to loops and αi are the labels of the cyclically (clockwise) ordered (α4 ≡ α1)
edges Yα, which are either Zβ or πj , incident to the vertex with the label α.
This bracket

(1) is equivariant w.r.t. the morphisms generated by flips (mutations) of inner
edges and by flips (mutations) of edges adjacent to loops;

(2) gives rise to the Goldman bracket on the space of GLs.

The Casimirs are
∑

α∈I Zα where the sums range (with proper multiplicities)
edges bounding a cusped hole (labeled I ). The coefficients ωi of monogons are
central by construction.



Poisson and quantum cluster algebras for TH
g ,s,n

Lemma

The Poisson brackets on Zα, πj induce homogeneous Goldman-type Poisson
relations for arcs (λ-lengths) constituting a GL.

a1

a2

{Ga1 ,Ga2}

a1

a2

Ga1Ga2

=
1

4
a1

a2

{Ga1 ,Ga2}
a1

a2

Ga1Ga2

= −
1

4

We evaluate these Goldman brackets for all four combinations of ends of two
arcs (ends at different cusps Poisson commute); for instance, in the case where
all four ends are at the same cusp, and the both ends of a1 are to the right of
both ends of a2 (provided these arcs has no intersections inside the Riemann
surface), the total bracket will be {Ga1 ,Ga2} = Ga1Ga2 .



Poisson and quantum cluster algebras for TH
g ,s,n

Quantization

{Zα, πj} → {Z~

α, π
~

j }(= Y
~

j ) : [Y ~

i ,Y
~

j ] = 2πi~{Yi ,Yj}; [Z~

α]
∗ = Z

~

α, [π
~

j ]
∗ = π~

j

Definition

We define the quantum cluster variable corresponding to an arc to be

G
~

a
= Tr[KXπ1LXZα · · ·XZr LFωi

LXZr · · ·XZβRXπ2 ],

where XZα and Xπj
are the edge matrices with quantum entries and the

quantum ordering is the natural ordering in the product. The matrices
R → q1/4R, L → q−1/4L, K → K , and Fω → Fω.

Theorem

The thus defined quantum cluster variables are invariant under the quantum
MCG transformation and satisfy the quantum skein relations. In particular, the
quantum arcs from the same GL (or quantum variables from the same seed)
satisfy q-commutation relations.

We thus identify our quantum arcs with quantum cluster algebras of Berenstein
and Zelevinsky.



Confluences for Painlevé eqs. (LCh, Mazzocco, Roubtsov in preparation)

P
D6
III

!!❈
❈❈

❈❈
❈❈

❈
// P

D7
III

!!❇
❇❇

❇❇
❇❇

❇
// P

D8
III

PVI
// PV

//

>>⑥⑥⑥⑥⑥⑥⑥⑥

  ❇
❇❇

❇❇
❇❇

❇❇
P

deg

V

!!❈
❈❈

❈❈
❈❈

❈

==④④④④④④④④

PJM
II

// PI

PIV

==④④④④④④④④④
// PFN

II

==④④④④④④④④



Confluences for Painlevé eqs. (LCh, Mazzocco, Roubtsov in preparation)



Conclusion

THANK YOU!
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